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Abstract

For many real-world tagging problems, training labels are
usually obtained through social tagging and are notoriously
incomplete. Consequently, handling data with incomplete la-
bels has become a difficult challenge, which usually leads to
a degenerated performance on label prediction. To improve
the generalization performance, in this paper, we first propose
the Improved Cross-View learning (referred as ICVL) model,
which considers both global and local patterns of label rela-
tionship to enrich the original label set. Further, by extend-
ing the ICVL model with an outlier detection mechanism,
we introduce the Improved Cross-View learning with Outlier
Detection (referred as ICVL-OD) model to remove the ab-
normal tags resulting from label enrichment. Extensive eval-
uations on three benchmark datasets demonstrate that ICVL
and ICVL-OD outstand with superior performances in com-
parison with the competing methods.

Introduction

With the rapid development of web applications such as so-
cial commerce sites and resource sharing systems, tagging
has attracted much attention due to its capability of help-
ing describe an item and allowing it to be found speedily by
browsing or searching. Since the amount of data to be tagged
increases explosively, it is very time-consuming and labor-
intensive for manually labeling data. Consequently, auto-
matic tagging techniques have become an effective alterna-
tive. Recent decades have witnessed the increasing applica-
tions of tagging techniques in many fields (Elisseeff and We-
ston 2001; Yu, Yu, and Tresp 2005; Liu, Jin, and Yang 2006;
Krizhevsky, Sutskever, and Hinton 2012; Liu and Tsang
2015; Gao et al. 2016). Many different tagging approaches
have been proposed based on different requirements from
different areas (Zhang and Zhou 2014). However, most ex-
isting tagging methods assume that the given training labels
are complete, i.e., the given training labels describe all the
details of a document. In contrast, for many real-world tag-
ging problems, training labels are usually obtained through
social tagging and are notoriously incomplete, leaving typ-
ically many parts of the document content with no descrip-
tion at all. Therefore, handling data with incomplete training
labels has become a challenge for tagging methods and has
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very important influence to the generalization performance
of learned predictors.

Given training data with incomplete tags, a common strat-
egy in several recent efforts is to handle the missing la-
bel problem via label space reduction (Tai and Lin 2012;
Kapoor, Viswanathan, and Jain 2012). The key idea lies in
reducing the dimensionality of label space via projection
matrices. Consequently, predictions are first made on these
reduced label spaces and then the original labels are recov-
ered by back projection. Further, (Yu et al. 2014) takes a
more direct approach by formulating the incomplete tagging
problem as learning a low-rank regression matrix. However,
such strategies focus on learning the local patterns of label
correlation by separating labels into different clusters, where
the labels within a cluster are strongly related to each other
and irrelevant to the rest, and ignore the global dependency
between labels. This is inappropriate since global label de-
pendency also helps recover the useful label information.

On the other hand, certain literature, for example (Chen,
Zheng, and Weinberger 2013), also considers learning with
global label correlations to mitigate the influence of incom-
plete training label set. It is assumed that the given label
set is incomplete and a label relationship matrix based on
marginalized denoising autoencoder is learned to exploit the
global label dependency. Consequently, the given label set
is enriched with this label relationship matrix to tackle with
the incomplete tagging problem. Theses proposed methods
may achieve remarkably prediction performance. However,
they mainly consider the global label relationship, but the
correlations among labels can be complex and have local
depedency.

Further, though the above enrichment with the help of la-
bel relationship would reduce the effect of incomplete label
set, one cannot expect to accurately obtain a perfect correla-
tion matrix for the given labels. For example, since the learn-
ing of label correlation usually relies on statistical modeling
and requires an adequate supply of well-labeled samples,
its accuracy would be affected by the limited data samples
in real-world applications. Consequently, outliers (abnormal
label values) would be produced in the process of label en-
richment. This has adverse effect on learning robust predic-
tors as the traditional machine learning methods are usually
sensitive to outliers (Cabral et al. 2015).

To cope with the problem of incomplete tagging, it is nec-



essary to consider both global and local patterns of label
relationship. To achieve this goal, we propose to train ro-
bust predictors through exploiting global and local patterns
of label correlations together. In particular, we present the
Improved Cross-View learning (referred as ICVL) model,
which treats training data (samples with incomplete tags)
as unlabeled multi-view data and learns a cross-view agree-
ment from two sub-tasks: 1) training a classifier to predict
the complete tag set from observations, and 2) enriching the
existing incomplete tag set with a label correlation matrix.
This ICVL model considers both global and local patterns
of label relationship by a low-rank marginalized denoising
autoencoder regularization. Further, we incorporate outlier
detection mechanism into the ICVL model to remove the ab-
normal tags resulting from label enrichment and propose an
improved cross-view learning with outlier detection (ICVL-
OD) model, which considers comprehensive label correla-
tions and outlier detection simultaneously.

Respective algorithms for solving the optimization prob-
lems of ICVL and ICVL-OD are developed by using alter-
nating optimization. We demonstrate their promise through
extensive evaluations in three real datasets in comparison
with the peer methods in the literature.

Related Work

Tagging methods in the literature are mainly categorized
into two types: generative models and discriminative mod-
els. Most generative methods introduce a set of latent vari-
ables to learn the joint distribution of the sample features and
semantic labels (Barnard et al. 2003; Blei and Jordan 2003).
(Blei and Jordan 2003) proposes the correspondence Latent
Dirichlet Allocation model under which labels and image
features share latent variables. Discriminative methods usu-
ally reduce the multi-label problem to a set of binary clas-
sification problems. The representative techniques for this
category of approaches are extensions of SVM, which have
demonstrated a strong discrimination power (Qi and Han
2007; Yang, Dong, and Hua 2006; Li et al. 2013). In partic-
ular, when a document is represented as a bag of instances,
and belongs to a bag of classes (Zhou and Zhang 2007;
Zhou et al. 2012), the original tagging problem becomes
a multi-instance and multi-label learning problem. (Zhou
and Zhang 2007) solves this multi-instance and multi-label
learning problem by mapping it into a single-instance and
multi-label learning problem.

Further, the idea of exploiting label correlations between
different labels is considered in the literature to facilitate
the learning process (Jin et al. 2008; Hariharan et al. 2010;
Sun, Zhang, and Zhou 2010; Huang, Zhou, and Zhou 2012;
Ma et al. 2012; Xu et al. 2014). (Zhang and Zhang 2010)
proposes to use a Bayesian network structure to encode the
conditional dependencies of the labels so that the proposed
approach is capable of modeling arbitrary order of label cor-
relations. (Read et al. 2011) proposes a chaining method that
can model label correlations while its computational com-
plexity is maintained to be acceptable. (Chen, Zheng, and
Weinberger 2013) proposes to enrich the user tags with a la-
bel correlation matrix learned from marginalized denoising
autoencoder on training label set.
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Label space dimension reduction methods have gradu-
ally been attracting much attention in multi-label learning
with missing tags (Chen and Lin 2012; Tai and Lin 2012;
Kapoor, Viswanathan, and Jain 2012). By projecting the la-
bel vector to a lower dimensional space using transforma-
tion matrices, (Kapoor, Viswanathan, and Jain 2012) makes
full use of joint information within the labels to deal with
datasets with incomplete labels. In order to handle large-
scale data with missing labels, (Yu et al. 2014) performs la-
bel space reduction by imposing a low-rank constraint on
the regression matrix. (Jing et al. 2015) proposes a semi-
supervised low-rank mapping model to exploit correlations
between labels and to use unlabeled samples.

Among the existing work, the closest work to ours is Fast-
Tag (Chen, Zheng, and Weinberger 2013). Through learn-
ing a label correlation matrix with a marginalized denois-
ing autoencoder on label set, it exploits the global label de-
pendency to enrich the user tags. We note that the differ-
ence from our work is significant as our method is to com-
bine both merits of the label space reduction and label de-
pendency by regularized learning with a low-rank marginal-
ized denoising autoencoder. Moreover, we introduce outlier
detection mechanism to remove the abnormal labels gener-
ated by the process of label enrichment. Consequently, our
method outperforms the FastTag, which has been demon-
strated in the experiments.

Learning with Incomplete Labels

In this section, we first introduce a cross-view learning
method, which aims to reduce the effect of incomplete la-
bel set with label enrichment mechanism. Further, we in-
corporate the learning of global label dependency and lo-
cal label correlations into the cross-view learning framework
through a low-rank marginalized denoising autoencoder reg-
ularization. Consequently, an improved cross-view learning
(ICVL) approach is developed to solve the problem of learn-
ing with missing labels.

Cross-View Learning

Given labeled training dataset {(x1,¥1),- .., (Xn,¥yn)}, for
supervised learning with linear regression, we obtain the fol-
lowing Lo norm regularized loss

1 < A
L(W)= 52 lyi — Wxl[* + §HWH%, (1)
i=1

where W € R'*9 is the regression matrix.

In multi-label learning, one pervasive problem is that the
given tags are usually incomplete, which means that the
given labels are not complete to describe everything in an
document. Such situation may exist even for a manually la-
beled document as human beings typically do not have the
patience to give labels for all the details of an document.
Thus, directly modeling with the original label set may not
fully capture the relations between labels and features and
lead to a decrease in the performance of the learned predic-
tor.

To mitigate this influence, we propose to exploit label cor-
relations to enrich the incomplete label matrix. In particular,



by treating training data (samples with incomplete tags) as
unlabeled multi-view data, we learn a cross-view agreement
from two sub-tasks: 1) training a classifier x; — Wx; that
predicts the complete tag set from observations, and 2) en-
riching the existing incomplete tag vector y; with a label
correlation matrix y; — By;, where B captures the tag re-
lationships. Correspondingly, we reformulate the criterion of
linear multi-label learning in Eq.(1) as follows:

¢ A
L(W,B) = 3 Z |IBy: — Wx;| | + §||W||§ (2)
i=1

However, the above loss function in Eq.(2) has a trivial so-
lution when B = 0 and W = 0, indicating that the current
configuration is under-constrained. It is necessary to incor-
porate an additional regularization on B to guide to a rea-
sonable solution.

Low-rank Marginalized Denoising Autoencoder
Regularization

In this section, we propose a low-rank marginalized de-
noising autoencoder for estimating B. In particular, we first
model the correlation matrix B with a marginalized denois-
ing autoencoder and then impose a low-rank constraint so
that the learned B considers global and local label correla-
tions simultaneously.

Our intention is to explore the label relationship by a re-
construction mechanism that B should be able to reconstruct
the original tag set from its corrupted version. Lety; € R be
the i-th sample, which is under consideration now. Imagine
that we first corrupt this vector by dropout distribution with
probability p > 0 and then reconstruct the original y; from
the “corrupted version” y; with a label relationship mapping
matrix B : R! — R!. Here, for each tag vector y and dimen-
siont, p(g: = 0) = pand p(g: = y:) = 1—p. Consequently,
we learn this label relationship mapping by minimizing the
squared reconstruction loss,

1 n _
*Z ly: — Byll?

R(B) 24

3

where B € R!*! can be considered as a label relationship
matrix that predicts the presence of labels given the existing
labels in y.

Further, the repeated samples of y are made to reduce the
variance in B. In the limit (with infinitely corrupted versions
of y), the expected loss function under the dropout distribu-
tion can be expressed as

R(B) =5 > E[lly: ~ Bill]

i=1

“

p(¥ilyi)

From the above loss function, we can see that the learn-
ing process of label relationship B;; between label 7 and la-
bel j is influenced by all other labels, which helps capture
a global dependency rather than a one-to-one correlation.
Consequently, global label correlations are encoded into the
label relationship matrix B.

Besides the global correlations, the local patterns of label
correlations naturally exist, where labels can be separated
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into different groups such that the labels within a group are
strongly related to each other, while being irrelevant to the
rest. These local patterns encourage a low-rank structure of
B, capturing the underlying local relationship among labels
for the boosted generalization performance. However, this
direct rank minimization problem is NP-hard in general. A
widely-used convex relaxation of this problem is to regular-
ize the target by the trace norm (nuclear norm) || - ||.. Con-
sequently, the framework of learning label relationship with
a low-rank marginalized denoising autoencoder can then be
formulated as

1 < .
RUB) =3 3 E Iy = B, + 11
1
= trace (BQB" —2PB" + YY) + 5| B|.
&)

where P = Y0 vE[y,]", Q = X EFIE [y +
V [y;], and

_ Sapdags ifa#p
Qlas = { Sapta  ifa =8
where ¢, = gg = 1—p, the variance matrix V [y,] pFilyi) =

p(1 —p)é(yiy, ),and S = YY" is the covariance matrix
of the uncorrupted tag set. Here, 6(-) denotes an operation
that sets up all the entries except the diagonal to zero.

Improved Cross-View Learning

In this section we incorporate the low-rank marginalized de-
noising autoencoder regularization in Eq.(5) into the frame-
work of cross-view learning in Eq.(2) to solve the problem
of learning with incomplete labels. Consequently, the joint
loss function can be written as follows:

1 A
vns}lgig |By; — Wx||* + §HWH§

/y n ) )
+§Z;]EU|}’1'—Byi|| ]p(yi\yi)"':“HBH* 7
=

where )\, v, and 1 = ~yn are regularization parameters.
Improved cross-view learning (ICVL) is referred to min-
imizing the above objective function. By considering train-
ing data (samples with incomplete tags) as unlabeled multi-
view data, this framework can be interpreted from the fol-
lowing perspectives: 1) forcing a cross-view agreement be-
tween predicted vectors Wx and the enriched labels By,
and 2) learning an accurate B by introducing a low-rank
marginalized denoising autoencoder regularization.

Optimization The loss function in Eq.(7) is jointly convex
and can be solved efficiently through alternating optimiza-
tion.

[Update W] when B is fixed, the problem in Eq.(7) with
respect to W can be reformulated as

L1l 2 A 2
n%nigHByl'*WxiH Jr§||VV||2 @®)



where W can be solved in a closed form:

©))

[Update B] When W is fixed, the problem in Eq.(7) with
respect to B can be reformulated as:

W= (BY)X" (XX + A1)~

1
min o > 1By — Wxi[|” + || BJl.
=1

T\ ;
+ 9 ZE [HYl - ByiHQ]P(S’q‘,b’i) (10)

i=1

The above optimization problem in Eq.(10) is convex and
can be solved by various methods. In this paper, we exploit
the alternating direction method of multipliers (ADMM
(Boyd et al. 2011)) method to find the optimal solution of B.
By introducing an auxiliary variable G € R'*!, the problem
in Eq.(10) can be posed equivalently as a constrained opti-
mization problem

LIS )
glcr;l§2”BYi_Wxi|| + /|Gl
+ TS [llys - B
2 — ¢ o lp(ilya)
st. B=G a1

The augmented Lagrange function of (11) is given by

1 )
Br}g{lT§2l\Byi—WXiII +
=

14 2
~||B -G
‘B -Gl

BN o 12
+lGll+ 5 3B (v ~BIF5,

+trace(YT (B — G)) (12)

where p, u1, and « are regularization parameters and T €
R!*! are the Lagrange multipliers. This optimization prob-
lem can be solved with respect to each variable (B, G, Y)
by fixing other variables in an alternating manner.

When we fix G and Y, we compute the gradient of the
objective in Eq.(12) with respect to B and set them to 0 to
obtain

BYY' - WXY' +~(BQ-P)

+pB-G)+T=0 (13)
The closed form solution can be computed as follows:
B! — (WXYT £ AP + pGF — “rk)
T -1
: (YY +7Q + pI) (14)

Similarly, when we fix B and T, G can be obtained by
solving the following problem:

min £[B - G| + t(TT (B~ G)) +uGll.  (15)
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The above optimization problem can be further transformed
into the following form:
1 T I
in-|B+——-G|*+ = X 1
min o ||B + 5 Gl + pHGH (16)
The solution to G can be computed via the singular value
thresholding (Cai, Candes, and Shen 2010):
Tk
GHl =p. [B’““ + } (17)
’ P
where Pp(M) = UMK@(EM)VMT is the singular
value thresholding operator with M = UMEMVMT be-
ing the standard singular value decomposition of M and
Ky(A;j) = sign(A;;) max(0, |A;;| — 0) being the soft-
thresholding operator.
The multipliers Y can be updated directly by
Tk}-‘rl — Tk + p(Bk+1 _ Gk+1) (18)

Based on the above analysis, the optimization algorithm
of ICVL is outlined in Algorithm 1.

Algorithm 1: ICVL Algorithm

Input : Training data set X, Y.
QOutput: Estimated mappings W and B
Test : Given a sample x, Wx is used to score the
dictionary of labels
1 Choose the label dropout probability p; obtain P and Q
with Eq.(6);
2 Repeat
Optimize W with Eq.(9);
Optimize B using the following steps;
Repeat
Fix G, Y and update B with Eq.(14);
Fix B, Y and update G with Eq.(17);
Fix B, G and update Y with Eq.(18);
until Convergence;
until Convergence;

NI R B Y B

Improved Cross-View Learning with Outlier
Detection

Although the enriching mechanism y <— By greatly reduces
the effect of incomplete label set, one cannot expect to accu-
rately obtain a perfect enrichment mapping B for the given
labels. For example, since the learning of label correlation
usually relies on statistical modeling and requires an ade-
quate supply of well-labeled samples, its accuracy would be
affected by the limited data samples in real-world applica-
tions. Consequently, outlier would be produced in the pro-
cess of label enrichment. This makes it hard to learn accu-
rate predictors as the traditional machine learning methods
are usually sensitive to outliers. Thus, it is necessary to re-
move the outliers for building a robust model. To effectively
detect the existence of the outliers and reduce their influ-
ence, we introduce an outlier detection mechanism by mod-
eling residuals between improved label vector By and its



estimated vector Wx with a parameter vector r,
e ~ N(0,0%T)

where the vector r is responsible for detecting the outliers
under the basic hypothesis that the i-th case is suspected to
be an outlier when r; is nonzero. Since we do not know
which labels might be outliers, we add one residual error
vector for each data point. This setup is very flexible since it
allows any combination of labels to be outliers.

Further, we impose a sparse regularization constraint on
this residual vector to control the capacity of the suspected
data. Consequently, we can reformulate the criterion of
multi-label learning in Eq.(7) as follows:

By = Wx +r+e¢, (19)

1 2 | A 2
Whin 5 Z; [Byi = Wi —ril|* + Z|IWI3 + sl[R][x
i S <112
+ 5 ZlE [”yz - Byi” }p(fli\yi) + NHBH* (20)
where R € R™*"™ = [ry,rg,...,1,] is the residual matrix

and || - ||; denotes the sum of absolute values of all elements.

Improved cross-view learning with outlier detection
(ICVL-OD) is referred to minimizing the above objective
function. On the one hand, the low-rank marginalized de-
noising autoencoder regularization ensures that the learned
enrichment mapping B encodes both global and local pat-
terns of label correlations. On the other hand, it also consid-
ers removing outliers which are produced during the process
of label enrichment to make the learned predictor robust.

Optimization The loss function in Eq.(20) is jointly con-
vex and can be solved efficiently through alternating opti-
mization.

[Update W] when B and R are fixed, the problem in
Eq.(20) with respect to W can be reformulated as

1 2, A 2
r%%,niiz:;HBYi_Wxi_riH +§HWH2 2D
where W can be solved in a closed form:
W=BY-R)X (XX +\)" (22

[Update R] When B and W are fixed, the problem in
Eq.(20) with respect to R can be determined by solving the
following problem:

1o 2
mﬁnggﬂB}’i—WXi—riH + xRl (23)

where || - || denotes the sum of absolute values of all ele-
ments.

Based on L; norm soft thresholding operator (Herrity,
Gilbert, and Tropp 2006), the solution to R can be directly
computed as follows:

Rij :mgn(H”) . max(O, |H|Zj — Kl)
where H = BY — WX.

(24)
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[Update B] When W and R are fixed, the problem in
Eq.(20) with respect to B can be reformulated as:

1L
min 5 Z By: — Wx; — i[> + ul[BJ.
1=

n
Y ~
+5 ;E llyi =Byill*], 5.y @5

Similar to the optimization of ICVL in the previous sec-
tion, ADMM is exploited to find the optimal solution of B.
By introducing an auxiliary variable G € R'*!, the prob-
lem in Eq.(25) can be posed equivalently as a constrained
optimization problem

) 1 n )
win 5 Z; 1By —~Wx; — r]|> + 1| G

+

o2

ZE [Hyl - ByiHQ}p(Sfﬂyﬂ
i=1

st. B=G (26)

The augmented Lagrange function of (26) is given by

RN 2, P 2
B%%.iZlHBYz_sz_FZH +§||B_GH

+ulGll- + ;ZE (ly: — Bill*],

Vilyi)

+trace(Y ' (B — G)) (27)

where p, u1, and «y are regularization parameters and T €
R!*! are the Lagrange multipliers. This optimization prob-
lem can be solved with respect to each variable (B, G, Y)
by fixing the other variables in an alternating manner.

When we fix G and Y, we compute the gradient of the
objective in Eq.(27) with respect to B and set them to 0 to
obtain

BYY' - WXY' -RY' ++(BQ-P)

+pB-G)+T=0 (28
The closed form solution can be computed as follows:
BHH! = (WXYT FRYT 4P + pGF — rk)
- -1
: (YY +9Q+ pI) (29)

Similarly, when we fix B and Y, G can be obtained by
solving the following problem:

min £[[B — GI* + (T (B~ G)) +u|Gll. (30

The optimization of the above problem is the same as that of
Eq.(16) in the previous section.
Thus, The solution to G can be computed:

k
GFtl = Pu [Bk“ + 1;} (31)



Algorithm 2: ICVL-OD Algorithm

Input : Training data set X, Y.
Output: Estimated mappings W, B, and R.
Test : Given a sample x, Wx is used to score the
dictionary of labels
1 Choose the label dropout probability p; obtain P and Q
with Eq.(6);
2 Repeat
3 Optimize W with Eq.(22);
4 Optimize R with Eq.(24);
5 Optimize B using the following steps;
6 Repeat
7 Fix G, Y and update B with Eq.(29);
8 Fix B, Y and update G with Eq.(31);
9 Fix B, G and update Y with Eq.(32);
until Convergence;
until Convergence;

—
—

The multipliers Y can be updated directly by
YL =P 4 p(BFF — G (32)
Based on the above analysis, the optimization algorithm
of ICVL-OD is outlined in Algorithm 2.
Computational Complexity For each iteration, updating
W in Eq.(22) requires the construction of (BY — R) X"
and (XX T + AI), which will cost O(I?n + ldn + d*n).
The inverse of ((XXT + AI)) with Od® is not neces-
sary to be computed at each iteration. Updating R in
Eq.(24) requires the construction of (BY — WX), which
will cost nl%. The soft thresholding operator of H will
cost O(nl). Updating B in Eq.(29) requires the con-
struction of (WXY—r +RY T +4P + pGF — T’“) and

(YYT +yQ+ pI) , which will cost O(Idn +12n). The in-

verse of (YYT +7Q+ pI) with O(I3) complexity is also
not necessary to be computed at each iteration. The main
computation cost for updating G is the singular value thresh-
olding operator and its complexity is O(d?). Updating Y in
Eq.(32) cost O(1?). Thus, the complexity of the optimization
is O(I?n+d*n+d>+13+1dn), where n represents the num-
ber of samples, d represents the dimension of feature vector,
and [ represents the dimension of label vector.

Experiments
We evaluate ICVL and ICVL-OD on three standard multi-
label benchmark datasets including one audio dataset. All
datasets are obtained from http://mulan.sourceforge.net/
datasets-mlc.html.

Experimental Setup

In this section, we provide a detailed description of datasets,
evaluation metrics, parameter setup, and baselines.

Datasets We have used three multi-label datasets, namely
Enron, Bookmarks, and Birds for the experimentation pur-
pose. Their statistics are described in Table 1.
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Table 1: Statistics of the three datasets.

Dataset Examples | Labels | Features
Enron 1702 53 1001
Bookmarks | 7500 208 2150
Birds 645 19 260

Enron dataset contains email messages. It is from Enron
corpus and made public during the legal investigation con-
cerning the Enron corporation.

Bookmarks dataset is from Bibsonomy'. Bibsonomy is a
social bookmarking and publication sharing system. Book-
marks contain metadata for bookmark items such as the
URL of a web page and a description of the web page.

Birds dataset is formed by bird sounds. This audio dataset
is collected in the H.J.Andrews (HJA) Long-Term Experi-
mental Research Forest, in the Cascade mountain range of
Oregon.

Evaluation Metric Three metrics, precision, recall, and
F1 score, are often used to measure the performance of a
tagging algorithm. Here, we also use them as our evaluation
metrics. First, all the data are tagged with the five most rel-
evant labels (i.e., labels with the highest prediction value).
Second, precision (P) and recall (R) are computed for each
label. The reported measurements are the average across all
the labels. Further, both factors are combined in F1 score
(F1=2 5’;};), which is reported separately. In all the met-

rics a higher value indicates a better performance.

Setup Cross-validation is used to estimate the perfor-
mance of different methods. On the Enron and Birds
datasets, we follow the experimental setup used in Mulan.
Since there is no fixed split in the Bookmarks dataset in Mu-
lan, we use a fixed training set of 80% of the data, and eval-
uate the performance of our predictions on the fixed test set
of 20% of the data.

Baselines To demonstrate how ICVL-OD and ICVL im-
prove the tagging performance in comparison with the state-
of-the-art tagging methods, we compare them with the fol-
lowing representative tagging methods from the recent liter-
ature:

e LeastSquare (Bishop 2006).

e FastTag, a model which exploits global label dependency
with marginalized denoising autoencoder regularization
(Chen, Zheng, and Weinberger 2013).

e Low-rank empirical risk minimization for multi-label
learning (referred to LEML) (Yu et al. 2014).

e Semi-supervised low-rank mapping learning for multi-
label classification (referred to SLRM) (Jing et al. 2015).

e FastTag-OD, which incorporates the outlier detection
mechanism into the FastTag method.

In particular, for SLRM, we only use its supervised version
to make a fair comparison as our experimental setup is su-
pervised.

"http://www.bibsonomy.org



Table 2: Comparison between the proposed algorithms and the competing models in terms of precision, recall, and F1 score on
the three datasets. The Best performance in each case is indicated with bold face.

Enron Bookmarks Birds

Methods precision | recall [ FI precision [ recall | FI precision | recall | FI
LeastSquare 0.2144 0.2396 | 0.2263 0.1253 0.2494 | 0.1669 0.1089 0.5562 | 0.1822
LEML 0.2546 | 0.2340 | 0.2439 0.1608 | 0.2588 | 0.1984 0.1134 | 0.5483 | 0.1880
SLRM 0.2456 | 0.2336 | 0.2394 0.1611 0.2566 | 0.1980 0.1113 | 0.5334 | 0.1842
FastTag 0.2133 0.2525 | 0.2313 0.1752 0.2571 | 0.2084 0.1952 0.4399 | 0.2704
ICVL 0.2020 | 0.2875 | 0.2373 0.1905 | 0.2749 | 0.2251 0.2005 | 0.4890 | 0.2845
FastTag-OD 0.2320 | 0.2680 | 0.2487 0.1876 | 0.2700 | 0.2214 0.2048 | 0.5461 | 0.2980
ICVL-OD 0.3019 | 0.2620 | 0.2805 0.2121 | 0.2567 | 0.2323 0.2587 | 0.5231 | 0.3462

Experimental Results

In Table 2, we summarize the precision, recall, and F1 score
of the Enron, Bookmarks, and Birds datasets, for Least-
Square, LEML, SLRM, FastTag, FastTag-OD, ICVL, and
ICVL-OD, respectively. On the task of multi-label data tag-
ging, compared with ICVL-OD, LeastSquare mistakenly
considers the incomplete training label set as the com-
plete training label set. Although LEML formulates learning
with missing labels as a general empirical risk minimiza-
tion problem with a low-rank constraint, it cannot exploit
the global label dependency to reduce the influence of in-
complete tags. SLRM uses the trace norm regularization on
regression matrix to perform label dimensional reduction,
while it also ignores the global label dependency which nat-
urally exists in the given label set. FastTag considers mining
global label dependency with marginalized denoising au-
toencoder regularization to mitigate the influence of incom-
plete training label set, but it cannot take advantage of the
local label correlations to further improve the generalization
performance. While FastTag-OD incorporates the outlier de-
tection mechanism into FastTag and performs better than
FastTag, it also ignores the local label correlations. ICVL
considers both global and local patterns of label correlations,
while it ignores the effect of outliers produced from the en-
richment process of label set. Consequently, from Table 2,
we see that ICVL-OD performs better than LeastSquare,
LEML, SLRM, FastTag, FastTag-OD, and ICVL as the F1
scores achieved by ICVL-OD are much higher than those
achieved by the competing models in most cases. On one
hand, this illustrates the importance of considering global la-
bel dependency and local label correlations simultaneously;
on the other hand, this also demonstrates the effectiveness
of outlier detection mechanism. In particular, ICVL-OD im-
proves over the competing models with about 7% gain on F1
score in the Birds dataset.

The experiments also reveal several interesting observa-
tions:

e ICVL-OD and ICVL perform better than FastTag, LEML
and SLRM. This shows that learning with global label de-
pendency and local label correlations simultaneously may
lead to a more robust tagging method.

e ICVL-OD and FastTag-OD perform better than ICVL and
FastTag, respectively. This demonstrates that the incorpo-
ration of outlier detection mechanism helps improve the
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Figure 1: The F1 score for the testing set as a function of
the ratio of the observed labels for each training document
on the Enron and Birds datasets. The ¢-th coordinate on the
x-axis corresponds to the observed labels’ ratio ¢ X 10%.

robustness of label-enriching models.

Figure 1(a) and Figure 1(b) show the test F1 scores of
LEML, SLRM, FastTag, FastTag-OD, ICVL, and ICVL-OD
as a function of the ratio of the observed labels for each
training document on Enron and Birds datasets, respectively.
Random removal is exploited to control the ratios. We grad-
ually increase the ratio of the observed labels and observe
that ICVL-OD and other baselines show an increasing trend
on the F1 scores with the increase of the ratio of the ob-
served labels. Although the performance of ICVL-OD sub-
stantially drops when the observed label ratio is relatively
small, ICVL-OD still achieves a comparatively better per-
formance than the competing models in most cases. It shows
the advantage of exploiting complex label correlations and
outlier detection mechanism together on the task of learning
with missing labels.

Conclusion

In this paper, to improve the generalization performance
of incomplete tagging, in this paper, we first propose the
Improved Cross-View Learning (referred as ICVL) model,
which considers both global and local patterns of label re-
lationships to enrich the original label set. Further, through
extending the ICVL model with an outlier detection mech-
anism, the Improved Cross-View Learning with Outlier De-
tection (referred as ICVL-OD) model is introduced to re-
move the abnormal tags resulting from label enrichment.



Extensive evaluations on three benchmark datasets demon-
strate that ICVL and ICVL-OD outstand with superior per-
formances in comparison with the competing methods.
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