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Abstract

Traditional recommendation systems (RecSys) suffer from
two problems: the exploitation-exploration dilemma and the
cold-start problem. One solution to solving the exploitation-
exploration dilemma is the contextual bandit policy, which
adaptively exploits and explores user interests. As a result,
the contextual bandit policy achieves increased rewards in the
long run. The contextual bandit policy, however, may cause
the system to explore more than needed in the cold-start sit-
uations, which can lead to worse short-term rewards. Cross-
domain RecSys methods adopt transfer learning to leverage
prior knowledge in a source RecSys domain to jump start
the cold-start target RecSys. To solve the two problems to-
gether, in this paper, we propose the first applicable trans-
ferable contextual bandit (TCB) policy for the cross-domain
recommendation. TCB not only benefits the exploitation but
also accelerates the exploration in the target RecSys. TCB’s
exploration, in turn, helps to learn how to transfer between
different domains. TCB is a general algorithm for both ho-
mogeneous and heterogeneous domains. We perform both
theoretical regret analysis and empirical experiments. The em-
pirical results show that TCB outperforms the state-of-the-art
algorithms over time.

Introduction

A personalized recommendation system (RecSys) is a vital
component for online interactive services. According to user
interests, an online service provider recommends items in-
cluding movies, apps, articles, to achieve more user feedbacks
including watches, installations, and clicks accordingly. Ac-
curately inferring user interests and providing corresponding
recommendations not only improve user satisfaction but also
increase commercial revenue significantly. The exploitation-
exploration dilemma and the cold-start problem are two major
obstacles to the successful deployment of a RecSys (Schein
et al. 2002; Li et al. 2010).
The primary objective of a RecSys is to maximize the cu-

mulative amount of feedback which depends on user interests.
The feedback, however, has high uncertainty and noise. A
successful RecSys is supposed to balance between exploiting
predicted user interests upon historical feedbacks and explor-
ing uncertain user interests via recommending diverse items.
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Compromising between the two conflicting objectives is well
known as the exploitation-exploration dilemma in RecSys.
Recently, the contextual bandit has been introduced to for-

mulate the exploitation-exploration dilemma and achieved
great success (Li et al. 2010). In a contextual bandit problem,
the agent observes K arms a1, · · · , aK (e.g., K candidate
articles) and their context xa1

, . . . ,xaK (e.g., user profile,
article content, etc.). In step τ , the agent decides to pull an
arm aτ among all arms (e.g., recommending one article)
and observes the corresponding reward raτ (e.g., click or
not). The reward depends on the context but is noisy, i.e.,
raτ = f(xaτ ) + ε. According to N historical observations
{(xaτ , raτ )}τ=1...N , a contextual bandit policy adaptatively
decides which arm to pull in each step and learns the uncer-
tain reward function. The process is illustrated in the left of
Fig. 1. To maximize the cumulative reward, the agent should
pull the arms with the larger predicted reward. Because only
the stochastic reward of the pulled arms are observed, the
agent is also expected to pull the arms which accelerate the
exploration of the uncertain reward function (Zhou 2015).
Therefore, the contextual bandit policy can well balance the
exploitation and exploration trade-off, and maximize the cu-
mulative reward in the long run (Chu et al. 2011).
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Figure 1: The process of cross-domain RecSys using TCB. In
terms of contextual bandit, TCB sequentially and adaptatively
recommends articles based on noisy feedbacks. In terms
of transfer learning, TCB adopts the translation to leverage
both source and target observations. TCB suffers from noisy
observations in blue and explores uncertain parameters in
green accordingly.

Unfortunately, the contextual bandit policies suffer from
the cold-start problem which refers to that there exists few
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observations for new users, new items, or newly launched
domains. In cold-start conditions, the agent tends to focus on
exploration and sacrifice short-term reward for long-term re-
ward. The ε-first policy (Tran-Thanh et al. 2010), for instance,
purely explores in cold-start conditions via random recom-
mendations, which goes overboard with the exploitation and
exploration balancing and results in even worse performance.

The cross-domain recommendation has been widely ac-
knowledged as a killer method to solve the cold-start prob-
lem (Pan et al. 2010). A cross-domain RecSys leverages the
prior knowledge learned from an auxiliary domain with abun-
dant observations to improve the performance in the target
domain of interest. The prior knowledge to be transferred
could be either user interests or item properties. As illustrated
in Fig. 1, a company is about to launch a new article RecSys,
i.e., the target domain. Meantime, the company has accu-
mulated sufficient application RecSys data. Assuming that a
user’s interests on applications also apply to articles, a cross-
domain RecSys transfers user interests on applications as the
source domain to provide better article recommendation.

In this paper, we are motivated to address the exploitation-
exploration dilemma and the cold-start problem together via
a new Transferable Contextual Bandit (TCB) algorithm. The
TCB harnesses the collective and mutually reinforcing power
of contextual bandit and transfer learning. First, transfer learn-
ing improves the exploitation of a contextual bandit policy
and accelerates its exploration in a target domain. Assuming
that the user interests in applications and articles are closely
related, the TCB can infer user interests based on both the
source and target observations. Thus, the TCB can estimate
user interests for exploitation far better than single-domain
algorithms, and significantly reduce the uncertainty of the
estimated reward function for exploration. Second, the con-
textual bandit speeds up the knowledge transfer. As shown in
Fig. 1, the TCB transfers knowledge via the translationU∗.
The TCB explores not only the reward function but also how
to transfer, i.e., the translation (Pan and Yang 2010). Thus
the TCB can recommend those articles that help learn how
to transfer the fastest. Provided that the TCB progressively
and adaptively recommends an article in the target domain,
it relies on the currently available source and target obser-
vations as well as the correspondence data between them.
The correspondence data indicates the similarity between a
source and a target observation. For example, the observa-
tions across domains produced by the same user enjoy a large
similarity. Especially, the TCB is designed to handle knowl-
edge transfer between both heterogeneous domains with the
source and target contexts lying in different feature spaces
and homogeneous domains in the same feature space.

The primary contributions of this paper are threefold: 1) to
the best of our knowledge, TCB is the first applicable transfer-
able contextual bandit policy for cross-domain RecSys. TCB
is empirically verified using the real-world RecSys data. 2)
the proposed transfer bandit policy is general for both homo-
geneous and heterogeneous domains; 3) the theoretical regret
analysis is also provided to guard the proposed algorithm.

Related Work

In this section, we discuss the existing contextual bandit
approaches and transfer learning algorithms related to TCB.
LinUCB (Li et al. 2010) firstly formulates the RecSys as a

contextual bandit problem. LinUCB not only improves the
reward (Li et al. 2011) in real-world online RecSys but also
enjoys a sub-linear regret guarantee (Chu et al. 2011). Lin-
UCB assumes that the expected reward is linear with respect
to context. Under the same assumption, Agrawal and Goyal
proposed a Thompson Sampling style method (Agrawal
and Goyal 2013). Both linear policies, however, are sen-
sitive to the dimension and quality of context. When the
context is high-dimensional, Yue, Hong, and Guestrin pro-
posed CoFineUCB to accelerate the exploration in LinUCB
by introducing two levels of feature spaces, i.e., the fine and
coarse feature spaces (Yue, Hong, and Guestrin 2012). To
tackle not fully observable context, hLinUCB (Wang, Wu,
and Wang 2016), with a significantly better regret guarantee,
explicitly explores the hidden context and reward function
simultaneously.
Collaborative filtering, one of the most important RecSys

techniques, is also combined with contextual bandit models.
COFIBA (Li, Karatzoglou, and Gentile 2016), for example,
explores a particular user’s interests more efficiently by lever-
aging the observations from all users within the same clus-
ter. FactorUCB (Cesa-Bianchi, Gentile, and Zappella 2013;
Wang, Wu, and Wang 2017) assumes the reward function as
the dot product between user latent factors and item latent fac-
tors. Upon the known user relationship, FactorUCB explores
both latent factors in a collaborative filtering manner. All
the aforementioned contextual bandit policies, unfortunately,
focus on the RecSys within a single domain and thereby tend
to fail in the domains with insufficient observations.
Another line of related works is transfer learning (Pan and

Yang 2010) which aims to improve the learning performance
of a target domain by transferring knowledge from a source
domain with sufficient observations. Heterogeneous transfer
learning (HTL) advances by transferring between domains
in different feature spaces. To bridge incommensurable do-
mains, existing works fall into two categories: TLRisk (Dai
et al. 2008) learns a translator from the co-occurrence data to
translate features between domains; HTLIC (Zhu et al. 2011),
HeMap (Shi et al. 2013), and CoHTL (Wei et al. 2016) all
learn a common latent space where the two domains are
comparable. Additionally, cross-domain algorithms tailor
the transfer learning for RecSys. CST (Pan et al. 2010) and
TCF (Pan et al. 2011), for instance, learn user latent factors
and item latent factors using matrix tri-factorization. CST
and TCF transfer the knowledge via shared user interests, i.e.,
shared user latent factors. All the transfer learning algorithms
mentioned above, however, work under the supervised learn-
ing setting. Without exploration, the HTL algorithms suffer
from a linear regret when facing a contextual bandit problem.
Though tUCB (Azar, Lazaric, and Brunskill 2013) and

B-kl-UCB (Zhang and Bareinboim 2017) consider transfer
learning for the bandit problem by transferring the estimated
upper confidence bound, they differ from ours greatly. tUCB
considers context-free multi-armed bandit problems which
are inapplicable to real-world RecSys. Moreover, both meth-
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ods require the action sets to be exactly the same across
domains. In comparison, TCB works even if two domains are
heterogeneous, which is frequent for cross-domain RecSys.

Methods

In this section, we first define the notations used throughout
this paper. Then, in the view of transfer learning, we introduce
how TCB exploits and explores, respectively. Finally, we
theoretically analyze TCB’s regret.
In this paper, the bold uppercase symbol (A), bold lower-

case symbol (a), and regular symbol (x), denote the matrix,
column vector, and scalar, respectively. The uppercase cal-
ligraphic symbol stands for the set, e.g., A. We use Id to
denote the identity matrix with d rows and columns. Sim-
ilarly, 0d1,d2 denotes the zero matrix with d1 rows and d2
columns. ||A||F and ||a||2 represent the Frobenius norm for
a matrix and l2 norm for a vector, respectively. For a positive
definitive square matrix A, ||a||A represents the weighted
l2 norm, i.e., ||a||A =

√
aTAa. Furthermore, ⊗ denotes the

Kronecker product, and vec(·) is the vectorization operator.

Exploitation in TCB

TCB assumes that Ns source observations are available,
i.e., Os

Ns = {Xs
Ns , rsNs} = {(xsaτ , rsaτ )}τ=1...Ns where

Xs
Ns ∈ R

Ns×ds . The target observations until step
N t are defined similarly as Ot

Nt = {Xt
Nt , rtNt} =

{(xtaτ , rtaτ )}τ=1...Nt where Xt
Nt ∈ R

Nt×dt . The objective
of TCB is to progressively and adaptatively select the ac-
tions {a1, . . . , aNt} in the target domain to maximize the
cumulative reward, i.e.,

∑Nt

τ=1 r
t
aτ . TCB learns the selection

strategy from both source observationsOs
Ns and target obser-

vationsOt
Nt . Without loss of generality, TCB focuses on the

knowledge transfer between heterogeneous domains, which
signifies that a source and a target domain have different
actions or their contexts are in different feature spaces.
One of the essential steps to design a transfer learning

algorithm is to decide how to transfer (Pan and Yang 2010).
“How to transfer” for heterogeneous transfer learning mainly
aligns incommensurable feature spaces so that the transfer-
able knowledge can be discovered. TCB adopts a translation
matrix to align different feature spaces. In comparison with
transfer learning methods via a common space such as Co-
HTL, the translation based TCB suffers from fewer sources
of noise and explores fewer uncertain parameters. The opti-
mal translation matrixU∗ ∈ R

dt×ds is expected to perfectly
translate a target context xta into the source feature space,
i.e. xsa = UT

∗ x
t
a. Under the assumption that the reward func-

tion is linear with regard to the context, the rewards of both
domains are determined by,

rta = (xt
a)

TU∗θ
s
∗ + ετ ,

rsa = (xs
a)

Tθs
∗ + ετ , (1)

where ετ is 1/
√

2-sub-Gaussian noise and θs∗ is the reward
parameter for the source domain.
By supposing that we are given the optimal translation

matrix U∗, we estimate the reward parameter θs∗ from all
source observations and the target observations in step τ

by solving the following optimization problem similar to
LinUCB:

θ̂
s
τ = argmin

θs
||rsNs

− X
s
Ns

θ
s||22 + ||rtτ − X

t
τU∗θ

s||22 + ||θs||22. (2)

When τ is extremely small, all the source observations serve
as the warm start and definitively benefit the exploitation and
exploration of LinUCB.
Unfortunately, the optimal translation matrix U∗ is un-

known in a real-world RecSys.U∗ is also expected to learn
from all the observations. Directly optimizing Eq. 2 w.r.t.U∗
without any constraints, however, is equivalent to the ridge
regression purely on the target observations, which yields a
trivial translation matrix performing poorly on knowledge
transfer. Inspired by (Dai et al. 2008; Wei et al. 2016), we
learn a more effectiveU∗ by also leveraging the correspon-
dence data between source and target observations. We de-
note the correspondence data as S ∈ R

Nt×Ns with Sij indi-
cating the relatedness between the ith target observation and
the jth source observation, e.g., whether they are produced
by the same user. We would believe that such correspondence
data are easily accessible nowadays. Si,j > 0 if the ith target
observation and the jth source observation are related and
Si,j = 0 otherwise. The optimalU∗ is also expected to align
each pair of observations across domains with Si,j > 0,

xs
j = UT

∗ x
t
i + η, if Si,j > 0, ∀i, ∀j, (3)

where η denotes the translation noise, with each element as
a cη/

√
2-sub-Gaussian noise. Consequently, based on Eq. 1

and Eq. 3, the overall loss function to simultaneously estimate
the reward parameter θs∗ and the translation matrix U∗ in
each step τ is shown as below,

Ûτ , θ̂
s
τ = argmin

U,θs
β||rsNs

−Xs
Ns

θs||22 + ||rtτ −Xt
τUθs||22

+ γ
τ∑

i=1

Ns∑
j=1

Si,j ||UTxt
i − xs

j ||22 + ||θs||22 + ||U||2F , (4)

where β and γ control the importance of the source domain
and the translation, respectively. The first term incorporates
source observations to learn the reward parameter θs∗, and
the third term learns the translationU∗ by encouraging the
correspondence between observations across domains to be
preserved. The second term emphasizes the target observa-
tions and learns both parameters. The last two terms are
regularizers to avoid overfitting. For simplicity, we also write
the third term as,

τ∑
i=1

Ns∑
j=1

Si,j ||UTxt
i − xs

j ||22 = Tr(UT (Xt
τ )

TS1X
t
τU)

+ Tr((Xs
Ns

)TS2X
s
Ns

)− 2Tr(UT (Xt
τ )

TSXs).

where S1 and S2 are diagonal matrices with S1(i, i) =
∑Ns

j=1 Si,j and S2(j, j) =
∑τ

i=1 Si,j .
Obviously, the optimization problem in Eq. 4 is not jointly

convex w.r.t. U and θs. However, it is convex w.r.t. one
parameter if the other is fixed. Thus, we optimize it in an
alternating manner - iteratively fixing one parameter and
solving the other with a closed-form solution. We give the
closed-form solutions for both parameters in the following.

3621



Fix Ûτ :

θ̂s
τ = C−1

τ dτ ,

Cτ = β(Xs)TXs + ÛT
τ (X

t
τ )

TXt
τÛτ + Ids ,

dτ = β(Xs)T rs + ÛT
τ (X

t
τ )

T rt. (5)

Fix θ̂sτ :

vec(Ûτ ) = A−1
τ bτ ,

Aτ = θ̂s
τ (θ̂

s
τ )

T ⊗ (Xt
τ )

TXt
τ + γIds ⊗ (Xt

τ )
TS1X

t
τ + Idtds ,

bτ = vec((Xt
τ )

T rtτ (θ̂
s
τ )

T + γ(Xt
τ )

TSXs
Ns

). (6)

For computational efficiency, we instead solve θ̂sτ and Ûτ

using conjugate gradient descent method in our experiments.
In each step τ , a pure exploitation policy recommends

the article with the largest predicted reward. Thus, the pure
exploitation strategy is,

aτ = argmax
a∈At

(xt
a)

T Ûτ θ̂
s
τ . (7)

Exploration in TCB

In contextual bandit problems, only the rewards of pulled
arms are observed and they are stochastic. Purely exploiting
following the recommendation strategy in Eq. 7, therefore,
easily get stuck in the suboptimal arms and suffers from the
linear regret growth which is suboptimal.
In this section, we introduce how TCB simultaneously ex-

ploits and explores. To explore, TCB is based on the Upper-
Confidence-Bound (UCB) (Auer 2002) principle. UCB style
methods follow three steps: first, a high probability confi-
dence set for each uncertain parameter is constructed; second,
the UCB of the expected reward is calculated for each arm;
third, the action with the largest UCB is pulled in each step.
As shown in Fig. 1, there are three sources of uncertainty

in our cross-domain RecSys including the correspondence
data, the source rewards, and the target rewards. Accordingly,
TCB explores the uncertainty of both the reward parame-
ter θ̂sτ and the translation matrix Ûτ . We firstly define the
high probability confidence sets for both parameters in the
following inequalities,

||θ̂τ − θs
∗||Cτ ≤ αθ, (8)

||vec(Ûτ )− vec(U∗)||Aτ ≤ αU

where αθ and αU denote the upper bounds of the confidence
sets and are discussed in Lemma 1. Based on the mechanisms
in Eq. 1 and Eq. 3, for θs∗ andU∗ within the confidence set,
we then calculate the UCB of the expected reward for each
target action with the context xta:

UCB(xt
a) =(xt

a)
T Ûτ θ̂

s
τ

+ αθ||(xt
a)

T Ûτ ||C−1
τ

+ αU ||θ̂s
τ ⊗ xt

a||A−1
τ

. (9)

Finally, TCB’s recommendaion strategy is

aτ = argmax
a∈At

UCB(xt
a). (10)

In Eq. 9, the first term of UCB calculates the expected re-
ward which encourages more exploitation. The second term
explores the reward parameter θ̂sτ . TCB, therefore, tends to

select the actions that help learn the reward function quickly.
More informative source observations incur shrinkage of the
second term and thereby accelerate the exploration. The third
term explores the translation matrix Ûτ , i.e., how to transfer.
Thus, TCB favors the actions that help learn the translation
quickly. In short, UCB in Eq. 9 promotes transfer learning
and the bandit policy to benefit each other. Additionally, the
second and third terms of UCB are in shrinkage as TCB accu-
mulates more target observations. As a result, TCB explores
more in the beginning and exploits more in later stages. We
present the details of the TCB policy in Algorithm 1.
It is worth noting that TCB can also handle knowledge

transfer between homogeneous domains. When Ûτ is fixed to
be Idt , TCB degenerates to LinUCB with warm start. When
two domains lie the same feature space but different distri-
butions, TCB utilizes the translation to align distributions.

Algorithm 1 Transferable Contextual Bandit
1: Input: Source ObservationsOs

Ns , β, γ, αU and αθ .
2: Initialize: Û1 = 0dt,ds , θ̂

s
1 = 0ds,1.

3: for τ = 1 . . . N t in the target domain do
4: Observe the action set At

τ and context xt
a∈At

τ
;

5: Calculate the UCB for a ∈ At
τ according to Eq. 9;

6: Pull arm aτ = argmaxa∈Aτ
UCB(xt

a);
7: Observe reward rtaτ ;
8: while Until Convergence do
9: With new observation (xt

aτ , r
t
aτ );

10: Update θ̂s
τ+1 andCτ+1 according to Eq. 5;

11: Update Ûτ+1 andAτ+1 according to Eq. 6;
12: end while
13: end for

Regret Analysis

The overall loss function in Eq. 4 is not jointly convex if both
parameters are optimized together. Since analyzing the con-
vergence to the true parameters in such non-convex problems
is beyond the focus of this paper, we conduct regret analysis
on TCB by solvingU and θs separately in Eq. 11. The true
parameter ofU∗ is known when solving θ̂sτ , and vice versa.

θ̂s
τ =argmin

θs
β||rsNs

−Xs
Ns

θs||22
+ ||rtτ −Xt

τU∗θ
s||22 + ||θs||22,

Ûτ =argmin
U

||rtτ −Xt
τUθs

∗||22

+ γ
τ∑

i=1

Ns∑
j=1

Si,j ||UTxt
i − xs

j ||22 + ||U||2F . (11)

Lemma 1 illustrates that the confidence sets of θ̂sτ and Ûτ

grow sublinearly with respect to the number of steps Nt.

Lemma 1 Suppose ||U∗||F ≤ cu, ||θs∗||2 ≤ cθ, ||xs||2 ≤ 1
and ||xt||2 ≤ 1. If each target observation has one corre-
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sponding source observation, then with probability 1− δ

||θ̂Nt − θs
∗||CNt

≤cθ + β

√
log

3 det(CNt)
1/2

det(ÛT
Nt

(Xt
τ )TXt

τÛNt + Ids)
1/2δ

+ (1 + cθcη)

√
log

3 det(CNt)
1/2

det(β(Xs)TXs + Ids)
1/2δ

(12)

≤cθ + (1 + cθcη + β)

√
ds log

1 +Nt

δ

And

||vec(Ûτ )− vec(U∗)||Aτ

≤cU + γcη

√
log

3 det(ANt)
1/2

det(θ̂Nt(θ̂Nt)
T ⊗ (Xt

τ )TXt
τ + Idtds)

1/2δ

+ (1 + cηcθ)

√
log

3 det(ANt)
1/2

det(γIds ⊗ ((Xt
τ )TS1Xt

τ ) + Idtds)
1/2δ

≤cU + (1 + cηcθ + cηγ)

√
dsdt log

1 +Nt

δ
(13)

With Lemma 1, we further present the the upper bound of
TCB’s cumulative regret in the next. As in Eq. 14, the regret
quantifies a policy’s effectiveness by the difference between
the expected reward of the optimal arm a∗τ and that of the
pulled arm aτ (Burtini, Loeppky, and Lawrence 2015).

R(Nt) =

Nt∑
τ=1

(E(rta∗
τ
)− E(rtaτ )) (14)

Theorem 1 Under the same assumptions as Lemma 1, with
probability 1 − δ, TCB’s cumulative regret satisfies

R(Nt) ≤2αU

√
Nt log

det(ANt)

det(γIds ⊗ ((Xt
Nt

)TS1Xt
Nt

) + Idtds)

+ 2αθ

√
Nt log

det(CNt)

det(β(Xs)TXs + Ids)
(15)

≤2αU

√
Ntdt log (1 +Nt) + 2αθ

√
Ntds log (1 +Nt)

The detailed proofs are in the supplementary material1.
According to Lemma 1 and Theorem 1, we conclude that
TCB enjoys the same order of sublinear regret as the standard
LinUCB, i.e. O(

√
Nt log(Nt)) (Abbasi-Yadkori, Pál, and

Szepesvári 2011; Li et al. 2010).
We further discuss the influences of knowledge transfer on

TCB. According to Eq. 15, when the largest eigenvalue of
(Xs)TXs is nonzero, TCB’s regret decreases by a constant.
Alternatively speaking, transfer learning improves the con-
textual bandit policy if informative source data are provided.
Similarly, in Eq. 12, the confidence set of θ̂sτ shrinks with
the eigenvalues of the source observations. Thus, transfer
learning accelerates the exploration of the reward function.
Transfer learning always assumes that a source domain

and a target domain are related but different. In our work,

1Supplementary material is available at http://www.cse.ust.hk/
∼bliuab

we describe the difference between domains with a random
vector η. As we mentioned before, each element of η is
cη/

√
2-sub-Gaussian. Intuitively, a random vector with a

smaller cη is expected if two domains are near. A smaller
cη will introduce faster shrinkage on the confidence sets of
both θs∗ andU∗ according to Lemma 1, and achieve a better
regret according to Theorem 1. In summary, the exploration
of TCB becomes much more efficient when a pair of source
and target domains are more related.

Experiments

In this section, we evaluate TCB’s empirical performance
using one synthetic and two real-world datasets. We compare
TCB with four representative baselines, including HTL (Wei
et al. 2016), LinUCB (Li et al. 2010), hLinUCB (Wang, Wu,
and Wang 2016), and FactorUCB (Wang, Wu, and Wang
2017). HTL is the pure exploitation strategy with transfer
learning as shown in Eq. 7. LinUCB, hLinUCB, and Fac-
torUCB are the contextual bandit baselines without transfer.
LinUCB is the most widely used contextual bandit baseline
with the assumption of a linear reward function. hLinUCB2
explicitly models the hidden context and claims to be robust
to the cold-start problem. FactorUCB learns the latent user
factors and latent item factors as well as their UCB in a collab-
orative filtering manner. FactorUCB requires the knowledge
of user clustering. Thus, we only compare with FactorUCB
in the Delicious dataset.
For all experiments, we fix TCB’s hyperparameter as β =

0.1 and γ = 0.1 such that all terms in Eq. 4 are in the
same order of magnitude. To be consistent with the canonical
LinUCB, we set the regularization hyperparameter of all
methods to be one and exploration hyperparameter to be 0.2.
We mainly investigate TCB’s performance in the cold-start
situation. Thus, we plot the cumulative reward within 1,000
steps in the synthetic experiments and 5,000 steps in the
real-world experiments. All reported results are averaged by
10-times random experiments.

Synthethic Experiment

In this part, we build the synthetic environment to verify
TCB’s effectiveness. With the oracle knowledge of the reward
function, we measure the performance with cumulative regret
as shown in Eq 14.
We firstly generate the source and target context by ran-

domly drawing each dimension from a Gaussian distribution,
i.e., N (0, σ) and σ ∼ U(0, 1). Similarly, the optimal trans-
lation matrixU∗ and the reward parameter θs∗ are randomly
drawn from a uniform distribution U(0, 1). To be consistent
with Lemma 1, we normalize the data such that the norm of
each context, of the translation, and of the reward parame-
ter are upper bounded by one. We further use the Gaussian
similarity to measure the correspondence between jth source
context and ith target context, i.e., Si,j = e−||UT

∗ xti−xsj ||22 .
We keep the top 1% largest similarity and set the remain-
ings to be zero. In each step of the simulation, all compared

2hLinUCB and FactorUCB are both available at github.com/
huazhengwang/BanditLib
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Figure 2: Cumulative regret w.r.t. the steps in synthetic exper-
iments

policies face 5,000 actions and suffer from the same reward
noise ε ∼ N (0, 1). Additionaly, we set the ds = 60, dt = 50,
and Ns = 10, 000. On average, TCB costs 1.38 seconds to
decide one action and update the UCB.
In Fig. 2, we plot the cumulative regret w.r.t. the number

of steps. Apparently, HTL, as a pure exploitation strategy,
suffers from the linearly growing regret which is the worst.
TCB and HTL both transfer the knowledge from the same
source observations. In comparison, TCB explores the uncer-
tainty of the translation and the reward function. On behalf
of the exploration, TCB learns the translation and the reward
function more effectively and efficiently, thereby achieving
the improved transferring performance.
In comparison with LinUCB and hLinUCB which do not

transfer, we see that TCB’s regret converges significantly
faster. We, therefore, attribute TCB’s superiority to the knowl-
edge transfer. TCB leverages the knowledge from the source
observations to obtain the more accurate parameters and
tighter upper confidence bound. Additionally, across ten-
times random experiments, TCB achieves more stable and
robust regrets according to the smaller variance. In conclu-
sion, Fig. 2 consolidates our claim that TCB’s exploration
and knowledge transfer mutually benefit each other.
The hyperparameters αθ and αU balance the exploitation

and exploration and directly decide the performance of TCB.
In Fig. 3a, we investigate how αU = αθ = α influences
the cumulative regret. According to Fig 3a, for all α > 0,
TCB consistently outperforms LinUCB and hLinUCB, which
further consolidates TCB’s superiority. When α = 0, all
bandit approaches degenerate to the pure exploitation and
suffer from the inferior regret and larger variance. When α >
0.2, all methods explore more. More exploration, however,
does not compensate the sacrificed short-term rewards, and
achieves worse cumulative regret. Moreover, TCB(Theory)
sets αU and αθ according to Lemma 1. Obviously, TCB with
manually tuned α outperforms the TCB(Theory). As a result,
α = 0.2 is a fair choice for all methods.
The source observations and the correspondence data are

the essential components of TCB. Theorem 1 requires that
each target observation has one corresponding source ob-
servation, which is not easy to hold in a real-world RecSys.

Thus, we investigate the effects of the source observations
and the correspondence data on TCB’s performance.
In Fig. 3b, we examine how TCB’s regret changes w.r.t. the

varying number of source observations. Apparently, TCB’s
regret continues to deteriorate with the decreasing number of
source observations. When only 1,000 source observations
are available, TCB performs even worse than LinUCB and
hLinUCB without transfer. The potential explanation is that
TCB explores both the translation and the reward function
the combination of which are more uncertain. The insuffi-
cient source observations, however, cannot accelerate the
exploration of TCB enough, thereby leading to the worse
performance. On the other hand, Fig. 3b signifies that TCB
is capable of utilizing more and more source data.
The correspondence data S is the guidance for exploring

the translation matrixU∗. In Fig. 3c, we present TCB’s cumu-
lative regret when {0.1%, 0.5%, 1%, 5%, 10%} entries of S
are non-zero. Given very sparse correspondence data, the ex-
ploration and learning ofU∗ turn slow due to the insufficient
constraints. When TCB observes denser correspondence data,
its regret firstly decreases significantly and then increases. For
sparsity= 0.1, TCB projects each target context to be similar
to 10% source observations, so that the target context be-
comes indistinguishable in the source feature space, thereby
leading to worse regret. Finally, to further analyze TCB’s
performance, we investigate how TCB’s regret changes with
respect to the dimension of the context in Fig. 6 in the sup-
plementary material.

Real-world Experiments

In this section, we empirically compare TCB with the state-
of-the-art baselines using the Cheetah data and the public
Delicious3 data. Without the knowledge of true reward func-
tion, we compare all methods using the cumulative reward.
Due to the privacy issues, all reported cumulative rewards are
normalized by a random policy.
The Cheetah dataset is from the real-world RecSys sup-

plied by Cheetah Mobile Inc. The app and the article RecSys
are the source and the target domains, respectively. The user
profiles and app attributes together serve as the context for
app source RecSys. We combine the user profiles and article
titles to be the target context. We further adopt principal com-
ponents analysis (PCA) to reduce the source and the target
context to 50 and 30 dimensions, respectively. Therefore, in
Cheetah dataset, TCB faces not only different actions but
also heterogeneous feature spaces of two domains.
In each step τ of our experiment, we randomly select

ten articles from all as the candidate set. We guarantee that
the serving user reads exactly one candidate. All compared
methods are required to choose one recommendation from
the candidate set. If the serving user reads the recommended
article, the agent receives the reward as one, and otherwise
zero. We serve all users in chronological order. In the same
way, we accumulate the source app observations using a
random policy. Finally, we construct the correspondence data
S for TCB and HTL. The ith target observation corresponds
to the jth source observation if they satisfy the following

3Dataset is available at grouplens.org/datasets/hetrec-2011
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(a) Regret of three policies with respect
to the varying α

(b) Regret of TCB with the different
number of source observations

(c) Regret of TCB using the similarity
matrix of different sparsity

two criteria: first, the ith target and jth source observations
serve the same user; second, the user feedbacks are the same
for the ith target and jth source observations. For example,
one user installs the jth app and reads the ith article, then
Sij = 1. We summarize the Cheetah data in Table 1.

Table 1: Statistics of Cheetah Data

# of unique
users

# of correspondence
per user

# of users with
correspondence

4,000 1.077 1,395
# of unique
articles

# of source
observations time span

3,706 11,770 21 Days

Figure 4: Normalized Reward on Cheetah Data w.r.t. steps

In Fig. 4, we empirically verify the necessity of knowledge
transfer to improve the contextual bandit methods. When
the target observations are fewer than 500, calculating the
cumulative reward is high-variance and noisy. As a result,
all methods are not distinguishable in this period. When the
step is larger than 500, on behalf of transfer learning, TCB
and HTL consistently outperform LinUCB and hLinUCB.
At a later stage, all algorithms still suffer from the cold-
start problem. TCB and HTL, however, learns the reasonable
translation from the correspondence data. In the translated
feature space, TCB and HTL estimate the reward function
more accurately using both source and target observations.
In comparison, LinUCB and hLinUCB only learn from the
insufficient target observations and achieve inferior rewards.

By comparing TCB with HTL in Fig. 4, we can empahsize
the importance of exploration to transfer learning. TCB, un-
fortunately, is outperformed by HTL in the early period. The
potential reason is that TCB sacrifices the short term reward
to explore both the translation and the reward function. In the
long run, due to the exploration, TCB estimates the reward
function far more efficiently than HTL without exploration.
As a result, when more observations are accumulated, TCB
quickly bypasses HTL and shows consistent advantages.
Finally, we verify that TCB can also be applied to the

homogeneous problem using the public Delicious dataset.
We perform the experiments in the same setting as (Cesa-
Bianchi, Gentile, and Zappella 2013). After preprocessing,
we obtain 1,867 users, 57,784 URLs, and the corresponding
25-dimensional textual context. In each step τ , the agent rec-
ommends one URL among 25 candidates. The agent receives
the reward as one if the user bookmarks the URL. For TCB,
we design the source and the target RecSys to have mutual
exclusive URLs. Specifically, the URL is the source if it owns
a tag that occurs more than 80 times, otherwise target. There-
fore, the source and target URLs are described in the same
textual feature space but different distributions of text. The
source observations and the correspondence are constructed
in the same way as Cheetah data. hLinUCB and FactorUCB
consider the user clustering for collaborative filtering. For
a fair comparison, we carry on the independent TCB, HTL,
and LinUCB on each user clustering.
According to Fig. 5, TCB’s two-way advantage is again

proved in the homogeneous problem. For one thing, by com-
paring TCB with hLinUCB and FactorUCB, we conclude
that, for the cold-start problem, knowledge transfer from an
auxiliary domain is more effective than collaborative filter-
ing within a single domain. For another, TCB’s knowledge
transfer is more efficient than HTL.

Conclusions

In this paper, we propose a transferable contextual bandit
policy named TCB for the cross-domain recommendation.
TCB adopts transfer learning to optimize the cumulative
reward in the target RecSys. On behalf of transfer learning,
TCB benefits the exploitation and accelerates the exploration
in the target RecSys. On behalf of the contextual bandit
policy, TCB efficiently explores how to transfer and how
to recommend. The theoretical regret analysis and empirical
experiments verify TCB’s superiority. In the future, we plan
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Figure 5: Normalized Reward on Delicious Data w.r.t. steps

to speed up TCB in the high-dimensional context and deploy
it in a real online recommendation system.
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