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Abstract

Modelling sparse and large data sets is highly in demand yet
challenging in recommender systems. With the computation
only on the non-zero ratings, Poisson Factorization (PF) en-
abled by variational inference has shown its high efficiency in
scalable recommendation, e.g., modeling millions of ratings.
However, as PF learns the ratings by individual users on items
with the Gamma distribution, it cannot capture the coupling
relations between users (items) and the rating popularity (i.e.,
favorable rating scores that are given to one item) and rating
sparsity (i.e., those users (items) with many zero ratings) for
one item (user). This work proposes Coupled Poisson Factor-
ization (CPF) to learn the couplings between users (items),
and the user/item attributes (i.e., metadata) are integrated into
CPF to form the Metadata-integrated CPF (mCPF) to not only
handle sparse but also popular ratings in very large-scale data.
Our empirical results show that the proposed models signif-
icantly outperform PF and address the key limitations in PF
for scalable recommendation.

Introduction

Recommender Systems (RS) play increasingly important
roles in many applications, including online businesses and
social media. Collaborative filtering is a basic method that
has been widely explored in RS. For example, user-based
collaborative filtering makes predictions about the interest
of a user based on an analysis of the preferences of other
similar users. As a fundamental tool for collaborative filter-
ing, Matrix Factorization (MF) (Koren, Bell, and Volinsky
2009) has undergone many variations such as Non-negative
Matrix Factorization (NMF) (Lee and Seung 1999).

However, as discussed in (Mnih and Salakhutdinov 2008;
Gopalan, Hofman, and Blei 2015), MF models face signifi-
cant challenges in handling real-life RS problems, e.g., they
cannot handle large data because of the intensive mathemat-
ical computation required. Although different MF variants
have been explored to address such issues, e.g., Probabilistic
Matrix Factorization (Mnih and Salakhutdinov 2008) han-
dles large amount of data based on its statistical method,
they are still inefficient especially for sparse data, since they
perform the computation on all data which usually consists
of many zero ratings. Accordingly, Gopalan, Hofman, and
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Blei (2015) introduced Poisson Factorization (PF) and used
the variational inference method for scalable recommenda-
tion on large and sparse data by only scanning non-zero rat-
ings, which appears to be very promising.

PF factorizes the ratings by individual users on items
based on their posterior assumption of Gamma distribution,
but it may not capture the rating popularity and sparsity
and comprehensive user/item couplings embodied through
explicit and implicit variables (Cao, Ou, and Yu 2012;
Cao 2015), which essentially shows recommendation prob-
lems are non-IID (Cao 2016). For example, the complete
conditional posterior of items is in Eq. (1). a is the initial
shape of the Gamma distribution-based item weights βik;
a +

∑
u zuik is the shape of the Gamma distribution-based

item weights after we sample the observed data; and zuik
represents the rating given by user u on item i.

βik|θ, η, z, y ∼ Gamma(a+
∑

u

zuik, ηi +
∑

u

θuk) (1)

Let us illustrate the PF problems using the toy examples in
Table 1a by estimating the weight of the movie ‘The Game
(1997)’ for user 940. With the posterior distribution in Eq.
(1), the result is around 2 or 3. However, as shown in Table
1a, many users gave ratings 1 to ‘The Game (1997)’, hence
it may be more practical to set the item weight closer to 1.
This is the problem of rating popularity for a user (item).

PF is good at capturing sparse ratings using the Gamma
distribution (Gopalan, Hofman, and Blei 2015) as in Eq. (1).
Only the non-zero ratings are added to fit the shape of the
Gamma distribution. With sparse ratings for a user (item),
most of the weights will be 0 and only a few will be larger
than 0. This makes the computation faster but may lead to
wrong recommendations. We explain this scenario using Ta-
ble 1b. It may be more reasonable to recommend ‘The Game
(1997)’ to user 405 since two users rated it as 5. However,
PF only suggests 2 or 3. This problem appears when many
users give high ratings to an item while others do not rate it.
This creates the problem of rating sparsity for a user (item).

In this work, we address the aforementioned rating popu-
larity and sparsity issues in PF-based RS by involving and
modeling user/item metadata and the user and item cou-
plings (Cao 2015; 2016). First, the Coupled Poisson Fac-
torization (CPF) is proposed to model user/item relations.
Here “Coupled” refers to (1) coupled users by learning the
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Table 1: Rating Popularity and Sparsity Examples
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179 5 5 4 4
193 1 ? 4 ?
204 1 3 3 ?
15 1 ? ? ?
458 1 3 ? 5
626 1 3 ? 4

940 ? ? 5 4

(a) Popularity within an item
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179 5 5 4 4
91 5 ? 4 ?
392 ? 4 2 ?
263 ? ? 3 4
286 ? ? ? 4
324 ? 5 ? ?

405 ? 5 ? 4

(b) Sparsity within an item

relations between the ratings of two users on one item (e.g.,
in Table 1a, the rating by user 193 is 1 which is similar to
the rating given by user 204 but different (5) to that given
by user 179); (2) coupled items by learning the relations be-
tween the ratings on two items given by the same user (e.g.,
user 179 gave a similar rating (5) for ‘The Game (1997)’
and ‘Scream (1996)’ but a different rating (1) for ‘Star-
ship Troopers (1997)’). CPF factorizes the relations between
users (items) to obtain their weights. It only calculates the
weights based on similar ratings and therefore inherits the
strength of PF on a sparse matrix. Furthermore, CPF mod-
els the rating behavior similarity of users on items and thus
can address rating sparsity and popularity. As a result, CPF
sets the weight of ‘The Game (1997)’ by user 940 to 1 in
Table 1a and that by 405 to 5 in Table 1b. Second, we inte-
grate user/item metadata into CPF to generate a new model
called the Metadata-integrated Coupled Poisson Factoriza-
tion (mCPF). Since the sparsity of rating data is often very
high in real data, it is natural to integrate user/item metadata
to RS (Cao 2016). For example, the ‘genre’ of a movie and
the ‘occupation’ of a user are integrated with their ratings.

CPF and mCPF own the following properties. First, built
on the PF strength, CPF and mCPF need only to scan the
non-zero ratings. Hence, CPF and mCPF can handle massive
sparse data in recommendation. Second, CPF captures the
user/item interactions by factorizing the matrix of user/item
similarity w.r.t. the ratings, as shown by the examples in Ta-
bles 1a and 1b. As a result, CPF addresses rating popularity
and sparsity for one user/item. In addition, by incorporating
user/item metadata, mCPF further improves the recommen-
dation precision, especially when the sparsity of data is ex-
tremely high. Lastly, as CPF and mCPF are fully Bayesian
and conjugate models, variational inference can be applied
for scalable inference on a large and sparse matrix.

The CPF and mCPF Models

Coupled User Poisson Factorization (CuPF)

Real-life data includes the matrix of ratings given by users
to items, Y , where yui is the rating by user u to item i (e.g.,
from 1 to 5) and 0 if there is no rating. Typically, this kind
of observed data is highly sparse.

In CuPF, we first transform the ratings to the matrix of
similar ratings between users (coupled users), SU . The el-
ements of similarity matrix SU are defined as: SUuv,i = 1
if the rating by user u to item i (i.e., yui) is similar to the
rating by user v to item i (yvi), and 0 otherwise. In prac-
tice, for examples like the ratings which scored from 1 to 5
in Movielens, there may be varied ways to set the similarity.
Our experiments show the best results by setting SUuv,i = 1
when |yui − yvi| ≤ 1.

Built on the strength of Poisson Factorization (Gopalan,
Hofman, and Blei 2015), the similarity matrix is then factor-
ized by using Poisson distribution as in (Canny 2004) to the
vector of K latent feature for each item, βik and the vector of
K latent rating preference similarity for each coupled user
θuvk (instead of the vector of K latent preferences for each
user as in PF). The Gamma distribution is given to βik, θuvk
similar to (Gopalan, Hofman, and Blei 2015) and the Pois-
son distribution (SUuv,i ∼ Poisson(

∑
k θ

T
uvkβik) for the

observed similar ratings of users. CuPF still keeps the fea-
ture of heterogeneity across users and items as discussed in
(Koren, Bell, and Volinsky 2009) by placing the additional
Gamma prior on the item’s latent attractiveness ηi and la-
tent behavior similarity of coupled users ξuv (instead of the
user’s activity in PF). Hence, it can capture the sparse repre-
sentation of items and the relations of users.

The CuPF’s generative process is as follows.
(1) For each relation between users u and v:

(a) Sample latent behavior similarity:

ξuv ∼ Gamma(a′, b′) (2)

(b) Sample latent preference similarity for each com-
ponent k:

θuvk ∼ Gamma(a, ξuv) (3)

(2) For each item i:
(a) Sample latent attractiveness:

ηi ∼ Gamma(c′, d′) (4)

(b) Sample latent feature for each component k:

βik ∼ Gamma(c, ηi) (5)

(3) For each relation between users u and v and each item
i, sample rating similarity:

SUuv,i ∼ Poisson(
∑

k

θTuvkβik) (6)

The missing rating similarity (i.e., zeros) between users u
and v to item i are estimated by SUuv,i = 1 if the expected
Poisson parameter E[θTuvkβik] ≥ ε; and 0 otherwise. The
missing ratings by user u to item i are then recovered by
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its rating similarity with other users to item i by taking the
rating popularity into account.

yui =

∑
v yviδviSUu,i∑

v SUuv,i
(7)

where δvi is the popularity of the rating given by user v to
item i (yvi) and is defined as the fraction of the number of
users with rating yvi of all users that rated item i.

For example, the popularity of rating 1 by users 193, 204,
15, 458 and 626, which is 5/6 as shown in Table 1a, may
be higher than that of rating 5 by user 179, which is 1/6.
By doing this, the post-processing using Eq. (7) can capture
more information as described in Tables 1a and 1b, which
estimates the ratings close to 1 for user 940 and 5 for user
405. We show the graphical model of CuPF in Figure 1a.

Coupled Item Poisson Factorization (CiPF)

Similar to CuPF, CiPF factorizes the observed matrix of sim-
ilar ratings between items SI . The elements of similarity
matrix SI are defined as: SIu,ij = 1 if the rating by user u
to item i (i.e., yui) is similar to the rating by user u to item
j (yuj); and 0 otherwise. We place the Poisson distribution
for SI and the Gamma prior for the vector of K latent pref-
erences θuk for each user and the vector of K latent feature
similarity βijk for each coupled item (instead of the vector
of K latent attributes for each item in PF). The Gamma dis-
tribution is also given to the user’s latent behavior ξu and the
item’s latent attractiveness similarity ηij .

The CiPF’s generative process is as follows.
(1) For each user u:

(a) Sample latent behavior:

ξu ∼ Gamma(a′, b′) (8)

(b) Sample latent preference of each component k:

θuk ∼ Gamma(a, ξu) (9)

(2) For each relation between items i and j:
(a) Sample latent attractiveness similarity:

ηij ∼ Gamma(c′, d′) (10)

(b) Sample latent feature similarity for each compo-
nent k:

βijk ∼ Gamma(c, ηij) (11)
(3) For each user u and relation between items i and j,

sample rating similarity:

SIu,ij ∼ Poisson(
∑

k

θTukβijk) (12)

The missing rating similarity (i.e., zeros) given by user u
to items i and j are estimated by SIu,ij = 1 if the expected
Poisson parameter E[θTukβijk] ≥ ε; and 0 otherwise. The
missing ratings by user u to item i are then recovered ac-
cording to its rating similarity to other items j by taking the
rating popularity into account.

yui =

∑
j yujδujSIu,ij∑

j SIu,ij
(13)

(a) CuPF (b) CiPF

(c) mCuPF (d) mCiPF

Figure 1: Metadata-integrated Coupled Poisson Factoriza-
tion.

where δuj is the popularity of ratings by user u to item j
(i.e., yuj) and is defined as the fraction of the number of
items with ratings yuj in all items that have the same ratings
as user u. Figure 1b shows the graphical model of CiPF.

Next, we introduce the process of integrating the metadata
of users and items to CuPF and CiPF.

Integrating Metadata to Coupled User Poisson
Factorization (mCuPF)

For each user attribute m in the metadata, sample the weight:

hum ∼ Gamma(α0, α1) (14)

For each item attribute n in the metadata, sample the weight:

hin ∼ Gamma(γ0, γ1) (15)

For each latent behavior similarity of coupled users u and v:

ξuv ∼ Gamma(a′,
M∏

m=1

hufuu,mfuv,m
m ) (16)

For each item i’s latent attractiveness:

ηi ∼ Gamma(c′,
N∏

n=1

hifii,nn ) (17)

We apply the Gamma prior to the weight of each user at-
tribute, hum, e.g., the ‘age’ of a user, as in Eq. (14). The
weight of user attribute hum only affects the behavior simi-
larity of users ξuv and further affects the preference similar-
ity of users θuvk if and only if fuu,m = fuv,m = 1 as in
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Eq. (16). That means both users u and v have the attribute m.
hum measures the degree of influence of each user attribute.
For example, the ‘occupation’ of a user may have less in-
fluence than the ‘age’ of a user in Movielens. The weight
of an item attribute hin, e.g., the ‘genre’ of a movie, is also
given a Gamma distribution as in Eq. (15). The weight of
item attribute hin only affects the item’s latent attractive-
ness ηi when item i has the attribute n (i.e., fii,n = 1).
The graphical model of mCiPF is shown in Figure 1c. In the
section about the model properties, we explain why they are
integrated in this way.

Integrating Metadata to Coupled Item Poisson
Factorization (mCiPF)

For each user u’s latent behavior:

ξu ∼ Gamma(a′,
M∏

m=1

hufuu,m
m ) (18)

For the attractiveness similarity between items i and j:

ηij ∼ Gamma(c′,
N∏

n=1

hifii,nfij,nn ) (19)

Similar actions are taken on mCiPF as on mCuPF with the
user attribute hum in Eq. (14) and item attribute hin in Eq.
(15). This time, we integrate hum to individual user and hin
to the relations between items as in Eqs. (18) and (19). The
graphical model of mCiPF is shown in Figure 1d.

Inference for CPF/mCPF

Using CPF/mCPF for recommender systems depends on
solving the posterior inference problem. We apply the mean-
field variational inference (VI) to our models as it is efficient
for large-scale probabilistic models (Wainwright, Jordan,
and others 2008), compared to other sampling approaches
like MCMC (Gilks, Richardson, and Spiegelhalter 1995).
Using VI, we find the family of distributions over the hidden
variables and the members of this family by tuning the pa-
rameters to minimize the Kullback-Leibler (KL) divergence
to the true posterior. Due to space limitations, we only intro-
duce the VI method for CuPF/mCuPF, which is similiar to
that for CiPF/mCiPF.

Variational Inference for CuPF

Given SU , we compute the posterior distributions of the la-
tent preference similarity of coupled users θuvk, the item’s
latent feature βik, the latent behavior similarity of coupled
users ξuv , and the item’s latent attractiveness ηi. The same
approach as in (Gopalan, Hofman, and Blei 2015) is taken
here, however we replace the similarity between ratings by
coupled users u, v to item i, SUuv,i, with auxiliary latent
variable wuv,i ∼ Poisson(θuvkβik). Accordingly, the sim-
ilarity SU is expressed as follows:

SUuv,i =
∑

k

wuv,i,k (20)

Similar to (Gopalan, Hofman, and Blei 2015), the infer-
ence only considers wuv,i, SUuv,i = 1. The mean-field fam-
ily assumes each distribution is independent of the others.

q(θ, β,ξ, η, w) =
∏

uv,k

q(θuvk|νuvk)
∏

i,k

q(βik|μik)

∏

uv

q(ξuv|κuv)
∏

i

q(ηi|τi)
∏

uv,i,k

q(wuv,i,k|φuv,i,k)

(21)

We use the class of conditionally conjugate priors for
θuvk, βik, ξuv , ηi and wuv,i to update the variational param-
eters {ν, μ, κ, τ, φ}. For the Gamma distribution, we update
both hyper-parameters: shape and rate.

(1) Update shape and rate of κuv:

κuv,0 = a′ +Ka (22)

κuv,1 = b′ +
∑

k

νuvk,0
νuvk,1

(23)

(2) Update shape and rate of τi:

τi,0 = c′ +Kc (24)

τi,1 = d′ +
∑

k

μik,0

μik,1
(25)

(3) Update φuv,i,k:

φuv,i,k =exp{Ψ(νuvk,0)− log(νuvk,1)

+ Ψ(μik,0)− log(μik,1)} (26)

where Ψ() is the digamma function.
(4) Update shape and rate of νuvk:

νuvk,0 = a+
∑

i

SUuv,iφuv,i,k (27)

νuvk,1 =
κuv,0

κuv,1
+

∑

i

μik,0

μik,1
(28)

(5) Update shape and rate of μik:

μik,0 = c+
∑

u,v

SUuv,iφuv,i,k (29)

μik,1 =
τi,0
τi,1

+
∑

u,v

νuvk,0
νuvk,1

(30)

Owing to the limited space, the details of the deviation,
which is similar to PF, are ignored here. We will instead give
details of the process of deviation of integrating user/item
metadata to CuPF in the following section.
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Integrating User/Item Metadata to Coupled User
Poisson Factorization (mCuPF)

In mCuPF, we further learn two more parameters ζm and
ρn for the weight of user attributes and item attributes by
minimizing the KL divergence to the posterior.

q(ζ, ρ,θ, β, ξ, η, w) =
∏

m

q(hum|ζm)
∏

n

q(hin|ρn)
∏

uv,k

q(θuvk|νuvk)
∏

i,k

q(βik|μik)
∏

uv

q(ξuv|κuv)

∏

i

q(ηi|τi)
∏

uv,i,k

q(wuv,i,k|φuv,i,k)

(31)

With the Gamma distribution in Eqs. (14) and (16),

p(hum|α0, α1) ∝ huα0−1
m exp{−α1hum} (32)

p(ξuv|a′, hum) ∝

(

M∏

m=1

hufuu,mfuv,ma′
m )exp{−(

M∏

m=1

hufuu,mfuv,m
m )ξuv}

(33)

The posterior probability of weight hum becomes:

p(hum|α0, α1, ξuv) ∝ p(hum|α0, α1)
∏

u,v

p(ξuv|a′, hum)

∝ huα0+ℵuv,ma′−1
m exp{−(α1 +

∑

u,v

ξuv)hum}

(34)

ℵuv,m is the number of coupled users u, v both having at-
tribute m. The posterior Gamma distribution of hum is

hum ∼ Gamma(α0 + ℵuv,ma′, α1 +
∑

u,v

ξuv) (35)

hum is affected by ℵuv,m and the weight of the relations
between users based on the ratings (i.e., ξuv). Similarly, the
posterior distribution for the weight of item attribute, hin, is

hin ∼ Gamma(γ0 + χi,nc
′, γ1 +

∑

i

ηi) (36)

where χi,n is the number of items i that have attribute n.
After obtaining the posterior distribution for the Gamma

distribution of hum and hin, we update shape and rate of
the variational parameters as follows.

(1) For coupled users u and v:

ζm,0 = α0 + ℵuv,ma′ (37)

ζm,1 = α1 +
∑

u,v

κuv,0/κuv,1 (38)

(2) For item i:

ρn,0 = γ0 + χi,nc
′ (39)

ρn,1 = γ1 +
∑

i

τi,0/τi,1 (40)

Compared to CuPF, since the rate of the Gamma distri-
bution of latent behavior similarity of coupled users u and
v, ξuv , and the latent attractiveness of the item ηi have been
changed as in Eqs. (16) and (17), we change the update of
Eqs. (23) and (25) as follows.

κuv,1 =
M∏

m=1

(ζm,0/ζm,1)
fuu,mfuv,m +

∑

k

νuvk,0
νuvk,1

(41)

τi,1 =
N∏

n=1

(ρn,0/ρn,1)
fii,n +

∑

k

μik,0

μik,1
(42)

By the mean-field variational inference, the coordinate as-
cent is used to iteratively optimize each variational parame-
ter while holding the others fixed (Jordan et al. 1999). The
variational inference of mCuPF is listed in Algorithm 1 and
its full process is shown in Algorithm 2.

Algorithm 1 Variational Inference for mCuPF

1: Initialize the variational parameters {ζ, ρ, ν, μ, κ, τ, φ}.
2: Sample shape of latent behavior similarity of coupled

users, ξuv , and shape of item’s latent attractiveness, ηi,
as in Eqs. (22) and (24).

3: Sample shape of the weight of user’s attribute (in meta-
data), hum, and shape of the weight of item’s attribute
(in metadata), hin, as in Eqs. (37) and (39).

4: repeat
5: for each rating similarity between coupled users u, v

to item i that SUuv,i = 1 do
6: Update the multinominal as in Eq. (26).
7: end for
8: for each coupled users do
9: Update the latent preference similarity as in Eqs.

(27) and (28)
10: Update rate of latent behavior similarity as in Eq.

(41).
11: for each user attribute in metadata do
12: Update rate of the weight as in Eq. (38)
13: end for
14: end for
15: for each item do
16: Update the latent feature as in Eqs. (29) and (30).
17: Update rate of latent attractiveness as in Eq. (42).
18: for each item attribute do
19: Update rate of the weight as in Eq. (40).
20: end for
21: end for
22: until convergence

Algorithm 2 mCuPF

1: Input: Rating matrix Y .
2: Output: Estimated missing ratings (i.e., zeros in Y ).
3: Pre-Processing to get the similarity matrix SU .
4: Inference to optimize all parameters as in Algorithm 1.
5: Post-Processing as in (7) to get missing ratings.
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Properties of CPF/mCPF and Related Work

We explain the properties of CPF/mCPF in the context of the
related work. As discussed in the introduction, the proposed
models CPF/mCPF hold the following four properties.

(1) CPF/mCPF are fast for a sparse matrix. The rating
matrix is often sparse. When we transform it to a similarity
matrix (i.e., coupled users SU and coupled items SI), the
similarity matrix is also sparse, as we only keep the similar-
ity pair (SUuv,i = 1) but ignore the dissimilarity pair and
zero elements (SUuv,i = 0). For example, in CuPF, given
the vector of latent preferences of coupled user u and v, θuv ,
and the vector of the item’s latent features βi, the probability
based on Poisson distribution of the similarity of ratings by
coupled users u and v to item i, SUuv,i, is given below.

p(SUuv,i|θuv, βi) =
(θTuvβi)

SUexp{−θTuvβi}
SUuv,i!

(43)

The corresponding log probability of similar matrix SU
is given as follows.

log(SU |θ, β) =
(

∑

SUuv,i �=0

SUuv,ilog(θ
T
uvβi)− log(SUuv,i!))

−(
∑

u,v

θuv)
T (

∑

i

βi)

(44)

When SUuv,i = 0 (i.e., log(SUuv,i!) = 0), it will not
affect the log probability. This feature is inherited from the
Poisson Factorization. It does not require optimization tech-
niques to reduce the computational time as in the classical
Matrix Factorization (Dror et al. 2012; Mairal et al. 2010).

(2) CPF and mCPF better capture the characteristics
in real data, especially for the examples in Tables 1a and
1b. This is because we separate the process of calculating
the weight of the rating by user u to item i by taking the
rating popularity and sparsity for one user/item into account
as in Eqs. (7) and (13). If we do not care about the popularity
(i.e., set all as 1), we have the results as in PF.

(3) mCPF achives improved precision by integrating
user/item metadata. Given the Gamma distribution of rela-
tions between users in Eq. (16), we can separate it into two
elements: (1) shape a′ and (2) rate

∏M
m=1 hu

fuu,mfuv,m
m .

When the shape is fixed, the larger the rate, the higher the
weight (probability) we sample from the distribution. Hence,
if two users have the same attribute m with weight hum

(e.g., the same ‘age’), it causes the rate of the Gamma distri-
bution in Eq. (16) to increase. Consequently, it will increase
the probability of the weight of the relation between users.
Further, we do not have to fix hum since it can be easily
learned from the Gamma-Gamma conjugate.

In the literature, several studies tried to integrate
the document-word matrix into the Poisson Factorization
(Acharya et al. 2015; Gopalan, Charlin, and Blei 2014;
Zhang and Wang 2015; Hu, Rai, and Carin 2016). Different
from these models, mCPF incorporates the metadata with
general attributes (e.g., the categorical attributes; not just
the text data). Recent work in (Zhao, Du, and Buntine 2017;
Fan et al. 2017) tried to integrate the general attributes into

probabilistic models for link prediction, which works on
small data due to the limitation of the applied Gibbs sam-
pling.

(4) The variational inference for CPF and mCPF ap-
plies to massive data. Variational inference has proved to be
efficient for probabilistic models that involve a large amount
of data. As mCPF is built on the Gamma-Gamma-Gamma-
Poisson distribution, it is fully Bayesian and conjugate. As
discussed in (Ghahramani and Beal 2001; Hoffman et al.
2013), we can easily build a variational algorithm for fully
Bayesian and conjugate models.

Empirical Results

Baseline methods To the best of our knowledge, no exist-
ing methods have incorporated user/item metadata into the
Poisson Factorizaton. As shown in (Gopalan, Hofman, and
Blei 2015), the hierarchical PF (HPF) outperforms baseline
models including basic PF, NMF, Latent Dirichlet Alloca-
tion (Blei, Ng, and Jordan 2003), and PMF. Due to space
limitations, we only show the comparison with HPF.

Datasets Few datasets are available with metadata.
CPF/mCPF are tested on four public datasets available with
massive ratings and some metadata.

(1) Movielens100K (Harper and Konstan 2016) includes
user demographic information ‘age’, ‘gender’, ‘occupation’
and ‘zip’. Here ‘age’ is chosen from the ranges: 1 →
“Under18”, 18 → “18 − 24”, 25 → “25 − 34”, 35 →
“35−44”, 45 → “45−49”, 50 → “50−55”, 56 → “56+”.
The item metadata includes the ‘genre’ (e.g., ‘action’, ‘ad-
venture’, ‘animation’, ... ), ‘release date’, and ‘video release
date’ of movies.

(2) Movielens1M includes the same metadata as in
Movielens100k.

(3) Movielens10M contains the ‘genre’ of the movies.
(4) Book-Crossing (Ziegler et al. 2005) contains user de-

mographic information ‘location’ and ‘age’, and we also
encode ‘age’ in the same way as in Movielens100K. The
book information includes ‘book title’, ‘book author’, ‘year
of publication’, and ‘publisher’.

Parameter settings The same settings for HPF are ap-
plied to CPF/mCPF for fair comparison. We set a = c =
a′ = b′ = c′ = d′ = 0.3. Further, the hyperparameters of
user and item attributes, α0, α1 and γ0, γ1, are set to 0.1. The
number of latent variables K is set to 100.

Evaluation method We use 20% of the ratings data for
testing and 80% for training. Movielens100K and Movie-
lens1M have been divided into testing and training. In Book-
Crossing, we randomly extract data to form the testing and
training sets. We get the top-N recommendations in the
training set with the highest prediction score as in Eq. (7)
for CuPF/mCuPF and in Eq. (13) for CiPF/mCiPF. In the
testing, we compute the precision-at-N , which measures the
fraction of relevant items in a users top-N recommenda-
tions. We compute recall-at-N , which is the fraction of the
testing items that are present in the top-N recommendations.

Convergence We measure the convergence by computing
the prediction accuracy on the validation set that is extracted
by randomly selecting 1% of the ratings in the training set.
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Figure 2: Predictive Performance of Top 20 Recommendations on Four Datasets.

Figure 3: Rating Popularity and Sparsity Test.

Predicting top-N recommendations Figure 2 shows the
normalized mean precision and normalized mean recall of
the top-20 recommendations made by CPF/mCPF, which
are consistent with the results of N �= 20, omitted due to
space limitations. CPF and mCPF outperform HPF in both
datasets with up to 11% improvement of mean precision
on Book-Crossing. The significant improvement made by
mCuPF and mCiPF results from metadata integration. The
results on Movielens10M are less significant due to the in-
sufficient (only the ‘genre’ of the movies) metadata.

Addressing rating popularity and sparsity Figure 3 re-
ports the popularity level and sparsity level for the top-
100 recommendations on Movielens1M and Book-Crossing.
The popularity level is the number of recommended items
(users) with greater than 50% low ratings (1 and 2) out
of the total ones for one user (item). The sparsity level is

Figure 4: Top-10 Recommendations for User 184.

the number of recommended items (users) with greater than
50% high (4 and 5) ratings of the total non-zero ones for
one user (item). Such high ratings are sparse compared to
greater than 50% of the total users (items) having missing
ratings. We report the normalized mean for all users/items.
It shows HPF has high popularity but low sparsity levels, in-
dicating high false recommendations of popular low ratings
but low true recommendations of sparse high ratings. In con-
trast, CPF and mCPF have low popularity but high sparsity
levels, which are much more consistent with the GT values
corresponding to the actual (ground-truth) mean popularity
and sparsity levels in the test data. This explains why our
models work better than HPF.

Case studies Figure 4 illustrates the top-10 recommen-
dations for user 184 in Movielens100K. HPF hits three (in
blue) correctly while recommending seven (in black) wrong
ones including item ‘Mission: Impossible (1996)’ (in red)
which has a large number of low ratings (585 out of a total
of 943 users who rated it 1 and 2). CuPF hits five correctly
including ‘Fifth Element, The (1997)’ and ‘Mother (1996)’
(in yellow), each has a good number of high ratings but is
relatively sparse, since ‘Fifth Element, The (1997)’ received
ratings 4 and 5 by 88 out of a total of 943 users (incl. 122
non-zero ratings) and ‘Mother (1996)’ received ratings 4 and
5 by 76 users (with 125 non-zero ones). This example shows
CPF makes more accurate recommendations especially on
items with sparse high ratings, while HPF wrongly recom-
mends items with popular low ratings.
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Conclusions

While Poisson Factorization with variational inference sig-
nificantly outperforms Matrix Factorization and LDA etc.
in addressing sparse data for scale recommendation, it fails
in modeling popular and sparse ratings. Accordingly, we
propose the Coupled Poisson Factorization (CPF) to learn
the relations between users and items and the Metadata-
integrated CPF (mCPF) to integrate user/item metadata. CPF
and mCPF are the first models in the PF family that in-
herit the advantages of PF in handling sparse data and model
the metadata and the rating relations between users (items)
to address rating popularity and sparsity issues. Both CPF
and mCPF significantly outperform its baseline PF and MF
and LDA, for which the comparison results are omitted due
to space limitations; our ongoing efforts are on developing
more effective methods for tuning the parameters.
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