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Abstract

Kernel selection aims at choosing an appropriate kernel func-
tion for kernel-based learning algorithms to avoid either un-
derfitting or overfitting of the resulting hypothesis. One of
the main problems faced by kernel selection is the evaluation
of the goodness of a kernel, which is typically difficult and
computationally expensive. In this paper, we propose a ran-
domized kernel selection approach to evaluate and select the
kernel with the spectra of the specifically designed multilevel
circulant matrices (MCMs), which is statistically sound and
computationally efficient. Instead of constructing the kernel
matrix, we construct the randomized MCM to encode the
kernel function and all data points together with labels. We
build a one-to-one correspondence between all candidate ker-
nel functions and the spectra of the randomized MCMs by
Fourier transform. We prove the statistical properties of the
randomized MCMs and the randomized kernel selection crite-
ria, which theoretically qualify the utility of the randomized
criteria in kernel selection. With the spectra of the randomized
MCMs, we derive a series of randomized criteria to conduct
kernel selection, which can be computed in log-linear time
and linear space complexity by fast Fourier transform (FFT).
Experimental results demonstrate that our randomized kernel
selection criteria are significantly more efficient than the exist-
ing classic and widely-used criteria while preserving similar
predictive performance.

Introduction

Model selection of learning is the problem of choosing an
appropriate hypothesis space, in which the learning algorithm
searches the optimal hypothesis with the available training
data, so as to avoid either underfitting or overfitting of the
resulting hypothesis. For kernel-based learning algorithms,
the candidate hypothesis spaces are the constrained reproduc-
ing kernel Hilbert spaces (RKHSs) (Cucker and Smale 2002),
which are determined by the kernel functions and the regular-
ization parameters. In this case, model selection is reduced
to the selection of the kernel function and the regularization
parameter. This paper focuses on the evaluation and selection
of the kernel function, which is a fundamental and critical
problem in kernel-based learning.

∗All correspondence should be addressed to Xin Gao.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Kernel selection is usually to select a good kernel by
minimizing or maximizing some kernel selection criteria
(Bartlett, Boucheron, and Lugosi 2002; Anguita et al. 2012;
Liu et al. 2017). The existing kernel selection criteria can
be classified into three categories based on different induc-
tive biases. The first category is to minimize the theoretical
upper bounds of the generalization error. The upper bounds
are composed of the error on data and the complexity of the
hypothesis space (Bartlett, Boucheron, and Lugosi 2002).
Different measures of the complexity constitute different
kernel selection criteria, such as Rademacher complexity
(Bartlett and Mendelson 2002), local Rademacher complex-
ity (Cortes, Kloft, and Mohri 2013), radius-margin bound
(Chapelle et al. 2002), maximum mean discrepancy (MMD)
(Sriperumbudur et al. 2009; Gretton et al. 2012a; 2012b;
Song et al. 2012), effective dimensionality (Zhang 2005;
Bach 2013), eigenvalues ratio (Liu and Liao 2015), and the
covering number (Ding and Liao 2014b). The second cate-
gory is to maximize the similarity between the kernel ma-
trix and the label matrix. The criteria in this category are
two-stage kernel selection criteria (Cortes, Mohri, and Ros-
tamizadeh 2010), which do not require the training of the
learning algorithms in the kernel selection step. The rep-
resentative criterion is the kernel target alignment (KTA)
(Cristianini et al. 2002). Feature space-based measure (FSM)
(Nguyen and Ho 2007) and centered KTA (CKTA) (Cortes,
Mohri, and Rostamizadeh 2010) were proposed to improve
the performance of KTA. The third category is to minimize
the statistical experimental errors, including hold-out method,
cross validation (CV), leave-one-out (LOO) and Bootstrap.
The CV error is probably the most commonly used crite-
rion in the machine learning community and the LOO error
gives an almost unbiased estimate of the generalization error
(Luntz and Brailovsky 1969). However, CV and LOO require
training the learning algorithm for every candidate param-
eter many times, unavoidably bringing high computational
burdens. For the sake of efficiency, some approximate CV
approaches were proposed, such as generalized cross valida-
tion (GCV) (Golub, Heath, and Wahba 1979), efficient LOO
(Cawley and Talbot 2010), and Bouligand influence function
CV (BIFCV) (Liu, Jiang, and Liao 2014).

The computational complexities of the existing kernel se-
lection criteria are at least quadratic in the number of exam-
ples l, i.e., O(l2), and usually O(l3). This kind of scalability
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is prohibitive for the large-scale supervised learning. It is
worth noting that linear-time criteria via MMD were pro-
posed in (Gretton et al. 2012a; 2012b), which, however, are
for two-sample tests but not for the general supervised learn-
ing. For the criterion in (Gretton et al. 2012a), one needs
to calculate the kernel functions between two different sets
of samples and for the criterion in (Gretton et al. 2012b),
it requires the estimation of the asymptotic probability of a
Type II error. On the other hand, a kernel selection criterion
is not required to be an unbiased estimate of the generaliza-
tion error, and instead the primary requirement is merely for
the minimum of the kernel selection criterion to provide a
reliable indication of the minimum of the generalization error
in the kernel parameter space. Therefore, we argue that it
is sufficient to calculate randomized criteria with theoreti-
cal guarantees that can discriminate the optimal kernel from
other candidates. The above two considerations drive the
study of this paper.

In this paper, we propose a randomized kernel selection
approach to evaluate and select the kernel in the space of
the spectra of the specifically designed multilevel circu-
lant matrices (MCMs). In contrast to the traditional ker-
nel selection methods, we do not use the kernel function
and the data to generate a kernel matrix. Instead, for each
candidate kernel we explicitly construct a MCM encod-
ing the kernel function and all data points together with
their labels. The reason why we choose MCM is that the
built-in periodicity of MCM allows the multidimensional
fast Fourier transform (mFFT) to be utilized in calculating
its eigenvalues and eigenvectors in quasi-linear time com-
plexity, which is much faster than the eigen-decomposition
of the kernel matrix. More specifically, we build a one-
to-one correspondence between the candidate kernel func-
tions and the spectra of the randomized MCMs by using
Fourier transform (FT) twice; the first FT is from the har-
monic analysis of random features (Rahimi and Recht 2008;
2009) and the second one is from the built-in periodicity of
the MCMs. In the space of spectra of MCMs, we define a
series of randomized criteria based on different inductive
biases to conduct approximate kernel selection in a log-linear
time and linear space complexity. Theoretically, we analyze
the statistical properties of the randomized MCMs and the
approximate kernel selection criteria to qualify their utility
in kernel selection. Empirically, we provide the experimen-
tal evidence that our criteria are significantly more efficient
than the existing ones while preserving similar predictive
performance.

Related work
Circulant matrix (CM) has been adopted in random projec-
tion and kernel matrix approximation. On the basis of the
Johnson-Lindenstrauss lemmas (Hinrichs and Vybı́ral 2011;
Vybı́ral 2011), circulant random projection has been suc-
cessfully used in binary embedding (Yu et al. 2014) and
parameter redundancy of deep networks (Cheng et al. 2015).
For kernel matrix approximation, an ingenious algorithm
(Song and Xu 2010) was proposed to construct MCMs as
the approximations of kernel matrices. However, the con-
structions of these existing CMs or MCMs are all indepen-

dent of the data. For circulant random projection, the CM
is completely random and for MCM in (Song and Xu 2010;
Ding and Liao 2014a), only the kernel function is used. In this
paper, we construct a novel type of data-dependent MCMs,
which are different from the existing ones and fit the needs
of kernel selection.

Random features were proposed to approximate non-linear
kernel functions. The seminal work, random Fourier features
(Rahimi and Recht 2008), focuses on approximating shift-
invariant kernels. Several approaches were also proposed to
approximate other types of kernels, such as additive kernels
(Vedaldi and Zisserman 2012) and dot product kernels (Kar
and Karnick 2012). Recently, attention has been paid on im-
proving the approximation quality of random features (Hamid
and Xiao 2014; Yang et al. 2014) and accelerating the approx-
imation procedure (Le, Sarlòs, and Smola 2013). In the fist
step of constructing our randomized MCMs, we adopt the har-
monic analysis of random features (Rahimi and Recht 2008;
Kar and Karnick 2012). However, existing techniques for
random features assume a user-defined kernel as the input
and leave the kernel selection problem to the user. Selecting
a good kernel is a more challenging problem than approxi-
mating a known kernel. This paper focuses on the evaluation
and selection of the kernel function.

Notations and Preliminaries

In this section, we introduce the adopted notations and the
notion of multilevel circulant matrices.

We consider a continuous, symmetric and positive ker-
nel κ : X × X → R (Cucker and Smale 2002). That is,
for any finite set {x0, . . . , xl−1} ⊆ X , the matrix K =

[κ(xi, xj)]
l−1
i,j=0 is symmetric and positive definite (SPD).

The reproducing kernel Hilbert space (RKHS) Hκ associated
with the kernel κ is defined as Hκ = span{κ(x, ·) : x ∈ X}.
AB, A ⊗B and A ◦B denote matrix multiplication, Kro-
necker product and Hadamard product between A ∈ R

l×l

and B ∈ R
l×l, respectively.

In the following, we introduce the notion of multilevel
circulant matrices. For any positive integer m, let [m] =
{0, 1, . . . ,m − 1}. For a fixed positive integer p, and m =
(m0,m1, . . . ,mp−1) ∈ N

p, we write the continued prod-
uct as Πm = m0m1 . . .mp−1 and the Cartesian product as
[m] = [m0]×[m1]×· · ·×[mp−1]. A 1-level circulant matrix
(CM) C is a matrix having the form

C =

⎡
⎢⎢⎣

c0 cm−1 . . . c1
c1 c0 . . . c2
...

...
. . .

...
cm−1 cm−2 . . . c0

⎤
⎥⎥⎦ ,

where each column is a cyclic shift of its left column. The
(i, j)-th entry of C satisfies Ci,j = ci−j(mod m). Since C is
fully determined by its first column, we write

C = circ[ci : i ∈ [m]].

A multilevel circulant matrix (MCM) is defined recursively.
For any positive integer p, a (p + 1)-level CM is a block
CM whose blocks are p-level CMs. For m ∈ N

p, we use
multi-indices i = (i0, . . . , ip−1), j = (j0, . . . , jp−1) ∈ [m]
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to locate the entries of a p-level CM Am. According to
(Tyrtyshnikov 1996), for m ∈ N

p, Am = [Ai,j : i, j ∈
[m]] is a p-level CM if, for any i, j ∈ [m],

Ai,j = ai0−j0(mod m0),...,ip−1−jp−1(mod mp−1).

Am is completely determined by its first column. We write
Am = circm[ai : i ∈ [m]].

Spectrum Space on Randomized MCMs for

Kernel Selection: Definitions and Theories

In this section, we define a kind of randomized MCMs en-
coding the information of the kernel function and all data
points together with their labels, which can be considered
as a higher-dimensional approximation of the labeled kernel
matrix yyT ◦K with excellent theoretical and computational
virtues. Since all MCMs of the same dimension have the same
eigenvectors (Gray 1972), we can map the defined MCMs
to their spectra by Fourier transform. We build a one-to-one
correspondence between all candidate kernel functions and
the spectra of the randomized MCMs. We will approximately
select the optimal kernel in the space of the spectra of the
randomized MCMs. We theoretically justify the rationality
of the randomized MCMs and the spectrum space for kernel
selection.

We first consider X = R
d and shift-invariant kernels

κ(x, y) = ζ(x − y), where ζ is an integrable function
from R

d to R. We know that shift-invariant kernels are
positive definite if and only if the Fourier transform of ζ
is always a non-negative real number (Bochner 1933). If
ζ̂(w) =

∫
Rd ζ(x)e

−iwTxdx ∈ R+, then

k(x, y) =
1

(2π)d

∫
Rd

ζ̂(w)eiw
T(x−y)dw.

Inspired by (Rahimi and Recht 2008; 2009), by sampling
w0, . . . , wD−1 from a density proportional to ζ̂(w) ∈ R+

and b0, . . . , bD−1 uniformly in [0, 2π], we can define a CM
C(xi) ∈ R

D×D for xi, i ∈ [l],

C(xi) =

√
2

D
circ

⎛
⎜⎜⎜⎝

cos(xT
i w0 + b0)

cos(xT
i w1 + b1)

...
cos(xT

i wD−1 + bD−1)

⎞
⎟⎟⎟⎠ .

The rationality of the definition of C(xi) will be shown in the
end of this section. We can also define CMs for dot product
kernels based on Schoenberg theorem (Schoenberg 1942;
Kar and Karnick 2012).

For i ∈ [l], we further define a labeled CM as Ċ(xi) =
yiC(xi), where yi ∈ {−1, 1} for classification or yi ∈ R for
regression. In order to involve all data information, we cycle
all Ċ(xi) for xi to define an MCM Um of order m = (l,D),

Um =

⎛
⎜⎜⎜⎝

Ċ(x0) Ċ(xl−1) . . . Ċ(x1)

Ċ(x1) Ċ(x0) . . . Ċ(x2)
...

...
. . .

...
Ċ(xl−1) Ċ(xl−2) . . . Ċ(x0)

⎞
⎟⎟⎟⎠ .

Um is actually a Πm × Πm matrix encoding the kernel
function and all data points together with their labels.

According to (Tyrtyshnikov 1996), we know that Um is
an MCM of order m if and only if

Um =
1

Πm
ΦHdiag(Φu)Φ, (1)

where H denotes the conjugate transpose, diag(w) denotes
the diagonal matrix with w on the main diagonal, and Φ =

Fl ⊗ FD, with Fm =
[
e

2πi
m st : s, t ∈ [m]

]
for m ∈ N. The

eigenvalues of Um = circm[ui : i ∈ [m]] are given by

vj =
∑
i∈[m]

uie
2πi

∑
s∈[p]

isjs
ms , j ∈ [m]. (2)

For a set of candidate kernels K = {κ(i) : i ∈ [N ]}, we
can construct an MCM U

(i)
m for each kernel κ(i), and then

we have a candidate set U = {U(i)
m : i ∈ [N ]} for kernel

selection. For each U
(i)
m , we can obtain the spectrum v(i) =

[v
(i)
j , j ∈ [m]] according to (2). Since the eigenvectors of an

MCM are the Kronecker product of Fourier matrices, all U(i)
m

for i ∈ [N ] have the same eigenvectors (Gray 1972). The
discriminative information of different kernels are encoded
into the spectrum v(i). For V = {v(i) : i ∈ [N ]}, we will
(approximately) select a good kernel as

κ∗ ≈ argmax
i∈[N ]

C(v(i)) or κ∗ ≈ argmin
i∈[N ]

C(v(i)), (3)

where the specific forms of the kernel selection criterion
C(v(i)) will be given in the next section.

Remark We can easily extend our method from selecting a
kernel to optimizing the combination weights of base kernels
for multiple kernel learning. The optimization strategies with
MCMs have been given in (Ding and Liao 2017) for the
L1 and L2 regularization (Cortes, Mohri, and Rostamizadeh
2009) of the combination weights.

The following theoretical guarantees show the rationality
of the MCMs and V = {v(i) : i ∈ [N ]} for kernel selection.
We define the inner product between C(xi) and C(xj) as
〈C(xi),C(xj)〉 = 1T

D (C(xi) ◦C(xj))1D, where 1D de-
notes the vector of all ones of length D. Lemma 1 reveals
the relationship between the matrix multiplication and the
Hadamard product of two CMs.
Lemma 1. For any i, j ∈ [l],

E
[
1T
D (C(xi)C(xj))1D

]
= E [〈C(xi),C(xj)〉] .

Based on Lemma 1, we can prove Theorem 1, which re-
veals that 〈C(xi),C(xj)〉 is equivalent to κ(xi, xj) in expec-
tation.
Theorem 1. For any i, j ∈ [l],

E [〈C(xi),C(xj)〉] = κ(xi, xj).

Theorem 2 shows the concentration bound between
〈C(xi),C(xj)〉 and κ(xi, xj), which reveals convergence
speed between these two values. This is the result for the
Gaussian kernel κ(x− x′) = exp(−‖x−x′‖22

2σ2 ).

2912



Theorem 2. For any i, j ∈ [l], denoting Δ = ‖xi − xj‖22,
we have

Pr
{ |〈C(xi),C(xj)〉 − κ(xi, xj)| ≥ ε

} ≤ Var

D2ε
,

where

Var =
1

D
+

1

2D
exp

(
−2Δ

σ2

)
+

D − 2

D
exp2

(
−Δ

σ2

)
.

We represent the eigen-decomposition of K as K =
UΣUT, where Σ and U denote the eigenvalues and eigen-
vectors of K, respectively. Theorem 3 establishes the sta-
tistical relation between the eigenvalues of the MCM Um

and the eigenvalues of the kernel matrix K. The reasons
why we derive Theorem 3 are: 1) the spectrum of the kernel
plays an important role in evaluating the goodness of the
kernel; 2) yTUΣUTy is a critical component for various
kernel selection criteria, which will be shown in the next
section. Theorem 3 shows that l−11T

Πm
ΦHdiag(v2j )Φ1Πm

is an unbiased estimator of yTUΣUTy.

Theorem 3. For j ∈ [m],

E
[
l−11T

Πm
ΦHdiag(v2j )Φ1Πm

]
= yTUΣUTy.

Remark For random Fourier features, we denote zi :=
[cos(xT

i w0 + b0), . . . , cos(x
T
i wD−1 + bD−1)] ∈ R

D and
Z := [z0 . . . zl] ∈ R

D×l. Here we discuss the difference
between Z and Um. For the MCM Um, we can explic-
itly represent the spectrum of Um using its first column, as
shown in (2). If we use Z, we should conduct SVD on Z
to obtain the eigenvalues. But the eigenvalues are not in an
explicit form. This difference is similar to the difference be-
tween CUR decomposition and SVD (please see (Mahoney
and Drineas 2009) for details). As shown in Theorem 2,
the concentration bound converges with the rate O(D−2),
which is faster than the direct use of Z. If we use Z, to
guarantee the same convergence rate, we need to sample D2

random vectors from a density proportional to t̂(w) ∈ R+.
The complexity of FFT for solving the eigen-decomposition
of Um is O(Πm ln(Πm)), that is O(lD ln(lD)). The com-
plexity of SVD on Z ∈ D2 × l is lD4. When l < 3eD

D ,
O(lD ln(lD)) < lD4. In practice, we can also adopt the
direct stack Z to conduct randomized kernel selection, but
sometimes it may produce poor results for the same value of
D, which will be shown in experiments.

Randomized Kernel Selection Criteria on the

Spectra of the MCMs

The spectrum of the kernel plays an important role in evalu-
ating the goodness of the kernel for all the three categories
of kernel selection criteria shown in Introduction. With the
theoretical support provided by Theorem 1, 2 and 3, we de-
sign a series of randomized kernel selection criteria for the
three categories in this section. These criteria alleviate the
computational bottleneck faced by existing kernel selection
approaches and provide a solution with log-linear time and
linear space complexity.

We start from the first category. In the upper bounds of the
generalization error that are composed of the error on data
and the complexity of the hypothesis space, the complexity
term for kernel-based learning can usually be represented in
the spectrum of the kernel matrix, such as effective dimen-
sionality (Zhang 2005; Bach 2013) and local Rademacher
complexity (Cortes, Kloft, and Mohri 2013). Here we adopt
effective dimensionality as a case to design the randomized
kernel selection criterion, which can also be extended to other
measures (Cortes, Kloft, and Mohri 2013).

We observe corrupted response yi = ẏi + ξi, 1 ≤ i ≤ l,
where ξ = [ξ1, . . . , ξi]

T are random variables with mean
0 and finite covariance matrix C, and ẏ = [ẏ1, . . . ẏl]

T

is the underlying true output. We consider the regularized
empirical error E(f) = 1

l

∑l
i=1(f(xi) − yi)

2 + μ‖f‖2Hκ
,

where μ is the regularization parameter. The optimal func-
tion fκ = argminf∈Hκ

E(f). By the representer theorem
(Kimeldorf and Wahba 1970), we have fκ =

∑l
i=1 αiκ(xi, ·)

with α = (α1, . . . , αl)
T = (K + μlI)−1y. Therefore,

‖fκ‖2Hκ
= αTKα = yTK−1

μ KK−1
μ y, where Kμ =

K + μlI. Denoting fκ = (fκ(x1), . . . , fκ(xl))
T, we have

fκ = Kα = KK−1
μ y, which is referred to as an estimate of

ẏ. The expected error of fκ (Bach 2013) is

1

l
Eξ‖fκ − ẏ‖2 =

1

l
‖Eξfκ − ẏ‖2 + 1

l
trace(varξ(fκ))

= μ2lẏTK−2
μ ẏ︸ ︷︷ ︸

bias(K)

+
1

l
trace(CK2K−2

μ )︸ ︷︷ ︸
variance(K)

.

The bias term is the error on data. The variance term con-
strols the model complexity, which is the effective dimen-
sion trace(CK2K−2

μ ) ≤ trace(CKK−1
μ ) (Zhang 2005).

By minimizing the sum of bias and variance, we can mini-
mize the generlization error (Zhang 2005). For C = σ2I,
we can define a kernel selection criterion as C1(K) =

μ2lẏTK−2
μ ẏ + σ2

l trace(KK−1
μ ), because C1(K) only de-

pends on the kernel κ for a fixed μ and we can select the
optimal kernel with the minimum generlization error.

However, the computational complexity of C1(K) is O(l3).
With the theoretical guarantee of the last section, we define a
randomized kernel selection criterion,

C1(v) = 1

Πm
1T
Πm

ΦHdiag

(
1

(v2j + μl)2
, j ∈ [m]

)
Φ1Πm

+
∑

j∈[m]

v2j
v2j + μl

,

(4)
where the spectrum v = [vj : j ∈ [m]]. According to
(1), Φ is the Kronecker product of Fourier matrices, which
means that for any vector x = [xi : i ∈ [m]], Φx is
the multidimensional discrete Fourier transform (mDFT)
of x. That is, Φx can be calculated by multidimensional
fast Fourier transform (mFFT) (Singleton 1969). According
to (2), v = [vj : j ∈ [m]] can be calculated using the
mFFT of [ui : i ∈ [m]]. Φ1Πm and v can both be calcu-
lated using mFFT. Hence, the time complexity of C1(v) is
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O(Πm ln(Πm)). Since only the first column of Um needs
to be stored, the space complexity is O(Πm). In the second
term of (4), we use the approximation of labeled kernel ma-
trix yyT ◦K to measure the effective dimension, which is
not exactly the same as in C1(K) and involves more data
information for kernel selection.

Now we consider the second category of kernel selection
criteria, the similarity-based criteria. The most representative
one is the kernel target alignment (KTA) (Cristianini et al.
2002), KTA(K) = yTKy

l‖K‖F . We define a randomized kernel
selection criterion for KTA as

C2(v) =
(Φ1Πm)

H
diag

(
v2j , j ∈ [m]

)
Φ1Πm

Π3
m

∑
j∈[m] v

2
j

. (5)

We can extend (5) to MMD for binary classification (Sripe-
rumbudur et al. 2009; Song et al. 2012). Let l+(l−) de-
note the number of the positive (negative) data points. For
i ∈ [l], we write ȳi = 1/l+, if yi = +1 and ȳi =
−1/l− otherwise. We can define an MCM Ūm, where
C̄(xi) = ȳiC(xi) for i ∈ [l]. The randomized criterion
is C(v̄) = 1

Π2
m

(Φ1Πm)
H
diag

(
v̄2
)
Φ1Πm , where v̄ is the

spectrum of Ūm.
We consider the third category of kernel selection criteria,

the experimental criteria. We adopt the most commonly
used criteria, the CV error and the LOO error, to discuss
the definition of randomized criteria. In (Cawley and Talbot
2010), an efficient closed-form of LOO (ELOO) was
proposed, which computes the LOO error in O(l3) time
complexity for kernel-based learning instead of O(l4) of
the direct LOO procedure. The most time consuming step
in ELOO is to solve the inverse of P = [Kμ,1l;1

T
l , 0].

Using the block matrix inversion formula, P−1 = [K−1
μ +

c−1K−1
μ 1l1

T
l K

−1
μ ,−c−1K−1

μ 1l;−c−11T
l K

−1
μ , c−1],

where c = −1T
l K

−1
μ 1l. We can efficiently solve K−1

μ 1l

with an unlabeled version of Um, denoted as Ûm,(
ÛmÛm + μlIm

)−1

1Πm

=
1

Πm
ΦHdiag

(
1

v̂2j + μl
: j ∈ [m]

)
Φ1Πm .

(6)

We denote C3(v̂) as the approximate ELOO error. For k-fold
CV, BIFCV (Liu, Jiang, and Liao 2014) computes the CV
error in O(l3 + kl2) time complexity instead of O(kl3) of
the direct k-fold CV procedure. In BIFCV, we need to solve
K−1

μ η and Kθ (please see (Liu, Jiang, and Liao 2014) for
the detailed forms of η and θ), which can both be randomly
computed in log-linear complexity following (6).

Experiments

We first verify the effectiveness of the randomized kernel
selection criteria. Effectiveness includes efficiency and gen-
eralization, where the former is measured by the average
computational time for kernel selection and the latter is mea-
sured by the classification accuracy of the learned hypothesis
with the selected kernel over the test set.

We conduct experiments to compare the effectiveness of
the randomized kernel selection criteria C1(v), C2(v) and
C3(v̂) with different kinds of classic and widely-used base-
lines, including kernel target alignment (KTA) (Cristianini et
al. 2002), feature space-based measure (FSM) (Nguyen and
Ho 2007), centered kernel target alignment (CKTA) (Cortes,
Mohri, and Rostamizadeh 2010), maximum mean discrep-
ancy for binary classification1 (MMD-B) (Sriperumbudur
et al. 2009; Song et al. 2012), effective dimension C1(K)
(Zhang 2005), 5-fold cross validation (CV), efficient leave-
one-out (ELOO) (Cawley and Talbot 2010) and ELOO with
Bayesian regularisation (ELOO-BR) (Cawley and Talbot
2007). The complexities of KTA, CKTA, FSM and MMD-B
are O(l2) and complexities of C1(K), 5-fold CV, ELOO and
ELOO-BR are O(l3).

The set of Gaussian kernels κ(x − x′) = exp(−γ‖x −
x′‖22) with a variable bandwidth parameter γ ∈ {2i, i =
−8,−7, . . . , 5, 6} is adopted as the candidate kernel set. The
parameter D in the randomized criteria is an important param-
eter both for the approximation quality and computational
efficiency (O(Πm ln(Πm)) = O(lD ln(lD))). We conduct
experiments for different values of D (50, 100, 200, 500,
1000, 2000). Finally, we fix D = 100, because it is enough
to demonstrate the effectiveness of randomized kernel selec-
tion criteria2. We adopt least square support vector machine
(LSSVM) as the learning algorithm. Since the focus of this
work is not on tuning the regularization parameter, it is set as
a fixed value 1. A variety of datasets that cover the number
of data points ranging from 7200 up to more than 245000
and the number of features ranging from 3 up to 47,236
are selected from the UCI dataset repository3, the LIBSVM
dataset repository4, and the KEEL dataset repository5. We
randomly partition each dataset into two parts, with 50% of
the data randomly chosen for training and the rest reserved
for testing. We conduct kernel selection by minimizing or
maximizing the kernel selection criteria on the training set.
After the kernel selection step, LSSVM is trained with the
obtained optimal kernel still on the training set. Finally, the
performance of the trained model is measured on the test set.
We repeat each experiment 30 times to estimate the statistical
significance of differences in performance using the z statis-
tic (Cawley and Talbot 2007), where z = 1.64 corresponds
to a 95% significance level (Cawley and Talbot 2007). The
results are shown in Table 1, in which “NA”, not available,
means that none of the 30 runs can be completed in 120
hours; “OM”, out of memory, means that the experiment
needs more than 1TB memory, which cannot be run success-
fully on the largest memory node of our computing cluster.
We can see that our kernel selection criteria are significantly

1Note that the linear approximations of MMD in (Gretton et al.
2012a; 2012b) were for the purpose of testing if two sets of samples
are generated from the same distribution, which needs to calculate
the kernel function between two sets of samples. The MMD version
for binary classification we chose here is from (Sriperumbudur et al.
2009; Song et al. 2012).

2The results for the values of D bigger than 100 are similar.
3http://www.ics.uci.edu/∼mlearn/MLRepository.html
4http://www.csie.ntu.edu.tw/∼cjlin/libsvm
5http://sci2s.ugr.es/keel/datasets.php
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Table 1: Comparison of the average accuracy and time (seconds) over the 30 runs of different criteria.

datasets (� examples, � features) C1(v) C2(v) C3(v̂) KTA

Accuracy Time Accuracy Time Accuracy Time Accuracy Time

thyroid (7200, 21) 98.26% 8.65 98.29% 9.23 98.24% 13.24 97.84% 76.22
mushrooms (8124, 112) 99.92% 44.48 99.90% 45.21 99.82% 78.67 100.00% 278.19
coil2000 (9822, 85) 93.84% 119.46 93.86% 116.18 93.87% 221.40 94.10% 814.96
penbased (10992, 16) 99.81% 27.79 99.01% 25.83 99.69% 44.61 99.74% 158.79
rcv (20242, 47236) 95.37% 3695.63 95.59% 3527.24 95.39% 3601.41 NA NA
adult (32561, 123) 84.17% 61.02 84.29% 64.21 84.42% 91.58 84.72% 4287.95
w8a (49749, 300) 98.11% 3865.91 98.24% 3890.73 97.84% 4718.15 97.80% 21715.09
cod-rna (59535, 8) 94.75% 93.23 94.88% 96.43 94.95% 150.18 94.82% 3559.34
fars (100968, 29) 85.46% 273.24 85.75% 287.59 86.01% 549.69 OM OM
skin (245057, 3) 99.24% 4527.78 99.11% 4619.76 98.87% 8661.18 OM OM

datasets FSM CKTA MMD-B C1(K)

Accuracy Time Accuracy Time Accuracy Time Accuracy Time

thyroid 98.62% 1412.09 98.41% 1219.69 98.64% 61.72 98.53% 5994.80
mushrooms 93.21% 1987.76 99.65% 1621.89 99.97% 251.00 99.98% 8819.04
coil2000 93.72% 2961.75 94.02% 2305.35 94.01% 672.49 94.04% 15367.52
penbased 99.75% 3310.80 99.72% 2656.29 99.66% 113.13 99.76% 21144.28
rcv NA NA NA NA NA NA NA NA
adult 82.89% 27854.28 84.32% 24609.40 84.91% 3930.97 NA NA
w8a 98.14% 61377.31 97.75% 52636.91 98.55% 21110.3 NA NA
cod-rna 95.14% 58111.03 95.32% 70559.17 95.27% 2336.34 NA NA
fars OM OM OM OM OM OM OM OM
skin OM OM OM OM OM OM OM OM

datasets 5-fold CV ELOO ELOO-BR

Accuracy Time Accuracy Time Accuracy Time

thyroid 98.72% 4761.78 97.86% 13150.79 97.76% 13105.28
mushrooms 99.98% 7548.01 99.72% 19064.64 99.70% 19146.48
coil2000 93.88% 12747.31 94.03% 30909.36 93.92% 30584.37
penbased 99.71% 16644.09 93.73% 39055.87 95.35% 39237.54
rcv NA NA NA NA NA NA
adult NA NA NA NA NA NA
w8a NA NA NA NA NA NA
cod-rna NA NA NA NA NA NA
fars OM OM OM OM OM OM
skin OM OM OM OM OM OM
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Figure 1: Comparison of the values of KTA(K) and KTA(v) for different kernel parameters.

more efficient than the baseline criteria while preserving sim-
ilar classification accuracy. For the datasets containing about
10,000 examples, our criteria are around 400 times faster than
5-fold CV, and for the larger datasets, all criteria of O(l3)
complexity will run for more than 120 hours. For the datasets

with more than 100,000 examples, the memory cost required
to store the kernel matrix has stopped all existing criteria
from successfully running. According to the z statistic, there
is no difference on accuracies between our criteria and the
best of the compared criteria at the 95% level of significance.
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Table 2: Comparison of the accuracy and time (seconds) among the randomized criterion on MCM KTA(v), the criterion on the
direct stack of random features KTA(Z), and 5-fold CV with random Fourier features 5-CV-RFF.

datasets (D = 100) KTA(v) KTA(Z) 5-CV-RFF

Accuracy Time Accuracy Time Accuracy Time

thyroid 98.36% 1.75 98.72% 3.16 98.71% 99.27
mushrooms 98.72% 4.72 92.34% 3.60 90.40% 90.40
coil2000 93.88% 11.02 93.44% 4.28 93.61% 75.38
penbased 99.11% 3.74 99.24% 4.67 99.27% 77.29

datasets (D = 500) KTA(v) KTA(Z) 5-CV-RFF

Accuracy Time Accuracy Time Accuracy Time

thyroid 98.55% 11.27 98.76% 10.83 98.57% 1414.46
mushrooms 98.83% 15.32 93.47% 14.89 90.90% 1431.69
coil2000 93.75% 20.96 93.63% 17.51 94.01% 672.49
penbased 99.32% 12.73 99.38% 11.41 99.64% 921.53

In addition, the larger the dataset, the more efficiency gain
the randomized criteria have, which is in agreement with the
complexity analysis.

In the second experiment, we take KTA as an exam-
ple to study the difference between the randomized cri-
terion on Um and the criterion on the direct stack ma-
trix Z = [z0 . . . zl] ∈ R

D×l with zi = [cos(xT
i w0 +

b0), . . . , cos(x
T
i wD−1+ bD−1)] ∈ R

D. C2(v) is the random-
ized criterion for KTA on Um. We rewrite C2(v) = KTA(v).
The criterion on Z can be defined as KTA(Z) = (Zy)TZy

l‖ZTZ‖F .
For completeness, we also compare 5-fold CV with random
Fourier features (5-CV-RFF). In each fold of 5-CV-RFF, we
solve linear ridge regression with random features (Rahimi
and Recht 2008). The results are shown in Table 2. It is worth
noting that this experiment is conducted on a PC, while the
first experiment is conducted on our computing cluster. As
expected, KTA(v) and KTA(Z) are much faster than 5-CV-
RFF. In general, the efficiencies of KTA(Z) and KTA(v) are
close to each other. However, for the mushrooms dataset, the
accuracy of KTA(Z) for D = 500 is significantly lower than
that of KTA(v), and even lower than KTA(v) for D = 100.
There are two reasons for this. First, KTA(v) converges
faster than KTA(Z), implying that a bigger D is required
for KTA(Z). Second, KTA(v) adopts the spectrum of the
labeled MCM and hence involves more data information for
kernel selection. We could use Z to conduct randomized ker-
nel selection in practice, but we need to sample much more
random vectors to guarantee satisfactory performance.

The third experiment takes KTA(K) and KTA(v) as ex-
amples to gain deep insights on the difference between the
original and randomized criteria. To show the general appli-
cability of our method, this experiment adopts another set of
smaller but widely-used benchmark datasets6 in the model
selection community (Rätsch, Onoda, and Müller 2001;
Chapelle et al. 2002; Cawley and Talbot 2010). We check
the values of KTA(K) and KTA(v) for different kernel pa-
rameters. The results are shown in Figure 1, in which we
can find that the values of kernel parameters that reach the

6http://theoval.cmp.uea.ac.uk/matlab/

highest points of the curves for KTA(K) and KTA(v) are
the same or very close (please pay attention to the x-axis),
which means that the optimal kernels selected by maximizing
KTA(K) and KTA(v) are the same or very close.

Conclusions

In this paper, we specifically designed a kind of randomized
MCMs for kernel selection and established the connection
between the kernel functions and the spectra of the random-
ized MCMs. We provided the theoretical insights indicating
that kernel selection on the spectra of the randomized MCMs
is rational. Under the guarantee of the theoretical results,
we defined a series of randomized kernel selection criteria
with the spectra of the MCMs, which are of log-linear time
complexity and linear space complexity. This kind of scalabil-
ity alleviates the computational bottleneck faced by existing
kernel selection approaches. We empirically verified the ef-
fectiveness of the randomized criteria and provided some
deep insights of the randomized criteria.
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