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Abstract

Embedding methods have shown promising performance in
multi-label prediction, as they can discover the dependency
of labels. Most embedding methods cannot well align the
input and output, which leads to degradation in prediction
performance. Besides, they suffer from expensive prediction
computational costs when applied to large-scale datasets. To
address the above issues, this paper proposes a Co-Hashing
(CoH) method by formulating multi-label learning from the
perspective of cross-view learning. CoH first regards the in-
put and output as two views, and then aims to learn a common
latent hamming space, where input and output pairs are com-
pressed into compact binary embeddings. CoH enjoys two
key benefits: 1) the input and output can be well aligned, and
their correlations are explored; 2) the prediction is very effi-
cient using fast cross-view kNN search in the hamming space.
Moreover, we provide the generalization error bound for our
method. Extensive experiments on eight real-world datasets
demonstrate the superiority of the proposed CoH over the
state-of-the-art methods in terms of both prediction accuracy
and efficiency.

Introduction

In multi-label learning (Zhang and Zhou 2014; Liu, Tsang,
and Müller 2017), each instance is represented by a set of
labels. For example, a document can be associated with a
range of topics, such as sports, finance, and education; or
an image may be tagged with both beach and tree. The task
of multi-label learning is to learn a function that can predict
the proper label sets for unseen instances. Nowadays it is
becoming more and more relevant to a number of applica-
tions, ranging from document classification to gene function
prediction and automatic image annotation.

Much of the literature (Chen and Lin 2012; Guo and
Schuurmans 2013; Zhang and Zhou 2014) has shown that
multi-label learning methods usually achieve better predic-
tion performance by explicitly capturing label dependency.
To this end, (Hsu et al. 2009) are the first to propose embed-
ding the label vectors into a low-dimensional subspace us-
ing random projection, and then building a regression model
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in the embedding space. To learn better embeddings, vari-
ous embedding methods have since been developed, such as
canonical correlation analysis (CCA) (Zhang and Schneider
2011), maximum margin output coding (MMOC) (Zhang
and Schneider 2012). Such methods have achieved the im-
pressive performance on small datasets. However, their de-
coding schemes often require solving a quadratic program-
ming (QP) problem in a combinatorial space, which is very
computationally expensive.

To improve efficiency, large margin kNN (LM-kNN) (Liu
and Tsang 2015) for fast multi-label prediction has been re-
cently proposed. LM-kNN learns a distance metric to dis-
cover the label dependency so that instances with very dif-
ferent multiple labels are moved further away. More impor-
tantly, LM-kNN is the first approach to employ k-nearest
neighbor (kNN) search in the embedding space for predic-
tion and it avoids an expensive decoding procedure. An-
other state-of-the-art method that also uses kNN search for
fast prediction is the recently proposed sparse local embed-
ding for extreme classification (SLEEC) (Bhatia et al. 2015).
SLEEC first seeks the embedding of labels by preserving the
pairwise distances between a few nearest label neighbors,
and then learns the regressor in the embedding space. A gap
usually exists between the input and output in the multi-label
setting, and the performance of kNN decision rule for multi-
label prediction significantly depends on the alignment be-
tween the input and output. However, the above two meth-
ods fail to explore this correlation, thus their learned em-
beddings are not well aligned, leading to degradation in pre-
diction performance. In addition, their prediction efficiency
relies on the speed of kNN search, which is slow for large-
scale application. How to further improve the prediction ef-
ficiency also remains less explored.

To address the aforementioned issues, this paper regards
the input and output as two distinct views, and provides
a new insight into multi-label learning from a cross-view
perspective (Quadrianto and Lampert 2011; Dhillon, Foster,
and Ungar 2011; Guo and Xiao 2012; Shen et al. 2017b),
which aims to integrate the complementary advantages of
the two views to accomplish multi-label prediction tasks.
Specifically, we propose Co-Hashing (CoH) to learn a com-
mon latent hamming space, where the input and output
are jointly embedded into compact binary codes and well
aligned. In the latent subspace, the correlation between in-
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put and output is built, and knowledge can be better trans-
ferred. In prediction phrase, we directly search the kNN la-
bel embeddings of any testing instance in the constructed la-
tent subspace. The kNN cross-view label embeddings search
benefits from the view alignment, leading to better multi-
label prediction performance. CoH is also inspired by the
success of hashing in large-scale approximate nearest neigh-
bor search (Wang et al. 2016), which supports to improve
prediction efficiency by accelerating kNN search in the
learned hamming subspace. Extensive experiments on eight
real-world datasets demonstrate the proposed CoH outper-
forms the state-of-the-art methods in terms of both predic-
tion accuracy and efficiency.

Related Work
Multi-label Learning Embedding methods have shown
promising results for multi-label learning, especially for
many label case. They aim to project label vector into a
low-dimensional subspace, and then perform the regression
in the embedding subspace. Until now a number of embed-
ding methods have been proposed via various compression
and decompression techniques (Hsu et al. 2009; Zhang and
Schneider 2011; Tai and Lin 2012; Zhang and Schneider
2012). To name a few, (Tai and Lin 2012) proposed the prin-
cipal label space transformation (PLST), which uses princi-
pal component analysis (PCA) to compress the label vector.
Based on canonical correlation analysis (CCA), (Zhang and
Schneider 2011) took both feature and label into consider-
ation. After that, maximum margin output coding (MMOC)
(Zhang and Schneider 2012) was developed to learn an out-
put coding. Recently, sparse local embedding for extreme
classification (SLEEC) is proposed to seek the embedding
of labels by preserving the pairwise distances between a few
nearest label neighbors. Generally speaking, these methods
cannot well establish the alignment between the input and
output, which influences the performance of the kNN search
for multi-label prediction.
Cross-view Learning Cross-view learning (Guo and Xiao
2012) aims to analyze the relationships among different
views, and tries to bridge the gap between these views. Its
basic idea is to seek a common latent subspace, where em-
beddings from different views are well aligned. As a result,
cross-view learning allows features from different views
to be matched in the latent subspace. Cross-view learning
has been successfully applied to many applications, such as
image-text retrieval, cross language text classification, per-
son re-identification.

In this work, we try to consider multi-label learning from
the perspective of cross-view learning. Specifically, we as-
sume that the input and output share the common subspace,
which is reflective of the latent semantics. The common sub-
space establishes the correlations between the input and out-
put, thus label search and prediction in this subspace is sig-
nificant. To achieve our goal, we formulate multi-label learn-
ing as a model that learns the semantic latent embeddings
shared by both the input and output.
Hash Code Learning Hashing technique (Wang et al.
2016) has become a widely-studied solution to approxi-
mate nearest neighbor (ANN) search for its great gains in

both storage and computation among massive data. The
basic idea of hashing (Weiss, Torralba, and Fergus 2009;
Gong et al. 2013; Shen et al. 2015; 2017a; 2017b) is to
map high-dimensional data into a low-dimensional discrete
code space called Hamming space, while preserving simi-
larity structure in the original space. Accordingly, each data
point is represented by a short code called hash code con-
sisting of a sequence of bits.

Some supervised hashing methods (Gong et al. 2013;
Zhao et al. 2015; Lai et al. 2016) have been proposed in
the multi-label setting. However, the proposed CoH is differ-
ent from them, which are only developed for retrieval, and
cannot be applied for multi-label learning. The motivation
of developing CoH is to achieve fast multi-label prediction
using hashing technique. Benefiting from the efficient Ham-
ming distance computation, CoH can improve efficiency of
kNN search. To our knowledge, this is the first work apply-
ing hashing technique to accelerate multi-label prediction.

Co-Hashing

Let {(x(i),y(i))}ni=1 be the training dataset, x(i) ∈
X ⊆ R

p be an input (instance) vector, y(i) ∈ V ⊆
{0, 1}q be the corresponding output (label) vector, and
let n denote the number of training instances. Let X =[
x(1),x(2), . . . ,x(n)

] ∈ R
p×n be the instance matrix and

Y =
[
y(1),y(2), . . . ,y(n)

] ∈ R
q×n be the label matrix. The

goal of multi-label learning is to learn a multi-label classifier
f : Rp → {0, 1}q that accurately predicts the label vector
for any unseen instance.

Formulation

Inspired by the success in cross-view learning (Quadrianto
and Lampert 2011; Dhillon, Foster, and Ungar 2011; Guo
and Xiao 2012; Shen et al. 2017b), we consider its ben-
efits for multi-label learning. In cross-view learning, it is
commonly known that data from the same objects de-
scribed in different views share a certain common sub-
space (Guo and Xiao 2012). Accordingly, we assume that
a low-dimensional common latent hamming space B exists
for the input and output, where the semantic embeddings
B =

[
b(1), . . . ,b(n)

] ∈ {−1, 1}d×n appropriately repre-
sent the input and output training pairs, and b(i) ∈ {−1, 1}d
denotes the binary embedding of the i-th training pair. The
binary constraint on B is to achieve fast multi-label predic-
tion, benefiting from the efficient computation in Hamming
space (Wang et al. 2016). To achieve this goal, we derive the
objective function of the proposed CoH as follows

min
U,V,B

‖U�X−B‖2F + ‖V�Y −B‖2F + αTr
(
BLB�)

s.t. B ∈ {−1, 1}d×n,BB� = nId (1)

where the constraint BB� = nId is introduced to make d
bits mutually uncorrelated, such that the redundancy among
these bits can be minimized; L = In − S ∈ R

n×n is the
normalized graph Laplacian (Belkin, Niyogi, and Sindhwani
2006). In this work, the normalized similarity graph is de-
fined as S = Y�Λ−1Y, where Λ = diag

(
Y�1

) ∈ R
q×q is
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used to normalize each row. In (1), the first two terms model
the mapping loss; the last manifold regularization term is
employed to preserve the semantic similarity structure be-
tween the embeddings in the hamming space.

Generally, (1) is difficult to solve because of the binary
constraint. We first define a set Ω = {Z ∈ R

d×n|ZZ� =
nId}, then provide a new formulation that softens the or-
thogonal constraint in (1) as

min
U,V,B

‖U�X−B‖2F + ‖V�Y −B‖2F
+ αTr

(
BLB�)

+
ρ

2
dist2 (B,Ω) (2)

s.t. B ∈ {−1, 1}d×n

where dist (B,Ω) = minZ∈Ω ‖B − Z‖F measures the dis-
tance from B to the set Ω, and ρ ≥ 0 is a regularization
parameter. In (2), we allow a certain discrepancy between B
and Ω, such that (2) can be more flexible than (1). Due to the
fact that Tr

(
B�B

)
= Tr

(
Z�Z

)
= nd, (2) can be further

transformed to the following problem

min
U,V,B,Z

‖U�X−B‖2F + ‖V�Y −B‖2F
+ αTr

(
BLB�)− ρTr

(
B�Z

)
(3)

s.t. B ∈ {−1, 1}d×n,Z ∈ R
d×n,ZZ� = nId

In the next section, we propose a computationally tractable
optimization algorithm to solve (3).

Optimization

In essence, (3) is a nonlinear mixed-integer optimization
problem involving the discrete constraint on B and non-
convex orthogonal constraint on Z, which is generally NP-
hard. We propose a tractable alternating algorithm to itera-
tively optimize each variable. The flowchart of CoH is de-
scribed by Algorithm 1.
Update U, V For a given B, (3) is reduced to a least
square minimization problem with respect to U and V.
We can obtain the closed-form solution of U as U =(
XX� + εIp

)−1
XB�, where ε is a small non-negative pa-

rameter to avoid overfitting, and we simply set ε = 0.001.
The solution of V can be similarly obtained.
Update B By dropping some irrelevant terms to B, we
have

max
B

f(B) = Tr
(
BSB�)

(4)

+
1

α
Tr
(
2(U�X+V�Y)B� + ρZB�

)

s.t. B ∈ {−1, 1}d×n

In this work, (4) can be solved via the majorization method,
which is widely used in many statistic areas. The main idea
of majorization methodology is to iteratively optimize a sur-
rogate function. In specific, we iteratively optimize a local
function f̂i(B) that linearizes f(B) at the point B(i), and
employ f̂i(B) as a surrogate of f(B). Given B(i), the next

Algorithm 1 Co-Hashing (CoH)

Input: training dataset: {(x(i),y(i))}ni=1, embedding di-
mensionality: d, regularization parameter: α.
Output: U,V,B.

1: Initialize Z ∈ R
n×d by performing PCA on Y.

2: Initialize B = sign (Z).
3: repeat
4: Compute the closed-form solution of U as U =(

XX� + εIp
)−1

XB�;
5: Compute the closed-form solution of V as V =(

YY� + εIq
)−1

YB�;
6: Update B via (6);
7: Compute SVD decomposition of B, B = PΣQ�;
8: Update Z as Z =

√
nPQ�;

9: until ε-optimal

discrete point B(i+1) can be derived by optimizing the fol-
lowing objective function

max
B

f̂i(B) = f(B(i)) + 〈∇f(B(i)),B−B(i)〉 (5)

s.t. B ∈ {−1, 1}d×n

where ∇f(B(i)) = 2B(i)S+ 1
α

(
2(U�X+V�Y) + ρZ

)
.

Note that ∇f(B(i)) may contain many entries, thus multiple
solutions for B(i+1) may exist. To avoid this ambiguity, we

introduce the function C (x, y) =

{
x, x �= 0

y, x = 0
. Then the

updating rule for B(i+1) can be defined as

B(i+1) = sign
(
C(∇f(B(i)),B(i))

)
(6)

where sign(·) is the sign function, C is applied in an element-
wise manner.
Update Z The sub-problem with respect to Z is defined as
follows

max
Z

Tr
(
B�Z

)
s.t. Z�Z = nId (7)

Although there is a non-convex constraint on Z, we for-
tunately show that (7) admits a closed-form solution. The
singular value decomposition (SVD) of B is defined as B =
PΣQ� =

∑r
k=1 σkpkq

�
k , where r is the rank of B, σ1, · · · ,

σr are the positive singular values, and P = [p1, · · · ,pr],
and Q = [q1, · · · ,qr] contain the left and right singular
vectors, respectively. The closed-form solution of (7) can be
characterized by the following theorem.

Theorem 1. Z =
√
nPQ� is an optimal solution to opti-

mization problem in (7).

Proof. (7) is the classic Orthogonal Procrustes problem. The
proof of this theorem can be adapted from (Schönemann
1966).
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Convergence Analysis

We theoretically analyze the convergence of CoH. The con-
vergence of B sub-problem in CoH is presented as follows.

Lemma 1. For the B sub-problem,
{
B(i)

}
is the sequence

of binary codes generated by the discrete optimization, i.e.,
(6), then

{
f
(
B(i)

)}
converges.

Proof. Since S is positive semidefinite, f is a convex func-
tion. Then, we have f(B) ≥ f̂i(B). Besides, f̂i(B(i+1)) ≥
f̂i(B

(i)) and f̂i(B
(i)) = f̂(B(i)) hold. Based on them, we

have f(B(i+1)) ≥ f(B(i)), and f(B(i)) monotonically in-
creases the objective function value of (4). Together with the
fact f(B(i)) is upper bounded, it turns out that the sequence{
f(B(i))

}
converges.

Based on the above lemma, we further have the following
convergence theorem of CoH.
Theorem 2. The alternate updating rules in Algorithm 1
monotonically decrease the objective function value of CoH,
i.e., (3) in each iteration, and Algorithm 1 will converge to a
local minimum of CoH.

Proof. Let {U�,V�,B�,Z�} be the solution in the �-
th iteration generated by Algorithm 1, and �� =
�(U�,V�,B�,Z�) be the corresponding objective function
value. In Algorithm 1, at the (�+ 1)-th iteration, since each
sub-problem is solved exactly, we have

� (U�,V�,B�,Z�) ≥ � (U�+1,V�,B�,Z�)

≥ � (U�+1,V�+1,B�,Z�) ≥ � (U�+1,V�+1,B�+1,Z�)

≥ � (U�+1,V�+1,B�+1,Z�+1) (8)

Thus, the sequence {��} is monotonically decreasing. In
addition, the objective function �(U,V,B,Z) is lower-
bounded by zero. Therefore, Algorithm 1 is guaranteed to
converge to a local minimum of CoH.

In addition, our empirical study shows that CoH quickly
converges within around 30 iterations.

Computational Complexity Analysis

For the training part of CoH, the updates of U and V re-
quire O(p3 + p2n), and O(q3 + q2n), respectively. Updat-
ing B requires O (dpn+ dqn). Besides, updating Z takes
O (

d2n+ rdn
)
. Given n � p, q > d, the total training

computational cost of CoH is O((p2 + q2)n). In the testing
stage, CoH requires O(pd) to generate the binary embed-
ding, and then it takes O(ζn) to predict the d-bit code, where
O(ζ) denotes the computational complexity for d-bit calcu-
lations, and is obviously more efficient than d real-valued
distance calculations.

Multi-Label Prediction via Cross-view Search

This section transforms multi-label prediction into a cross-
view search problem. We first obtain its semantic binary
embedding, i.e., sign(U�x) for a testing instance x, and
then perform cross-view kNN search among the labels in
the constructed latent hamming space. The hamming dis-
tance between x and the label of the i-th training instance

Algorithm 2 Testing Algorithm
Input: Testing instance: x, number of NN: k, mappings of
the input and output: U, V.
Output: y.

1: Compute the embedding of x, b = sign(U�x);
2: Compute the embedding for training labels, B(l) =

sign(V�Y); or directly use the embedding in training
stage, B(l) = B;

3: Obtain the set Nx by finding the k nearest neighbors of
x in B(l);

4: Obtain the prediction y by voting from Nx.

can be computed as ‖sign(U�x) − sign(V�y(i))‖2F . In
practice, the distance could alternatively be computed as
‖sign(U�x) − b(i)‖2F . The prediction scheme is detailed
in Algorithm 2.

Generalization Error Bound

CoH is characterized by a distribution D on the space
of input and output X × {0, 1}q , where X ⊆ R

p. Let
a sample {(x(j),y(j))} be drawn i.i.d. from the distri-
bution D, where y(j) ∈ {0, 1}q (j ∈ {1, . . . , n}) is
the ground-truth label vector. Assume n samples D =
{(x(1),y(1)), · · · , (x(n),y(n))} be drawn i.i.d. n times from
the distribution D, which is denoted by D ∼ Dn. Let
fD
knni

(x) represent the prediction of the i-th label for input x
using CoH+kNN, which is trained on D. The performance
of CoH+kNN: (fD

knn1
(·), · · · , fD

knnq
(·)) : X → {0, 1}q is

measured in terms of its generalization error, which is its
expected loss on a new example (x,y) drawn according to
D

ED∼Dn,(x,y)∼D
( q∑

i=1

�(yi, f
D
knni

(x))
)

(9)

where yi denotes the i-th label and �(yi, f
D
knni

(x)) repre-
sents the loss function of the i-th label. We then define the
following loss function for analysis

�(yi, f
D
knni

(x)) = P (yi �= fD
knni

(x)) (10)

For i-th label, we further define the function as follows

νij(x) = P (yi = j|x), j ∈ {0, 1} (11)

The Bayes optimal classifier b∗ for i-th label is defined as

b∗i (x) = arg max
j∈{0,1}

νij(x) (12)

Before deriving our results, we first present several impor-
tant definitions and theorems.
Definition 1 (Covering Numbers, (Shawe-Taylor et al.
1998)). Let (X , d) be a metric space, A be a subset of X
and ε > 0. A set B ⊆ X is an ε-cover for A, if for ev-
ery a ∈ A, there exists b ∈ B such that d(a, b) < ε. The
ε-covering number of A, N (ε,A, d), is the minimal cardi-
nality of an ε-cover for A (if there is no such finite cover
then it is defined as ∞).
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Table 1: Statistics of eight real-world datasets.

Datasets #Dataset #Training #Testing #Features #Labels #Card-Label Domain
CAL500 502 452 50 68 174 26.044 music

COREL5K 5,000 4,500 500 499 374 3.522 images
DELICIOUS 16,105 14,495 1,610 500 983 19.020 text

EUR-LEX 19,348 17,413 1,935 5,000 3,993 1.292 text
NUS-WIDE-V 269,648 161,789 107,859 128 81 1.869 images
NUS-WIDE-B 269,648 161,789 107,859 500 81 1.869 images

WIKI10 20,762 14,146 6,616 101,938 30,938 18.64 text
DELICIOUS-L 296,701 196,606 100,095 782,585 205,443 75.54 text

Definition 2 (Doubling Dimension, (Krauthgamer and Lee
2004; Kontorovich and Weiss 2014)). Let (X , d) be a metric
space, and let λ̄ be the smallest value such that every ball in
X can be covered by λ̄ balls of half the radius. The doubling
dimension of X is defined as : ddim(X ) = log2(λ̄).
Theorem 3 ((Krauthgamer and Lee 2004; Kontorovich and
Weiss 2014)). Let (X , d) be a metric space. The diameter of
X is defined as diam(X ) = sup

x,x′∈X
d(x,x′). The ε-covering

number of X , N (ε,X , d), is bounded by

N (ε,X , d) ≤
(2diam(X )

ε

)ddim(X )
(13)

We provide the following generalization error bound for
CoH+1NN:
Theorem 4. Given a metric space (X , dpro), assume func-
tion νi : X → {0, 1} is Lipschitz with constant L with
respect to the sup-norm for each label. Suppose X has
a finite doubling dimension: ddim(X ) = D < ∞ and
diam(X ) = 1. Let D = {(x(1),y(1)), · · · , (x(n),y(n))}
and (x,y) be drawn i.i.d. from the distribution D. Then, we
have

ED∼Dn,(x,y)∼D
( q∑

i=1

P (yi �= fD
1nni

(x))
)
≤

q∑
i=1

2P (b∗i (x) �= yi) +
3qL(||U||F + ||V||F )

n1/(D+1)

(14)

Inspired by Theorem 19.5 in (Shalev-Shwartz and Ben-
David 2014), we derive the following lemma for CoH+kNN:
Lemma 2. Given metric space (X , dpro), assume function
νi : X → {0, 1} is Lipschitz with constant L with respect to
the sup-norm for each label. Suppose X has a finite doubling
dimension: ddim(X ) = D < ∞ and diam(X ) = 1. Let
D = {(x(1),y(1)), · · · , (x(n),y(n))} and (x,y) be drawn
i.i.d. from the distribution D. Then, we have

ED∼Dn,(x,y)∼D
( q∑

i=1

P (yi �= fD
knni

(x))
)
≤

q∑
i=1

(1 +
√
8/k)P (b∗i (x) �= yi)

+
q(6L(||U||F + ||V||F ) + k)

n1/(D+1)

(15)

The following lemma reveals important statistical proper-
ties of CoH+1NN and CoH+kNN.
Corollary 1. As n goes to infinity, the errors of CoH+1NN
and CoH+kNN converge to the sum of twice the Bayes er-
ror and 1 +

√
8/k times the Bayes error over the labels,

respectively.

Experiments

In this section, we evaluate the performance of the proposed
method for multi-label classification. All the computations
are performed on a Red Hat Enterprise 64-Bit Linux work-
station with 18-core Intel Xeon CPU E5-2680 2.80 GHz pro-
cessor and 256 GB memory.

Experimental Setup

Datasets The experiments are conducted on eight
multi-label real-world datasets, including six medium-
sized datasets1, i.e., CAL500, COREL5K, DELICIOUS,
EUR-LEX, NUS-WIDE-V, NUS-WIDE-B, and two large-
scale datasets2, i.e., WIKI10, DELICIOUS-L. We split
the training and testing set of two NUS-WIDE, WIKI10,
DELICIOUS-L datasets by following publicly available ex-
periment setting (Chua et al. 2009; Bhatia et al. 2015), while
10-fold cross-validation is applied for the other datasets. The
statistics of the eight real-world datasets are summarized in
Table 1.
Comparison Methods We compare the proposed method
with seven state-of-the-art multi-label learning methods, i.e.,
BR (Tsoumakas, Katakis, and Vlahavas 2009), PLST (Tai
and Lin 2012), CCA (Zhang and Schneider 2011), kNN,
ML-kNN (Zhang and Zhou 2007), LM-kNN (Liu and Tsang
2015), and SLEEC (Bhatia et al. 2015). The linear classifica-
tion/regression package LIBLINEAR (Fan et al. 2008) with
�2-regualrized logistic regression is adopted to train the clas-
sifier for BR. Following the experimental settings (Liu and
Tsang 2015), we set η = 0.4 in LM-kNN, and C = 10 in
BR and LM-kNN. According to the original settings (Bhatia
et al. 2015), we set the number of the clusters as �n/6000�
and the number of learners as 15 for SLEEC. In the pro-
posed CoH, the regularization parameter α is empirically
set to 100 for the two NUS-WIDE datasets, and 1 for the
other datasets. The dimension of the common subspace in
SLEEC and the proposed CoH is empirically set to 50 for

1http://mulan.sourceforge.net
2http://manikvarma.org/downloads/XC/XMLRepository.html
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Table 2: Predictive performance comparison on six medium-sized real-world datasets. The best results are in bold. N/A denotes
not available.

Datasets Hamming Loss ↓
BR PLST CCA kNN ML-kNN LM-kNN SLEEC CoH

CAL500 .1390 ± .0113 .1376 ± .0043 .0916 ± .0022 .1453 ± .0047 .1398 ± .0055 .1493 ± .0031 .1489 ± .0056 .1124 ± .0037
COREL5K .0174 ± .0057 .0094 ± .0001 N/A .0095 ± .0001 .0094 ± .0001 .0095 ± .0002 .0092 ± .0001 .0082 ± .0002

DELICIOUS .0181 ± .0002 .0184 ± .0002 N/A .0187 ± .0002 .0182 ± .0002 .0179 ± .0002 .0176 ± .0002 .0162 ± .0003
EUR-LEX .0331 ± .0015 .0014 ± .0001 N/A .0011 ± .0001 .0011 ± .0001 .0009 ± .0000 .0010 ± .0000 .0008 ± .0000

NUS-WIDE-V .0209 .2140 N/A .0213 .1590 .0213 .0203 .0165
NUS-WIDE-B .0215 .0217 N/A .0228 .0836 .0216 .0213 .0193

Datasets Example-F1 ↑
BR PLST CCA kNN ML-kNN LM-kNN SLEEC CoH

CAL500 .3446 ± .0150 .3062 ± .0108 .3520 ± .0191 .3561 ± .0131 .3216 ± .0180 .3511 ± .0161 .3099 ± .0315 .3602 ± .0216
COREL5K .0781 ± .0166 .0587 ± .0054 N/A .0223 ± .0056 .0178 ± .0069 .1295 ± .0092 .0839 ± .0061 .1996 ± .0108

DELICIOUS .2093 ± .0051 .1131 ± .0039 N/A .1878 ± .0046 .1518 ± .0044 .2553 ± .0043 .2197 ± .0044 .2745 ± .0033
EUR-LEX .4013 ± .0098 .0725 ± .0083 N/A .3409 ± .0057 .3005 ± .0049 .3818 ± .0045 .3705 ± .0058 .3915 ± .0076

NUS-WIDE-V .1255 .0097 N/A .1382 .1476 .0982 .1703 .2838
NUS-WIDE-B .0981 .0825 N/A .1263 .0815 .0877 .1528 .2622

Datasets Micro-F1 ↑
BR PLST CCA kNN ML-kNN LM-kNN SLEEC CoH

CAL500 .3448 ± .0161 .3032 ± .0095 .3537 ± .0213 .3593 ± .0127 .3184 ± .0162 .3542 ± .0157 .3077 ± .0321 .3664 ± .0234
COREL5K .0956 ± .0260 .0801 ± .0081 N/A .0321 ± .0075 .0278 ± .0117 .1670 ± .0137 .1215 ± .0093 .2127 ± .0111

DELICIOUS .2447 ± .0051 .1423 ± .0058 N/A .2154 ± .0047 .1738 ± .0047 .3104 ± .0058 .2532 ± .0035 .3011 ± .0039
EUR-LEX .4266 ± .0070 .1059 ± .0115 N/A .4011 ± .0061 .3489 ± .0055 .4344 ± .0051 .4235 ± .0056 .4689 ± .0085

NUS-WIDE-V .2584 .1986 N/A .2772 .2826 .2093 .3249 .3282
NUS-WIDE-B .2162 .1910 N/A .2458 .1768 .1993 .2822 .3119

Datasets Macro-F1 ↑
BR PLST CCA kNN ML-kNN LM-kNN SLEEC CoH

CAL500 .0781 ± .0115 .0410 ± .0019 .0917 ± .0022 .0971 ± .0060 .0534 ± .0034 .1001 ± .0067 .0462 ± .0081 .1173 ± .0115
COREL5K .0276 ± .0039 .0111 ± .0017 N/A .0052 ± .0014 .0086 ± .0036 .0266 ± .0033 .0240 ± .0022 .0423 ± .0049

DELICIOUS .0933 ± .0042 .0283 ± .0008 N/A .0550 ± .0024 .0481 ± .0018 .1383 ± .0074 .0702 ± .0014 .0993 ± .0040
EUR-LEX .1039 ± .0066 .0204 ± .0031 N/A .0877 ± .0032 .0635 ± .0019 .0919 ± .0029 .0805 ± .0030 .1053 ± .0046

NUS-WIDE-V .0266 .0162 N/A .0682 .0159 .0171 .0437 .0498
NUS-WIDE-B .0202 .0139 N/A .0373 .0206 .0143 .0302 .0454

Table 3: Efficiency comparison on six medium-sized real-world datasets. The training and testing time are recorded in seconds.
N/A denotes not available.

Method CAL500 COREL5K DELICIOUS EUR-LEX NUS-WIDE-V NUS-WIDE-B
Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing

BR 1.33 1.78×10−3 8.63 6.28×10−3 120.70 0.03 2.14×103 0.49 222.21 0.07 511.83 0.02
PLST 0.02 4.00×10−3 0.82 0.12 9.15 0.91 106.26 13.94 .98 0.07 2.49 0.14
CCA 895.50 1.43×104 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
kNN N/A 0.02 N/A 3.24 N/A 30.95 N/A 393.87 N/A 3.70×103 N/A 1.24×104

ML-kNN 1.03 0.19 23.01 4.02 178.49 29.93 1.03×103 155.60 5.57×103 3.66×103 3.02×104 2.02×104

LM-kNN 13.23 0.03 1.20×103 2.35 2.40×104 56.31 4.87×103 316.75 1.64×104 4.83×103 2.08×104 3.17×103

SLEEC 27.99 0.06 736.45 3.93 3.28×103 16.62 5.23×103 41.73 9.72×103 914.56 1.14×104 1.32×103

CoH 0.12 4.00×10−3 3.82 0.05 22.31 0.78 115.23 1.34 44.52 246.50 52.74 248.56

the two NUS-WIDE, WIKI10, DELICIOUS-L datasets, and
100 for the others. Following the similar settings in (Zhang
and Zhou 2007; Bhatia et al. 2015), the k in kNN search
is selected using 10-fold cross validation over the range
{1, 5, 10, 20} for all kNN-based methods. The running time
of MMOC (Zhang and Schneider 2012) on most datasets
is more than one week, thus we do not report its results.
Our empirical study shows that CoH performs well in a wide
range of the parameters.

Evaluation Metric Following (Guo and Schuurmans

2013; Liu and Tsang 2015; Bhatia et al. 2015), we consider
the widely-used metrics to evaluate the prediction perfor-
mance of all the methods, i.e., Hamming loss, Example-F1,
Micro-F1, Macro-F1 for medium-sized datasets, and Preci-
sion@5, nDCG@5 for large-scale datasets.

Results on Medium-Sized Datasets

Performance We conduct the performance evaluation on
six medium-sized multi-label datasets. Table 2 reports the
prediction performance of all the methods, in terms of Ham-
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Table 4: Performance comparison on two large-scale real-world datasets. The training and testing time are in seconds.

Dataset WIKI10 DELICIOUS-L
Precision@5 ↑ nDCG@5 ↑ Training(s) Testing(s) Precision@5 ↑ nDCG@5 ↑ Training(s) Testing(s)

SLEEC .6270 .6813 1.97×103 49.54 .3943 .4137 5.64×104 2.64×103

CoH .6334 .6678 2.59×102 6.72 .4136 .4256 2.39×103 478.58

ming loss, Example-F1, Micro-F1, Macro-F1. From Table 2,
we observe that
• The proposed CoH generally has the best performance

on the six medium-sized datasets. For example, on NUS-
WIDE-B dataset, in term of Hamming loss, Example-F1,
Micro-F1, Macro-F1, CoH improves the best results of the
baselines by 0.2%, 11.0%, 2.9%, 1.5%, respectively. The
above results demonstrate the superior performance of the
proposed CoH, and corroborate our theoretical results.

• Among kNN-based baselines, LM-kNN and SLEEC
achieve the better performance, verifying their effective-
ness. The conventional kNN method usually outperforms
ML-kNN.

• CCA can only perform on the small CAL500 dataset due
to its very expensive time cost. PLST generally underper-
forms on all the datasets, which is consistent with the em-
pirical results in (Tai and Lin 2012; Liu and Tsang 2015).
BR is inferior than the proposed CoH, mainly because it
fails to consider the correlations between labels.

Time Table 3 illustrates both the training and testing time
of all the methods. The conclusions that can be drawn from
the table are as follows:
• On the aspect of the training time, we can see that PLST

is the fastest in training, but performs poorly. The pro-
posed CoH generally takes second place for training ef-
ficiency, that is much faster than the other kNN-based
multi-label methods. For instance, on the NUS-WIDE-B
dataset, CoH is significantly more efficient, nearly 400
times faster than LM-kNN and 200 times faster than
SLEEC. CCA is the most time consuming for its expen-
sive encoding procedure.

• On the aspect of the testing time, the proposed CoH is
the most efficient among the kNN-based methods, due to
the efficient computation in the Hamming space. SLEEC
is also fast on the two NUS-WIDE datasets, as it uses
the clustering technique to accelerate the prediction. CoH
is nearly 4 times faster than SLEEC, and at least 10
times faster than the other kNN-based methods on the two
NUS-WIDE datasets. In addition, BR and PLST are also
efficient because of their simple decoding scheme, which,
however, fails to obtain good performance. CCA is signif-
icantly slower than the other methods.

Results on Large-Scale Datasets

We conduct the performance evaluation on two large-scale
datasets, i.e., WIKI10, DELICIOUS-L. The label vectors in
large-scale datasets are highly sparse, thus we can further
enforce the sparsity constraint on the transformation matri-
ces U and V in CoH, which helps to select the most mean-
ingful labels and reduce the computation cost. The efficient
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Figure 1: Several multi-label image annotation examples on
NUS-WIDE-V dataset. For each image, we show the ground
truth annotations, and the labels predicted by the proposed
CoH.

feature generating paradigm (Tan, Tsang, and Wang 2014;
Liu and Tsang 2017) is used to select labels, and it can eas-
ily handle millions of labels. The performances of SLEEC
and CoH are reported in Table 4. From Table 4, we can see
that CoH can achieve comparable performance, and have
less training and testing time.

Case Study

We present a case study where the proposed CoH is applied
to a multi-label image annotation application. We apply CoH
on the NUS-WIDE-V dataset, and illustrate the annotation
results of several randomly selected images, as shown in
Figure 1. It can be seen that CoH correctly predicts most
labels for these images. This case study suggests that CoH
works well in real-world image annotation applications.

Conclusion

This paper provides a cross-view insight into the multi-label
prediction to fully discover the correlations between the in-
put and output. The proposed CoH learns a latent discrete
code space shared by both input and output. CoH performs
fast multi-label prediction via the efficient cross-view search
in Hamming space. We empirically show that, on the NUS-
WIDE datasets, CoH improves the prediction efficiency of
LM-kNN and SLEEC by around 10 and 4 times, respec-
tively. The proposed CoH is theoretically shown to dimin-
ish the generalization error bounds of multi-label prediction.
The empirical studies verify our theoretical results, and the
proposed CoH achieves the superior performance than the
state-of-the-art methods with less computation cost.
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