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Abstract

The PU learning problem concerns about learning from
positive and unlabeled data. A popular heuristic is to
iteratively enlarge training set based on some margin-
based criterion. However, little theoretical analysis has
been conducted to support the success of these heuris-
tic methods. In this work, we show that not all margin-
based heuristic rules are able to improve the learned
classifiers iteratively. We find that a so-called large pos-
itive margin oracle is necessary to guarantee the success
of PU learning. Under this oracle, a provable positive-
margin based PU learning algorithm is proposed for
linear regression and classification under the truncated
Gaussian distributions. The proposed algorithm is able
to reduce the recovering error geometrically propor-
tional to the positive margin. Extensive experiments on
real-world datasets verify our theory and the state-of-
the-art performance of the proposed PU learning algo-
rithm.

Introduction

As an important branch of classification problems, learning
a classifier from positive and unlabeled data, also known
as the PU learning, has attracted a great deal of attention
in machine learning (Letouzey, Denis, and Gilleron 2000;
Scott and Blanchard 2009; Plessis, Niu, and Sugiyama 2015;
Blanchard, Lee, and Scott 2010) and data mining communi-
ties (Liu et al. 2003; Fung et al. 2006; Elkan and Noto 2008).
Different from supervised learning and semi-supervised
learning, the training set in PU learning consists of a set of
positive instances and a large number of unlabeled instances.
The main goal of PU learning is to make full use of the un-
labeled data together with the limited positive data to learn a
reliable predictive model. To this end, a lot of attempts have
been made on designing efficient PU learning algorithms.
These algorithms can be roughly divided into two categories,
characterized by two different ways of exploring unlabeled
data. One category can be boiled down to two-stage methods
(Liu et al. 2002; Yu, Han, and Chang 2002; Li and Liu 2003;
Yu 2005) which first select high confidence negative in-
stances from the unlabeled data and then merge them with
available positive instance to train the classifier. The other
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category is the one-stage methods (Elkan and Noto 2008;
Blanchard, Lee, and Scott 2010) which regard all unlabeled
data as negative instances in training.

Recently, the iterative multi-stage training strategy enjoys
increasing popularity in curriculum learning (CL) (Bengio
et al. 2009) and self-paced learning (SPL) (Kumar, Packer,
and Koller 2010). The basic idea is to start the learning
task with a small set of easy instances. After the initial
training stage, more difficult instances are gradually ap-
pended to the training set. Many real-world applications ver-
ify the effectiveness of this training strategy (Pentina, Shar-
manska, and Lampert 2015; Supancic and Ramanan 2013;
Jiang et al. 2014; Zhao et al. 2015). The main reason for
its success comes down to the easy-to-hard information re-
vealed in the consecutive training stages.

Inspired by this idea, a natural question has raised: can
PU learning benefit from a similar strategy? To answer this
question, we develop a general framework to study the PU
learning problem. We find that the iterative multi-stage train-
ing cannot guarantee to improve the classifier under agnos-
tic PU learning setting. Therefore additional assumptions
must be implicitly or explicitly made if one expects suc-
cess. To this end, we introduce a large positive margin oracle
which claims that the positive instances are located far away
from the decision boundary. Different from the conventional
margin definition, the positive margin oracle only relates
with positive instances while the conventional margin is de-
fined on both positive and negative instances (Vapnik 1998;
Schapire et al. 1998). This oracle is critical to the success
of PU learning. It allows us to design an efficient itera-
tive multi-stage algorithm, named Positive Margin-based PU
(PMPU) learning algorithm, to solve the PU regression and
classification problems. The main idea of PMPU is to esti-
mate the labels of unlabeled data in each iteration according
to the positive margin shrinkage and then retrain the clas-
sifier based on random sampling. The detailed algorithm is
given in Section 3.

From theoretical side, there are several early works on
studying the error bounds of PU learning. Denis et al. (Denis
1998) established the PAC bound for PU learning. Plessis et
al. (Plessis, Niu, and Sugiyama 2014) proved that the error
of PU classification is no worse than 2

√
2 times of the fully

supervised one when the numbers of labeled and unlabeled
examples are equal. Niu et al. (Niu et al. 2016) pointed out
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that PU learning sometimes outperforms supervised learning
if the class-prior probability is known exactly. Albeit with
more or less success in explaining the efficiency of PU learn-
ing, these existing results cannot explain why iterative train-
ing will improve the classifier in PU learning. This paper
addresses this issue with the large-positive margin oracle.
Particularly, we prove that under the truncated Gaussian dis-
tribution with large positive margin, the estimator sequence
generated by PMPU converges to the optimal classifier. Both
the recovery error and misclassification error decay geomet-
rically with respect to the positive margin parameter.

The main contribution of this paper is summarized as fol-
lows:
• Propose the large positive margin oracle, base on which

we design a positive margin-based PU learning (PMPU)
algorithm.

• We prove that the recovery error of PMPU decays on or-
der of O(exp(−τ2t))where τ is the positive margin pa-
rameter and t is the number of PU iteration. To the best
of our knowledge, this is the first theoretical result on the
related assimilation.

• Comprehensive experiments on large scale datasets to
demonstrate the efficiency and efficacy of PMPU.
The rest of this paper is organized as follows: Section 2

sets the notation and problem statement. Section 3 intro-
duces the proposed PMPU algorithm. Section 4 establishes
the corresponding recovery error bound for PMPU. Sections
5 presents numerical studies on large-scale datasets. Section
6 concludes our work.

Background and Notation

Suppose that the feature-label pairs of training instances
(x, y) ∈ X × Y are drawn independently and identically
from a fixed unknown distribution P (x, y), where X denotes
the feature space and Y is the label space. We use m, d to
denote the number of samples and the feature dimension re-
spectively. Let X = [x1,x2, · · · ,xN ] ∈ R

d×N be the fea-
ture matrix, where xi ∈ R

d is the feature vector of the i-th
instance. The label of the i-th instance is yi ∈ {−1, 1} and
the label vector y = [y1, y2, · · · , yN ]�.

In linear regression, the response is generated via a linear
mapping

z = X�w∗

where z = [z1, z2, · · · , zN ] is the response vector and w∗ is
the target weight vector. On the other hand, in binary classi-
fication we cannot observe the response value z directly but
its sign

y = sign(X�w∗)
where sign(·) is element-wise applied.

In this paper, we are interested in linear classifiers of the
form f(x) = sign(X�w), where w is the weight vector
we need to learn from training data. Denote (XP ,yP ) as the
positive sample set, and XU as the unlabeled sample set. The
goal of PU learning is to utilize XU together with (XP ,yP )
to train a reliable classifier w close to w∗. To this end, we
develop a positive margin-based PU learning (PMPU) algo-
rithm based on the large positive margin oracle.
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Figure 1: (a) Gaussian distribution; (b) Truncated Gaussian
distribution with positive margin τ = 2.

Positive Margin Based PU Learning

In this section, we present the large positive margin oracle
and the working scheme of PMPU. We will focus on the
high-level intuition of our algorithm. The rigorous theoreti-
cal analysis is postponed to the next section.

Before we introduce the positive large margin oracle, we
give an agnostic example where iterative re-training fails
in PU learning. Consider a two dimensional classification
problem given in Figure 1 (a). Suppose that the ground-
truth distribution follows the standard Gaussian, where the
red star denotes the positive instances and the blue square
denotes the unlabeled instances. Following the PU learning
setting, only a small portion of the positive instances are la-
beled in the training set. The initial classifier, denoted by
the dash line, is fitted based on the randomly sampled train-
ing instances (one positive instance from positive sample set
and one negative instance from unlabeled sample set). The
optimal classifier is represented as the horizontal real line.
The initial classifier tells us that the instances above the dash
line are considered to be positive and the instances below
the dash line are negative. We then perform re-training by
randomly sampling on this new artificially labeled dataset
to learn a new classifier. Since the artificial labels deviate
from the ground-truth badly, the new classifier is hardly bet-
ter than the initial one.

However, this situation can be avoided by the large pos-
itive margin oracle which claims that all positive instances
are located far away from the optimal decision boundary.
It emphasizes the role of positive margin while the conven-
tional definition of margin in SVM and Boosting depends on
both the positive and negative instances. This oracle makes
the iterative re-training strategy feasible in PU learning. As
illustrated in Figure 1 (b), we truncated the density function
of the Gaussian distribution between y = 0 and y = 2 (the
red real line), i.e., the large positive margin oracle τ = 2.
Note that we allow noise instances in the truncated region.
Comparing to Figure 1 (a), the dash line in (b) is more
likely rotated clockwise because the initial classifier pro-
vides higher accuracy, which guarantees more correct artifi-
cial labels in next estimation. Hence the large positive mar-
gin assumption is critical to the success of iterative PU learn-
ing.
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Algorithm 1 Positive Margin Based PU Learning (PMPU)

1: Require: positive margin parameter τ , unlabeled sam-
ple set XU , positive sample set XP .

2: Randomly sample m+ = |XP | instances from XU to
generate negative set S(0)− . Denote the sampled training
set by X(0) := XP

⋃
S
(0)
− .

3: Train an initial classifier w(0) on X(0).
4: for t = 1, 2, · · · , T do
5: Re-sample mt instances from XU as training set

X(t).
6: For any x ∈ X(t), if x�w(t) ≥ ηt then labeled as

positive otherwise negative.
7: ŵ(t) ← w(t−1) − 1

λτmt
X(t)Δyt. (1)

8: w(t) = ŵ(t)/‖ŵ(t)‖2 .
9: end for

10: Output: Final estimator w(T ).

Inspired by the above toy examples, we develop a Positive
Margin Based PU learning algorithm (PMPU) summarized
in Algorithm 1. The large positive margin oracle τ plays a
key role in PMPU. It is an intrinsic parameter of the data
distribution. A large τ will lead to high accuracy and small
sampling complexity. The initial classifier is fitted by the in-
stances from positive set and random samples from the unla-
beled set XU . All instances sampled from XU are regarded
as negative instances at initialization step.

The key step of PMPU is to construct an iteration se-
quence {w(t)}Tt=1 to approximate w∗. To this end, denote
X(t) as the feature matrix of instances by re-sampling and
y(t) as the predicted label of X(t) at step t and

ŷ(t) = Sτ (X
�w(t)),

where for any vector z

{Sτ (z)}i =
{
1 if zi ≥ τ

−1 otherwise.

We call the above step as the positive margin shrinkage. Let
Δyt = y(t) − ŷ(t). Then we can construct the iterative se-
quence by least square gradient descent as in Eq. (1) . As
only the direction of w∗ matters, we enforce w(t) normal-
ized to unit length on Line 8. The positive margin shrink-
age requires a parameter τ . In practice τ should be tuned
via cross-validation and a good range of τ can be estimated
from the margin distribution of the initial classifier.

The value of mt should be increased with t. As mt in-
stances are sampled from the unlabeled set, it could be as
many as we want. In our proof we only require mt to be
larger than O(1/‖w(t) −w∗‖2). In practice we keep mt to
be a small number in order to minimize the computation cost
and increase mt if the validation error stop decreasing.

Our theoretical analysis shows that ‖w(t) − w∗‖ → 0
with high probability. The recovery error decays geometri-
cally with respect to the large positive oracle τ and the PU
iteration step t. For one step PMPU iteration, the sampling

complexity is with order O[d log d exp2(−τ2)/ε2]. This im-
plies that we need fewer positive instances when the positive
margin is large.

Theoretical results

In this section we study the theoretical properties of PMPU.
Please refer to appendix for the detailed proof of these lem-
mas and the main theorems.

Our analysis is built on the matrix Bernstein’s inequal-
ity whose proof could be found in many textbooks (Tropp
2015). To abbreviate our concentration bound, we frequently
use Cδ to denote a factor consisting of logarithm terms in δ
and any other necessary variables that do not affect the order
of our bound.
Lemma 1. (Matrix Bernstein’s inequality) Consider a fi-
nite sequence {Si} of independent random matrices of di-
mension d1 × d2. Assume that each matrix has uniformly
bounded deviation from its mean:

‖Si − ESi‖ ≤ L for each index i.

Introduce the random matrix Z =
∑

i Si and let ν(Z) be
the matrix variance of Z where

ν(Z) =max
{
‖E(Z − EZ)(Z − EZ)�‖,

‖E(Z − EZ)�(Z − EZ)‖
}

=max
{
‖
∑
i

E(Si − ESi)(Si − ESi)
�)‖,

‖
∑
i

E(Si − ESi)
�(Si − ESi)‖

}
.

Then

E‖Z − EZ‖ ≤
√
2ν(Z) log(d1 + d2) +

1

3
L log(d1 + d2).

Furthermore, for all t > 0,

P{‖Z − EZ‖ ≥ t} ≤ (d1 + d2) exp

{
− t2/2

ν(Z) + Lt/3

}
.

The next lemma shows that on the truncated Gaussian dis-
tribution, the gradient of least square loss is still an isometric
mapping as in the Gaussian distribution.
Lemma 2. Let X = [x1,x2, · · · ,xN ] ∈ R

d×N . The first
dimension of each xi is a truncated Gaussian random vari-
able, and the remaining d− 1 dimensions are i.i.d. copies of
N (0, 1). Then for any w ∈ R

d with ‖w‖ = 1, we have

Esign(〈x,w〉)x = λτw,

where λτ =
√

2
π +

exp(− τ2

2 )−1

2 .

Different from the standard calculation of correlation pa-
rameter λ (Plan and Vershynin 2013) which claims that
λ =

√
2/π, in our case the correlation parameter λτ is a

function of τ due to the large positive margin oracle. Clearly
λτ → λ as τ → 0.

We now present the main theorem which establishes an
upper bound between the unnormalized output ŵ(t) and the
theoretical optimal w∗.
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Theorem 1. In Algorithm 1, suppose xi’s are independently
sampled from the truncated Gaussian distribution with pos-
itive margin τ . Then with probability at least 1− δ,

‖ŵ(t) −w∗‖2 ≤ γ‖w(t−1) −w∗‖
where γ := Cδ exp(−c2τ

2) for some constant Cδ and c2.

Theorem 1 shows that ‖ŵ(t) − w∗‖2 will decay linearly
at least. However we have to normalize w(t) as we only care
about the direction in classification. We must show that after
normalization the recovery error is also decreased.
Proposition 1. When τ is larger than a universal constant,

‖w(t) −w∗‖2 ≤ 3γ‖w(t−1) −w∗‖.
Proposition 1 can be derived by a few steps of linear alge-

bra thus the proof is omitted here. Finally, we prove that the
overall convergence rate of our PMPU algorithm is

‖ŵ(t) −w∗‖2 ≤ (3γ)t‖w(0) −w∗‖. (2)

Compared with the previous theoretical research on PU
learning (Niu et al. 2016; Plessis, Niu, and Sugiyama 2014),
Eq. (2) provides the recovery error bound based on itera-
tive training strategy without knowing class-prior probabil-
ity. We prove that w(t) will globally converge to w∗ and the
recovery error only related with the large positive margin
oracle.

Let’s focus on the main information Eq. (2) conveys. The
recovery error of PMPU depends on the initial difference
‖w(0) − w∗‖2 and the large positive margin parameter τ .
Note that the initial difference can be regarded as a constant
because it can be directly computed after the first training.
The convergence rate of PMPU is dominated by γ, which is
on order of O(exp(−τ2)). It shows that the recovery error
decays geometrically with large positive margin parameter
τ and iteration number t. Observe that for large τ , the recov-
ery error would be small. Specifically, ‖w(t)−w∗‖2 → 0 as
τ → ∞. It is worth noting that the conventional margin the-
ory claims that the larger the margin over the training sam-
ple, the better the generalization performance (Vapnik 1998;
Schapire et al. 1998; Breiman 1999). Our analysis supports
this viewpoint.

The following Theorem demonstrates the RIP (Restricted
Isometry Property)-type condition for our problem.
Theorem 2. With the same condition of Theorem 1. For two
normalized vectors w,w∗ ∈ R

d with ‖w‖2 = 1, ‖w∗‖2 =
1, with probability at least 1− δ,

‖ 1

mtλτ

(
Xsign(X�w)−Xsign(X�w∗)

)− (w −w∗)‖2

≤ εmax(‖w −w∗‖2, ‖w −w∗‖ 1
2
2 )

provided mt ≥ Cδd exp(
−τ2

2 )
(
4+τ√
2π

+ 1
2

)
/ε2.

Proof. (Sketch) Without loss of generality, let w∗ =
(1, 0, · · · , 0) and define the correlation coefficient λτ =
Eyi(〈xi,w〉) = Esign(〈xi,w

∗〉)〈xi,w〉. Lemma 2 gives
the result. Next, define random variable

Bi =
1

λτ
[xisign(〈xi,w〉)− xisign(〈xi,w

′〉)]

Table 1: Statistics of real-world datasets

Data Categories # Train # Test # Features
WAVEFORM 3 2500 2500 21
COVERTYPE 7 11340 565892 54

CIFAR-10 10 50000 10000 4096
RCV-1 53 15564 518571 47236
MNIST 10 60000 10000 784

CIFAR-100 100 50000 10000 4096

by Lemma 2, we have

EBi = w −w′.

Further we set
Zi = Bi − EBi,

then bound the terms maxi ‖Zi‖2, ‖EZ�
i Zi‖ and

‖EZiZ
�
i ‖2 respectively. By applying Lemma 1, we

obtain the final result.

We can draw similar conclusions made in Theorem 1. The
convergence rate is controlled by large positive margin ora-
cle τ . It decreases geometrically w.r.t. τ . Besides, the larger
τ is, the higher the accuracy we can obtain. The sample com-
plexity is on order of O(d exp(−τ2)/ε2). It can be observed
that we can use a small number of instances to achieve the
guaranteed error when large τ is specified.

Experiments

To demonstrate the performance of PMPU learning algo-
rithm in practice, we apply our algorithm to several real-
world datasets.

Datasets

We evaluated the proposed PMPU on 6 real-world clas-
sification datasets, including WAVEFROM, COVERTYPE ,
MNIST, RCV-11, CIFAR-10, CIFAR-1002. These datasets
cover a range of application domains such as text, hand dig-
its and images. Table 1 summarizes the dataset statistical.
The numbers of training of the 6 datasets vary from 2500 to
60000, the numbers of testing vary from 2500 to 565892 and
the feature dimensions vary from 21 to 47236.

The training set and testing set are prespecified for all
datasets. Note that the COVERTYPE and RCV-1 contain
plenty of test examples but a small number of training ex-
amples. The features of CIFAR-10 and CIFAR-100 are ex-
tracted by VGG net (Simonyan and Zisserman 2014). We
use the HOG feature for MNIST, and raw data for the other
datasets.

Experimental Setting

All these datasets are multi-class classification tasks, we use
linear SVM classifier with one-versus-all strategy for all ex-
periments and implemented by LIBSVM (Chang and Lin

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
multiclass.html

2https://www.cs.toronto.edu/ kriz/cifar.html
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Table 2: Accuracy (%) with different sampling ratio

Data Lowest/Highest accuracy(sampling ratio) Optimal
WAVEFORM 58.38/72.99(1%) 63.87/80.27(3%) 66.75/83.59 (5%) 68.99/84.87 (10%) 73.27/85.63(20%) 86.04
COVERTYPE 22.76/29.58(1%) 27.86/33.67(3%) 43.42/48.85 (5%) 44.93/49.14 (10%) 51.32/53.65(20%) 55.81

CIFAR-10 55.19/56.94(1%) 67.55/74.59(3%) 71.39/81.34(5%) 77.48/83.76(10%) 81.45/84.89(20%) 88.14
RCV-1 43.67/47.51(1%) 57.89/59.93(3%) 71.21/73.83(5%) 74.60/78.19(10%) 80.22/82.44(20%) 88.33
MNIST 73.22/88.85(1%) 86.29/92.98(3%) 90.12/94.92(5%) 93.07/95.74(10%) 94.87/96.05(20%) 97.11

CIFAR-100 26.31/27.35(1%) 35.98/37.35(3%) 50.66/54.64(10%) 57.34/61.01(20%) 63.36/65.61(50%) 70.67

0 5 10 15 20 25 30
Iterations

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Ac
cu

ra
cy

ratio= 1%
ratio= 3%
ratio= 5%
ratio=10%
ratio=20%
Optimal

(a) WAVWFORM

0 5 10 15 20 25 30
Iterations

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Ac
cu

ra
cy

ratio= 1%
ratio= 3%
ratio= 5%
ratio= 10%
ratio= 20%
Optimal

(b) COVERTYPE

0 5 10 15 20 25 30
Iterations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Ac
cu

ra
cy

ratio= 1%
ratio= 3%
ratio= 5%
ratio=10%
ratio=20%
Optimal

(c) CIFAR-10

0 5 10 15 20 25 30
Iterations

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Ac
cu

ra
cy

ratio= 1%
ratio= 3%
ratio= 5%
ratio=10%
ratio=20%
Optimal

(d) RCV-1

0 5 10 15 20 25 30
Iterations

0.7

0.75

0.8

0.85

0.9

0.95

1

Ac
cu

ra
cy

ratio= 1%
ratio= 3%
ratio= 5%
ratio=10%
ratio=20%
Optimal

(e) MNIST

0 5 10 15 20 25 30
Iterations

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Ac
cu

ra
cy ratio= 1%

ratio= 3%
ratio= 10%
ratio= 20%
ratio= 50%
Optimal

(f) CIFAR-100

Figure 2: Test accuracy of MPU with different sampling ratio.

2011). The regularization parameter C for each experiment
is selected from the set {0} ∪ {10−6, 10−5, · · · , 105, 106}
by 5-fold cross validation. The optimal classifier is obtained
by batch training on all training samples.

Let (X,y) = (XP ,yP ) ∪XU , where (XP ,yP ) denotes
the positive sample set and XU the unlabeled sample set.
The main goal of PMPU is to make full use of (XP ,yP )
together with XU to construct a reliable classifier. In our
experiments, the training process is done as follows:
• Given the training set, we perform random sampling on

each class according to the pre-specified sampling ratio r
to generate (XP ,yP ), and keep the remaining as XU .

• Train an initial model based on the sampled instances, and
then make predictions on XU to generate (XU ,yU ).

• Perform random sampling again on (XU ,yU ), and get
(XQ,yQ) named as the queried sample set, then retrain
the model based on (XP ,yP )

⋃
(XQ,yQ).

Repeat the above procedure until the terminate condition is
satisfied. In our experiments, the large positive margin ora-
cle τ is determined according to the distribution of decision
value generated by initial model. We set τ to be the 75%
quantile of positive decision values predicted by the initial
model for all datasets. We also set |XQ| = 3/4|XU |, where
|XQ| denotes the number of re-sampled instances and |XU |
the number of unlabeled instances. At the same time, the
number of PU iterations is set to 30 for all experiments. We
report both the lowest and highest accuracies of PMPU un-
der different sampling ratio in Table 2. It should be men-
tioned that the CIFAR-100 dataset extends CIFAR-10 by in-
creasing the number of categories to 100, while remains the
same number of training and testing examples. Therefore, it
is considered to be a more difficult classification task than
CIFAR-10. In our experiments, the highest sampling ratio of
CIFAR-100 is set to be 50%. We illustrate the iteration pro-
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Figure 3: Comparisons on accuracy with different sampling ratio.

cess of PMPU on 6 datasets in Figure 2.

Results

Table 2 records both the lowest and highest accuracies of
PMPU on 6 datasets under different sampling ratio. The op-
timal accuracy for each dataset is reported in the last column
of Table 2. It can be observed that the accuracy of PMPU is
close to the optimal one, even if sampling ratio r remains a
small value (we set the largest sample ratio to 20% for most
datasets).

Figure 2 plots the iteration process of PMPU on all 6
datasets. Note that the recovery error decays with an expo-
nential rate, so it is expected that the PMPU should converge
fast. As observed in the reported figures, the accuracy of
PMPU indeed converges quickly to a stable level. Another
observation can be made from these figures is that the im-
provement on accuracy is not prominent if r ≤ 1%, but re-
markable when r keeps increasing. The main reason behind
this phenomenon is that the low sampling ratio will result
in an inaccurate estimation on initial model, and this initial
model can not provide enough useful information for next
iteration. However, higher sampling ratio will lead to a more
reliable initial model which can offer more valuable infor-
mation for the next iteration. It’s worth noting that although
PMPU cannot improve the accuracy remarkably at very low
sampling ratio for some datasets (such as 1% for CIFAR-10,
CIFAR-100 and RCV-1), it doesn’t degrade the classification
performance. The iteration process tends to stable.

We also compared the proposed PMPU to the Label Ran-

dom PU learning (LRPU) in (Elkan and Noto 2008), one of
the state-of-the-art PU learning methods, which suggests a
PU-learner predicts probabilities that differ by only a con-
stant factor from the true conditional probabilities of being
positive. This method adopts probability output as the classi-
fication criterion in binary classification. We follow the same
criterion by extending it to the multi-class case. Figure 3
reports the comparisons on 6 datasets under different sam-
pling ratio in terms of test accuracy. It can be observed that
the test accuracies of both methods increase along the ris-
ing sampling ratio, and PMPU outperforms the LRPU for
almost all datasets. Generally speaking, PMPU gets higher
accuracy when sampling ratio is greater than 5%. The suc-
cess comes down to the retraining strategy based on the large
positive margin oracle of PMPU. We also notice that PMPU
performs worse than LRPU on CIFAR-10 and CIFAR-100
when sampling ratio keeps very low (less than 5%). In this
case, low sampling ratio will result in an inaccurate initial
classifier which cannot provide enough information for next
prediction.

In order to further verify the effectiveness of PMPU, we
apply it to three classification algorithms: Random Forest
(RF), Logistic Regression (LR) and Gradient Boosting Tree
(GBT). For RF and GBT, the number of trees is fixed to
50 for all experiments. Table 3 records the accuracies of
the three methods under different sampling ratios (1%, 5%,
10%), in which the results obtained by PMPU are based on
5-round re-training. It can be observed that PMPU always
improve the baseline.
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Table 3: Accuracy with different sampling ratio (%)

Data Methods Baseline accuracy (sampling ratio) PMPU accuracy (sampling ratio)

WAVEFORM
RF 0.6202(1%) 0.7587(5%) 0.8115(10%) 0.6527(1%) 0.7825(5%) 0.8291(10%)
LR 0.5749 (1%) 0.6612(5%) 0.6845(10%) 0.6132(1%) 0.8033(5%) 0.8327(10%)

GBT 0.6471(1%) 0.7863(5%) 0.8127(10%) 0.6671(1%) 0.8119(5%) 0.8355(10%)

COVERTYPE
RF 0.2975(1%) 0.3433(5%) 0.4067(10%) 0.3405(1%) 0.3728(5%) 0.4493(10%)
LR 0.2343(1%) 0.3752(5%) 0.4238(10%) 0.2937(1%) 0.4121(5%) 0.4782(10%)

GBT 0.2092(1%) 0.357(5%) 0.4494(10%) 0.2488(1%) 0.4065(5%) 0.4899(10%)

CIFAR-10
RF 0.57(1%) 0.721(5%) 0.7434(10%) 0.5892(1%) 0.7321(5%) 0.7596(10%)
LR 0.5532(1%) 0.7134(5%) 0.7752(10%) 0.5753(1%) 0.7356(5%) 0.7934(10%)

GBT 0.5558(1%) 0.6872(5%) 0.6841(10%) 0.5872(1%) 0.7257(5%) 0.7462(10%)

RCV-1
RF 0.2926(1%) 0.4531(5%) 0.5018(10%) 0.3125(1%) 0.4882(5%) 0.5324(10%)
LR 0.4286(1%) 0.7087(5%) 0.7392(10%) 0.4674(1%) 0.8032(5%) 0.7784(10%)

GBT 0.3116(1%) 0.4303(5%) 0.5039(10%) 0.3427(1%) 0.4684(5%) 0.5417(10%)

MNIST
RF 0.7878(1%) 0.9185(5%) 0.9378(10%) 0.83(1%) 0.9257(5%) 0.9456(10%)
LR 0.7386(1%) 0.9037(5%) 0.9324(10%) 0.8455(1%) 0.9249(5%) 0.9489(10%)

GBT 0.8328(1%) 0.8924(5%) 0.9268(10%) 0.8571(1%) 0.9245(5%) 0.9413(10%)

CIFAR-100
RF 0.1578(1%) 0.3549(5%) 0.4325(10%) 0.1624(1%) 0.3682(5%) 0.4476(10%)
LR 0.2581(1%) 0.5066(5%) 0.5648(10%) 0.2612(1%) 0.5341(5%) 0.5927(10%)

GBT 0.1497(1%) 0.3484(5%) 0.4013(10%) 0.1776(1%) 0.3599(5%) 0.4259(10%)

Let’s make a further discussion of PMPU. First, the choice
of large positive margin parameter τ is critical to PMPU.
The theoretical analysis claims that the misclassification er-
ror rate decays geometrically with τ . A large τ will lead
to a fast convergence rate. However, τ cannot be arbitrar-
ily large in practical applications. It could be specified by
cross-validation. Secondly, |XQ| plays an important role in
PMPU. As demonstrated in Algorithm 1, PMPU needs to
perform random sampling in each iteration after obtaining
the initial model. The prediction on yU determines the qual-
ity of the sampling set for the next iteration. A small |XQ|
will decrease the classification accuracy. To guarantee the
performance of PMPU, |XQ| can not be too small. Thirdly,
the convergence rate of PMPU is closely related with the
margin parameter. A large shrinkage parameter will lead to
a fast convergence rate of PMPU.

Conclusion

In this paper, we propose a large positive margin oracle for
the PU learning problem and design a provable efficient Pos-
itive Margin based PU (PMPU) learning algorithm. We an-
alyze the performance of PMPU in terms of the recovery
error and the misclassification error. The theoretical results
show that the estimator generated by PMPU converges to
the global optimal. The recovery error decays with an expo-
nential rate w.r.t. the positive margin oracle τ . Experiments
on large scale datasets demonstrate the effectiveness and ef-
ficacy of PMPU. Future work includes how to extend this
analysis framework to more general distribution, e.g., sub-
gaussian distribution, and how to relax linear classifier as-
sumption to non-linear case. All these problems deserve fur-
ther research.
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