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Abstract

Earth Mover’s Distance (EMD), targeting at measuring the
many-to-many distances, has shown its superiority and been
widely applied in computer vision tasks, such as object recog-
nition, hyperspectral image classification and gesture recog-
nition. However, there is still little effort concentrated on
optimizing the EMD metric towards better matching perfor-
mance. To tackle this issue, we propose an EMD metric learn-
ing algorithm in this paper. In our method, the objective is to
learn a discriminative distance metric for EMD ground dis-
tance matrix generation which can better measure the simi-
larity between compared subjects. More specifically, given a
group of labeled data from different categories, we first se-
lect a subset of training data and then optimize the metric for
ground distance matrix generation. Here, both the EMD met-
ric and the EMD flow-network are alternatively optimized un-
til a steady EMD value can be achieved. This method is able
to generate a discriminative ground distance matrix which can
further improve the EMD distance measurement. We then ap-
ply our EMD metric learning method on two tasks, i.e., multi-
view object classification and document classification. The
experimental results have shown better performance of our
proposed EMD metric learning method compared with the
traditional EMD method and the state-of-the-art methods. It
is noted that the proposed EMD metric learning method can
be also used in other applications.

Introduction

Variable-size descriptions of distributions, such as Gaus-
sian Mixture Models (GMM) (Li, Wang, and Zhang 2013)
have been widely used to represent multidimensional dis-
tributions in a compact way. These descriptors can be re-
garded as signatures, which are a set of the main clusters
of a distribution. Here, each cluster is represented by a sin-
gle point (i.e., the cluster center) in the underlying space,
together with a weight that denotes the size or the impor-
tance of that cluster. This is a common-used data descrip-
tion method and accordingly there are many methods to
measure the distance between two signatures, such as K-
L divergence (Goldberger, Gordon, and Greenspan 2003),
Jensen-Shannon divergence (Endres and Schindelin 2003),
and maximum mean discrepancy (Borgwardt et al. 2006).
Among these methods, the Earth Mover’s Distance (EMD)
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Figure 1: The illustration of Earth Mover’s Distance, where
feai is the feature for the center of Pi, and wi is the corre-
sponding weight of Pi. dij is the cost of shipping a unit of
supply from Pi to Qj , and fij is the corresponding flow.

(Rubner, Tomasi, and Guibas 2000) is a general and flex-
ible way to measure the dissimilarity between two signa-
tures, which is a special case of the Wasserstein distances
(Villani 2009) in its continuous form. EMD has shown its
superior performance on the many-to-many matching prob-
lem and been used in many computer vision tasks, such as
object recognition (Zhang et al. 2007), hyperspectral image
classfication (Sun et al. 2015) and gesture recognition (Wang
and Chan 2014).

The original EMD is based on a solution to the old trans-
portation problem, as shown in Figure 1, which can be
formalized as a linear programming problem: given a set
of suppliers P = {P1, P2, . . . , Pn}, a set of consumers
Q = {Q1, Q2, . . . , Qm}, and a ground distance matrix
D = {dij} whose elements dij defines the cost of shipping
a unit of supply from Pi to Qj , the aim is to find an optimal
set F of the flows fij , i.e. the amount of supply shipped from
the i-th supplier Pi to the j-th consumer Qj , to minimize the
overall cost

∑n
i=1

∑m
j=1 dijfij , subjecting to the following

constraints
fij ≥ 0 (1 ≤ i ≤ n, 1 ≤ j ≤ m),∑n

i=1 fij ≤ wQj
(1 ≤ j ≤ m),∑m

j=1 fij ≤ wPi
(1 ≤ i ≤ n),

(1)

where wPi
is the supply of the i-th supplier and wQj

is the
capacity of the j-th consumer.
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Figure 2: The illustration of ground distance metric op-
timization for EMD distance measurement in (Wang and
Guibas 2012).

Once the transportation problem is solved, the EMD dis-
tance is defined as the cost normalized by the total flow:

EMD(P,Q) =

∑n
i=1

∑m
j=1 dijfij∑n

i=1

∑m
j=1 fij

. (2)

Compared with other distance measurements, EMD is
able to account for cross-bin information and can be applied
to the signatures with different sizes. Moreover, EMD can
generate a flow-network representing how the mass in the
clusters is transported between two signatures and thus cal-
culate an optimal distance between two signatures.

As shown in the EMD definition, the ground distance ma-
trix between two signatures plays an important role in the
EMD flow optimization procedure. A well generated ground
distance matrix can lead to a better flow, and yet achieve
even better EMD distance measurement. In a simple case,
if the cluster centers of all the signatures are the same (i.e.
position-fixed), a signature can be degenerated into a his-
togram descriptor. In this scenario, the optimization task for
a better EMD distance measurement is to directly learn an
optimal ground distance matrix, which defines the distance
between each pair of the cluster centers, as shown in Figure
2. To this end, a supervised EMD distance learning method
(Wang and Guibas 2012) was introduced to learn an optimal
ground distance matrix among the representing histograms.
In particular, the triplet constraint was used in this method
and the trained ground distance matrix can better reflect
the cross-bin relationships, hence producing more accurate
EMD distances and better performance in the application of
face verification.

However, this method can only work on the situation
with fixed-size histograms representing the subjects. In prac-
tice, it cannot guarantee that all the subjects could be de-
scribed by fixed-size histogram, which limits the application
of the ground distance matrix learning method. Moreover,
the learned ground distance matrix in (Wang and Guibas
2012) may contain negative elements, which could lead to
negative EMD distances. We note that it is more general in
practice that each signature can be described by different
types of data and a common-used ground distance matrix
does not exist in these scenarios. Under such circumstances,
it is not feasible to optimize the ground distance matrix for
EMD in many applications. Different from optimizing the

ground distance matrix directly, it is possible to learn an op-
timal EMD distance metric, i.e., the metric to generate the
ground distance matrix in EMD, which has not been inves-
tigated yet, to the best of our knowledge.

To tackle this issue, we propose an EMD metric learning
algorithm that can work in a more general setting. In this
method, the objective is to optimize the distance metric for
ground distance matrix generation, which can be more dis-
criminative on data categories. We first select a group of data
pairs of homogeneous neighbors and inhomogeneous neigh-
bors from the labeled training dataset, and then learn the
metric to minimize the EMD between the signatures from
the same category and maximize the EMD between the sig-
natures from different categories by encoding the triplet con-
straints via a hinge-loss functions. Instead of the gradient de-
scent method, we use the intrinsic algorithm for optimizing
the ground distance metric to retain the positive definiteness
of the metric. We note that with the updated EMD metric,
the ground distance matrix and the corresponding flow for
EMD will change accordingly. Under such circumstance, we
propose to optimize the EMD metric and the flow-networks
of EMD alternatively until convergence. The learned EMD
metric can be used to calculate new ground distance matrix
and update the flow-networks for EMD between each two
compared signatures. Then, with the new flow-networks, the
EMD metric can be optimized again. This process repeats
until convergence. The merit of our proposed method lies in
twofold. First, the EMD metric can update the ground dis-
tance matrix for each two signatures separately, which does
not require all signatures should have the same histogram
description. Second, the ground distance matrix is guaran-
teed to be non-negative. We have applied our EMD met-
ric learning method on two tasks, i.e., object classification
and document classification, and experiments are conducted
on two public benchmarks, including the National Taiwan
University (NTU) 3D model dataset (Chen et al. 2003) and
the Twitter Sentiment Corpus dataset (Sanders 2011). We
have also compared the proposed method with state-of-the-
art methods and the traditional EMD method, and the ex-
perimental results show better performance of the proposed
method.

The main contributions of this work can be summarized
as follows:

1. We propose an EMD metric learning algorithm targeting
on a more general setting, which can dynamically opti-
mize the ground distance matrix and yet lead to better
EMD distance measurement.

2. We have applied the EMD metric learning method on two
tasks, i.e., multi-view object classification and text classi-
fication, and evaluated the performance.

The rest of this paper is organized as follows. We first
introduce the related work on EMD applications. We then
provide our proposed EMD metric learning method and its
applications. Experiments and discussions are further pro-
vided and we finally conclude this paper.
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Figure 3: The framework of our proposed EMD metric learning algorithm.

Related work

In this section, we briefly review existing works on EMD
and its applications, such as gesture recognition, hyperspec-
tral image classification, document classification and face
recognition.

EMD was first introduced in (Rubner, Tomasi, and Guibas
2000), where it was used as a metric for image retrieval.
More specifically, each image implied a distribution of
points in the three-dimensional color space. Based on the
clustering results, the data distribution was transformed into
the signature description. In (Carley and Tomasi 2015),
EMD was employed for gesture recognition. For each hand
gesture, a silhouette signature containing segment informa-
tion was extracted. The optional and additional ground dis-
tances were defined between segments as a convex function
of the flows. Then, the signature dissimilarity was calculated
using EMD. In the task of high-resolution remote sensing
image classification (Zhang et al. 2013), each image was
translated to a set of visual codes. By sampling and clus-
tering the visual codes, a codebook was then generated and
arranged via a strategy named local nearest neighbor code-
book arrangement. For each image, the occurrence number
of each code was counted to form a histogram representa-
tion. Then, the comparison between each image pair can be
transformed to the EMD distance measurement, which was
used for hyperspectral image classification. In (Li, Wang,
and Zhang 2013), Li et al. proposed an EMD methodology
using Gaussian Mixture Models for image matching. In this
method, each image was modeled by a GMM, and the im-
age matching task was conducted by comparing the cor-
responding GMMs via sparse representation-based EMD.
Moreover, two kinds of ground distances between GMMs
were defined and learned based on theory of information ge-
ometry. In the task of document classification (Kusner et al.
2015), each nonstop word in a document was first embed-
ded into a feature vector using the word2vec network. Then,
EMD was employed to measure the dissimilarity between
two document by calculating the minimal cost that the em-
bedded words of one document need to travel to the embed-
ded words of another documents.

In (Wang and Guibas 2012), EMD was used to measure
the distance between two face representations. In this work,
the ground distance matrix was optimized using a supervised
EMD learning method with triple-constraints. In the exper-
iments of face verification, face descriptors were extracted
based on reference identities which were pre-selected from

the test faces. Although this work has shown better perfor-
mance with the updated ground distance matrix, it requires
that all the data are represented by fixed-size histograms,
which is not always feasible in practice.

EMD Metric Learning
In this section, we detailed introduce the proposed EMD
metric learning algorithm. Figure 3 illustrates the general
framework of our proposed method. Given a set of signa-
tures with labels, our objective is to learn an optimal metric
for ground distance matrix generation, which could be more
discriminative for classification. First, we select a group
of data pairs from homogeneous neighbors and inhomoge-
neous neighbors, which are used as the training data for met-
ric learning. Then, we conduct metric learning to minimize
the EMD between the signatures from the same category
and maximize the EMD between the signatures from dif-
ferent categories. As the learned EMD metric will lead to
new flow-networks and yet new EMD distances, we propose
an alternating optimization algorithm here to jointly update
the EMD metric and the flow-networks until convergence.
The final distance metric is used for EMD distance measure-
ment. In this section, we first introduce the formulation of
the EMD metric learning task, and then provide the training
data selection method and the solution to the optimization
task.

The Formulation of EMD Metric Learning

Given N signatures O = {O1,O2, . . . ,ON}, with Oi =
{Xi,wi}, i = 1, . . . , N , let Xi = (x1

i ,x
2
i , . . . ,x

ni
i ) de-

note the ni feature vectors of the i-th signature and wi =
(w1

i , w
2
i , . . . , w

ni
i ) denote the corresponding weight vector.

y = {y1, y2, . . . , yN} is the set of labels with respect to O.
To measure the distance between two signatures Oi and

Oj by EMD, the ground distance matrix is required to be
generated first. Here we use the Mahalanobis distance as the
ground distance measurement, and the squared distance be-
tween the s-th feature vector of Oi and the t-th feature vector
of Oj can be written as

d(xs
i ,x

t
j) = (xs

i − xt
j)

TA(xs
i − xt

j), (3)
where A is a global linear transformation of the underlying
space, i.e., the ground distance metric, which can be initialed
as I.

Given a set of training data with labels, the task here is to
learn an optimal distance metric A for ground distance ma-
trix generation, which should be more discriminative for the
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data categories. More specifically, the objective is to min-
imize the EMD distances between the signatures from the
same category and maximize the EMD distances between
the signatures from different categories. Given a set of sig-
nature triplets T = {(a, b, c) | ya = yb, ya �= yc}, usually
we need to guarantee that the distance between the signa-
tures from the same category should be smaller than that
from different categories. Here ya = yb indicates that a and
b are with the same labels and ya �= yc means that a and c
are with different labels. Here, the triplet constraint for EMD
metric can be written as

EMDA(Oa,Ob) < EMDA(Oa,Oc), (a, b, c) ∈ T . (4)

By encoding the triplet constraints via a hinge-loss func-
tion, the supervised EMD metric learning can be formulated
as

min
A

f(A)=
∑

(a,b,c)∈T

[μ+EMDA(Oa,Ob)−EMDA(Oa,Oc)]+,

(5)
where μ is the non-negative real number which specifies the
lower bound for the margin to fix the scale of the matrix A.

Besides the triplet constraint, in order to preserve the
topological structure of the data, we also need to guarantee
that the homogeneous neighbours from the same category
should be close. By jointly considering the topological reg-
ularizer and the triplet constraint, the formulation for EMD
metric learning can be rewritten as

min
A

f(A) =(1− λ)
∑

(a,b)∈S

EMDA(Oa,Ob)

+ λ
∑

(a,b,c)∈T

[μ+ EMDA(Oa,Ob)

− EMDA(Oa,Oc)]+,

(6)

where the set S is defined as all pairs of homogeneous
neighbors from the same category and 0 ≤ λ ≤ 1 is a
tradeoff parameter to balance the triplet loss term and the
topological regularizer.

Training Data Selection

We note that the number of all possible triplets in the training
dataset could be very large. In such case, the number of rel-
ative distance constraints will grow cubically with respect to
the size of the training set and thus leads to very high compu-
tational cost. Therefore, it is important to select a small set of
training data for metric learning to reduce the computational
cost. We just select kg nearest neighbors with the same la-
bel (namely target neighbors) and ki nearest neighbors with
different labels (namely imposters) for each signature. Then,
the overall amount of triplet constraints could be reduced to
kikgN .

However, we need to calculate the EMD distances be-
tween all pairs of signatures to find these target neighbors
and imposters. Consider that the time complexity of solv-
ing the standard EMD problem is O(n3 log n), it is very
expensive for training data selection. To circumvent this is-
sue, we use a cheap lower bound of the standard EMD to
approximately select the nearest neighbors without comput-
ing the exact EMD distance (Kusner et al. 2015), which is
much more efficient than the traditional EMD. Precisely,

given two signatures P = {P1, P2, . . . , Pn} and Q =
{Q1, Q2, . . . , Qm}, let D = {dij} and F = {fij} denote
the ground distance matrix and the EMD flow-networks re-
spectively. The relaxed EMD (REMD) is defined as

REMD(P,Q)=

⎧⎪⎪⎨
⎪⎪⎩

∑n
i=1 dij∗wPi∑n

i=1 wPi

n∑
i=1

wPi ≤
m∑

j=1

wQj∑m
j=1 di∗jwQj∑m

j=1 wQj

n∑
i=1

wPi >
m∑

j=1

wQj ,

(7)

where j∗ = argminj dij , i
∗ = argmini dij .

The intuition behind Eq. (7) is that if the total weight of
P is less than that of Q, then for each cluster in P , we move
all its mass to the closest cluster in Q, and vice versa.

It is straight-forward to show that the REMD(P,Q)
must lower bound EMD(P,Q). Now we assume that∑n

i=1 wPi
≤

∑m
j=1 wQj

, according the definition of EMD,
it follows

∑m
j=1 fij = wPi

. Hence

EMD(P,Q)=

∑n
i=1

∑m
j=1 dijfij∑n

i=1

∑m
j=1 fij

≥
∑n

i=1

∑m
j=1 dij∗fij∑n

i=1

∑m
j=1 fij

=

∑n
i=1 dij∗

∑m
j=1 fij∑n

i=1

∑m
j=1 fij

=

∑n
i=1 dij∗wPi∑n

i=1 wPi

=REMD(P,Q).

(8)

Evidently, the conclusion remains true in the other case.
To calculate the bound, we just need to calculate the pairwise
distance between clusters and conduct a nearest neighbor
search, which has a time complexity of O(n2) and allows
us to speed up the data selection process considerably.

With the pairwise REMD distances among all training
data, we can select a subset of triplets from the original train-
ing dataset for metric learning.

Optimization

With the selected training data, here we optimize the ob-
jective function in Eq. (6) to learn the EMD metric A. We
note that once the EMD metric A is updated, the ground
distance matrix and the corresponding flow-networks F for
EMD will change accordingly. Then, we need to re-calculate
the EMD distances with respect to the new flow-networks.
Under such circumstance, the optimization should target on
both the EMD metric A and the associated flow-networks
F . By substituting Eq. (2) into Eq. (6), the objective func-
tion is further written as

minA,Ff(A,F) = (1 − λ)
∑

(a,b)∈S EMDA(Oa,Ob)

+λ
∑

(a,b,c)∈T [μ + EMDA(Oa,Ob) − EMDA(Oa,Oc)]+,

=(1−λ)
∑

(a,b)∈S

(∑na
i=1

∑nb
j=1 Fa,b(i, j)d(x

i
a,x

j
b)
)

+λ
∑

(a,b,c)∈T

[
μ+

(∑na
i=1

∑nb
j=1 Fa,b(i, j)d(x

i
a,x

j
b)
)

−
(∑na

i=1

∑nc
j=1 Fa,c(i, j)d(x

i
a,x

j
c)
)]

+

.

(9)

When F is fixed, the optimization task can be transformed
into the problem of Mahalanobis distance metric learning.
On the other hand, If A is fixed, the problem can be splited
into |S|+ 2|T | independent traditional EMD sub-problems,
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which can be solved by the Hungarian algorithm. Therefore,
the formulation is bi-convex with respect to A and F jointly.
To solve the above optimization task, we propose to opti-
mize the EMD metric A and the flow-networks F of EMD
alternatively until convergence.

Given the flow-network F for the selected training data,
the learning task can be further rewritten in the matrix form
as

min
A

f(A)=(1−λ)
∑

(a,b)∈S

tr(GT
a,bA)

+λ
∑

(a,b,c)∈T

[μ+tr(GT
a,bA)−tr(GT

a,cA)]+,
(10)

where

Ga,b = G1
a,b −G0

a,b,

G1
a,b = Xadiag(Fa,be)X

T
a +Xbdiag(eTFa,b)X

T
b ,

G0
a,b = XaFa,bX

T
b +XbF

T
a,bX

T
a .

(11)

The gradient of Eq. (10) with respect to A is calculated
by

∇f(A)=(1−λ)
∑

(a,b)∈S

Ga,b+λ
∑

(a,b,c)∈T ′

(Ga,b−Ga,c),

T ′ = T − {(a, b, c) | tr(GT
a,cA)− tr(GT

a,bA) > μ}.
(12)

To retain the positive definiteness of A, a common used
optimization techniques is the projected gradient method,
which applies gradient descent followed by a projection onto
the positive-definite cone (Han et al. 2017). However, in re-
cent years, several intrinsical interactive methods for opti-
mization on matrix manifolds have achieved better perfor-
mance and convergence (Arsigny et al. 2007). This kind of
methods preserves the manifold structure of positive-definite
matrix group, i.e., let the variable A still belong to the corre-
sponding manifolds in each iteration. Therefore, we use the
intrinsic algorithm (Ying et al. 2017) to optimize A.

The set of symmetric positive-definite matrices is a
smooth Riemannian manifold, denoted by M. The tangent
space of M at the point P is the vector space of derivations
at point P , denoted by TPM. Given two points on the mani-
fold, the locally distance-minimizing curve connecting them
is termed the geodesic. The geodesic on the manifold going
through P with tangent vector Z is given by

Γ(P,Z)(α) = P
1
2 exp(αP− 1

2ZP− 1
2 )P

1
2 . (13)

Therefore, we update At to At+1 on the positive-definite
matrix group by computing:

At+1 = A
1
2
t exp(αA

− 1
2

t ∇f(At)A
− 1

2
t )A

1
2
t , (14)

where α is the optimal step size at each iteration.
Note that the tangent vector should be symmetric in

Eq.(13), but actually the gradient of the objective function
in Eq.(12) is not symmetric, which further leads At+1 to
be nonsymmetric. To circumvent this issue, we add a sym-
metrization operator on the gradient. That is, we have

At+1 = A
1
2
t exp(αA

− 1
2

t Sym[∇f(At)]A
− 1

2
t )A

1
2
t , (15)

Algorithm 1 EMD Metric Learning
Input: Training data set O, maximal iteration of EMD met-

ric learning kout, and parameters kg , ki, λ and μ
Output: EMD metric A

1: Initialize A = I.
2: Calculate the REMD between each pair of signatures.
3: Construct the set S and T by selecting ki target neigh-

bors and kg imposters for each training instance.
4: Initialize the learning rate α and maximal iteration kin

of EMD metric learning.
5: for each s ∈ [1, kout] do
6: Fix A, solve for the EMD flow-networks F .
7: Fix F .
8: for each t ∈ [1, kin] do
9: Compute the gradient ∇f(At) by Eq.(12).

10: Update A by Eq.(15).
11: return A

where Sym[∇f(At)] =
∇f(At)+∇f(At)

T

2 .
Then, we can update the EMD metric A using the gradi-

ent descent method. With the new A, we can further calcu-
late the flow-networks F for all the selected training data.
In this way, we can alternatively update A and the flow F
until convergence. The newly generated EMD metric A can
be used for further EMD distance measurement. The overall
workflow of the proposed EMD metric learning method is
shown in Algorithm 1.

Applications of EMD Metric Learning

In this section, we apply our proposed EMD metric learn-
ing method to two tasks, i.e., multi-view object classification
and document classification.

Multi-View Object Classification. In this application,
each object is represented by a group of views taken from
the cameras with different angles. For each view of the ob-
ject, a Convolutional Neural Network (CNN) feature (Nie
et al. 2017) is extracted for description due to its superior
performance on the task of object retrieval and recognition.
It is noteworthy that our framework has no specific require-
ments on the feature extraction, which indicates that other
features can be also used here and the CNN feature is just an
example. After feature extraction, considering that multiple
views may contain redundancy, we conduct view clustering
following the settings in (Gao et al. 2012) to generate view
clusters. For each object, a group of representative views are
selected from these clusters, associated with corresponding
weights based on the cluster size. In this way, each object
can be represented by a signature of representative views and
EMD can be used to measure the distance between objects
for classification. Our EMD metric learning method can be
employed to optimize the EMD distance between objects.

Document Classification. In this application, each doc-
ument is represented by a bag-of-words (BOW) feature and
can be modeled as a signature (Kusner et al. 2015). To de-
scribe the document, the word2vec (Mikolov et al. 2013)
model, a three-layered neural network, is used to generate a
feature representation for each nonstop word. Then, the nor-
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malized bag-of-words (nBOW) vector is extracted from each
document, reflecting the frequency (weight) of each nonstop
word in this document. In this way, we construct the sig-
nature description for each document and the EMD metric
learning method can be used to learn an optimal EMD dis-
tance for document classification.

Experiments

Testing Datasets and Experimental Settings

To validate the proposed EMD metric learning method, we
have conducted experiments on two datasets, i.e.., the Na-
tional Taiwan University 3D model dataset (NTU) (Chen et
al. 2003) and the Twitter Sentiment Corpus dataset (TWIT-
TER) (Sanders 2011). The NTU dataset contains 401 objects
from 16 categories, including bomb, bottle, car, chair, cup,
door, guitar, gun, map, plane, starship, stick, sword, table,
tank, truck. In this dataset, each object contains 60 views,
and the 4096-d CNN feature is extracted for each view. To
reduce the computational cost during the metric learning
process, we further apply PCA to reduce the feature dimen-
sion to 300. The TWITTER dataset contains 2176 tweets
labeled with three types of sentiments, including ‘positive’,
‘negative’, and ‘neutral’. In this dataset, each document is
represented by a 300-d feature, and the average number of
unique words per document is 9.9.

We randomly select 20%, 30%, 40% and 50% of all data
per each category as labeled training data and all the rest
are used for testing. The dataset splitting process repeats 10
times and the average accuracy of classification results is
used for evaluation. We empirically set the parameter μ in
Eq. (6) to 0.1 on both datasets. The parameter λ is set to 0.5
on the NTU dataset, and 0.2 on the TWITTER dataset.

In experiments, the following methods are used for com-
parison:

1. Manifold Discriminant Analysis (MDA) (Wang and Chen
2009). In MDA, an embedding space is learned to maxi-
mize manifold margin between two compared manifolds
by modeling each image set as a manifold.

2. Covariance Discriminative Learning (CDL) (Wang et al.
2012). In CDL, the natural second-order statistic is em-
ployed to model the image set and the distance is mea-
sured using the linear discriminant analysis.

3. Covariance Discriminative Learning with Partial Least
Squares (CDL PLS) (Wang et al. 2012). CDL PLS is im-
proved from the CDL to conduct the partial least squares
through means of latent variables.

4. Log-Euclidean Metric Learning (LEML) (Huang et al.
2015b). In LEML, a Mahalanobis metric is learned to
make the matrix logarithms changed to a discriminative
tangent space from original space.

5. Projection Metric Learning (PML) (Huang et al. 2015a).
In PML, a Fisher LDA-like framework is introduced to
learn a Mahalanobis-like matrix directly on Grassmann
manifold, which maps the original Grassmann manifold
to a lower-dimensional, more discriminative one.

6. EMD, i.e., the traditional EMD method.

Figure 4: Experimental comparison on the NTU dataset.

Figure 5: Experimental comparison on the TWITTER
dataset.

7. EMD metric learning (EMD-M), i.e., the proposed
method.
We note that in the TWITTER dataset, MDA and LEML

cannot be performed due to the number of words per doc-
ument is too small and there may exists duplicate words in
one document, which results in some mistakes in the train-
ing process. Therefore, we compare all 7 methods in the
NTU datasets while only compare 5 methods in the TWI-
ITER dataset.

Experimental results

Experimental results on two datasets are demonstrated in
Figure 4 and Figure 5. As shown in these results, we can
have the following observations:

1. Compared with the state-of-the-art methods, the proposed
EMD-M method achieves higher classification perfor-
mance on both datasets. For example, EMD-M achieves
the classification accuracy of 78.54%, 82.26%, 84.42%
and 85.25% when 20%, 30%, 40% and 50% data are
used for training on the NTU dataset. On the TWITTER
dataset, EMD-M achieves gains of 5.29%, 3.98% and
2.74% compared with PML, CDL, and CDL LDA when
50% data are used for training. Similar results can be ob-
served in other experiments.

2. Compared with traditional EMD method, the proposed
EMD-M achieves better performance. For example,
EMD-M obtains gains of 5.48%, 6.83%, 8.32% and 8.5%
on the TWITTER dataset when 20%, 30%, 40%, and 50%
data are used for training, compared with EMD.
The better performance of our proposed method can be

dedicated to the following reasons. We note that although
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EMD is effective on many-to-many matching, it is limited
on the robustness of data comparison. We can observe that
EMD works better on the NTU dataset while performs worse
on the TWITTER dataset. To overcome this limitation, our
proposed method is able to learn an optimal EMD metric and
yet lead to better ground distance matrix for EMD distance
calculation. In this way, the EMD-M method can be more
discriminative using the training data and thus achieve much
better performance compared with EMD.

On convergence

(a) the NTU Dataset (b) the TWITTER Dataset

Figure 6: The variation of objective function with respect to
the iteration of our learning method.

In our proposed EMD-M method, the EMD metric A and
the flow-network F are alternatively updated. Therefore, the
convergence speed is important for the learning process.
Here we further investigate the change of the cost values
of the objective function with respect to the iterations. The
data is shown in Figure 6. As shown in these results, the
objective function can reduce very fast and it will converge
after about 20 iterations. These results can demonstrate that
our proposed method can achieve the optimal performance
efficiently.

On parameters

In our framework, there are two types of key parameters,
including the selected number of training data and λ in Eq.
(6). Here we investigate the influence of these parameters on
the performance.

For the training data selection, there are parameters for the
number of selected target neighbors and imposters for each
signature, i.e., kg and ki. These parameters control the size
of training data. Usually, the more training data and the cor-
responding constraints we use, the better the performance of
resulting metric is. Here we fix kg as 3 and vary ki in the
range of [2, 16] on the NTU dataset, and [1, 8] on the TWIT-
TER dataset, with 30% training data. Experimental results
are shown in Figure 7. As shown in these results, we can no-
tice that the performance is steady when ki is large enough,
such as above 10 on the NTU dataset. An interesting obser-
vation is that on the TWITTER dataset, we need fewer im-
posters to achieve the stable performance than on the NTU
dataset. It illustrates that the more categories there are, the
more imposters we need to select for each training instance.

Another important parameter is λ, which controls the
weights of the loss term and the regularizer. We vary λ from
0.3 to 0.7 on the NTU dataset, while from 0 to 0.4 on the
TWITTER dataset. The experimental results are shown in

(a) the NTU Dataset (b) the TWITTER Dataset

Figure 7: The performance evaluation by varying the sam-
pling rates with 30% data used for training.

(a) the NTU Dataset (b) the TWITTER Dataset

Figure 8: The performance evaluation by varying the param-
eter λ with 30% data used for training.

Figure 8. We can notice that the proposed method can also
achieve steady performance when λ is round 0.5 and 0.2
on the two datasets respectively, and show relatively poor
performance when λ is overly small or large, which is con-
sistent with the impact of λ in the presented model. Too
small values of λ eliminate the influence of local correla-
tions, while overly large values overemphasize the topolog-
ical structure of the data.

Conclusion

In this paper, we propose an EMD metric learning algorithm.
The proposed method is able to learn an optimal distance
metric and yet lead a better ground distance matrix for EMD
distance calculation between two signatures. In the learn-
ing stage, we alternatively update the EMD metric and flow-
network for EMD distance. We have applied it on the tasks
of multi-view object classification and document classifica-
tion. We have conducted experiments on two datasets, and
the comparison with the state-of-the-art methods demon-
strates the effectiveness of the proposed method. We also
compare our proposed EMD-M method with the traditional
EMD method. Experimental results show about 5% gains
for our EMD-M method. The framework can also be further
applied to many other tasks, such as face verification and
object recognition.
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