
An Optimal Online Method of Selecting
Source Policies for Reinforcement Learning

Siyuan Li, Chongjie Zhang
Institute for Interdisciplinary Information Sciences, Tsinghua University

sy-li17@mails.tsinghua.edu.cn, chongjie@tsinghua.edu.cn

Abstract

Transfer learning significantly accelerates the reinforcement
learning process by exploiting relevant knowledge from pre-
vious experiences. The problem of optimally selecting source
policies during the learning process is of great importance
yet challenging. There has been little theoretical analysis of
this problem. In this paper, we develop an optimal online
method to select source policies for reinforcement learning.
This method formulates online source policy selection as a
multi-armed bandit problem and augments Q-learning with
policy reuse. We provide theoretical guarantees of the optimal
selection process and convergence to the optimal policy. In
addition, we conduct experiments on a grid-based robot navi-
gation domain to demonstrate its efficiency and robustness by
comparing to the state-of-the-art transfer learning method.

Introduction

Reinforcement learning (RL) (Sutton and Barto 1998) is
a widely-used framework to learn an optimal control or
decision-making policy. However, RL has a high sample
complexity, since a RL agent gains data via repeated in-
teractions with its environment. Transferring past knowl-
edge to a target task can greatly accelerate reinforcement
learning. The first step of transfer in RL is to select useful
knowledge during the reuse process. If an irrelevant source
task is chosen, learning performance could be worse than
learning from scratch, which is called negative transfer (Pan
and Yang 2010). This problem is challenging, because in
practical situation, the environment is mostly unknown and
an agent has no prior knowledge which source task is useful.
So the agent has to do online source task selection.

Transfer learning has been recognized as an important
direction in RL for a long time (Taylor and Stone 2009).
Some works leverage source task knowledge without au-
tomatically identifying related source tasks (Parisotto, Ba,
and Salakhutdinov 2015; Barreto et al. 2016; Gupta et al.
2017). However, these methods may suffer from negative
transfer. Others require humans to define relationships be-
tween tasks and relevant source tasks (Torrey et al. 2005;
Taylor, Stone, and Liu 2007; Ammar and Taylor 2011;
Ammar et al. 2015). Under a more general circumstance,
an agent has to do source task selection by itself. But

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

selecting an appropriate source task usually demands quite a
little extra knowledge concerning the domain. For example,
(Perkins, Precup, and others 1999; Lazaric, Restelli, and
Bonarini 2008; Nguyen, Silander, and Leong 2012) need
some prior experience in the target task. In (Ammar et
al. 2014; Song et al. 2016), a well-estimated or known
model is assumed, which is not always available in practice.
Policy Reuse Q-learning (PRQL) (Fernández and Veloso
2013) requires no prior knowledge of target task or MDP
environment, but it may converge to a suboptimal policy. To
address above limitations, we propose an optimal method to
select and reuse source policies online automatically without
extra prior knowledge.

Our contributions in this paper can be claimed as follows.
First, we formulate the source policy selection problem
as a Multi-armed Bandit (MAB) problem where different
source policies are regarded as bandits and enable optimal
online source policy selection. We refer to our approach as
Optimal Policy Selection for Transfer Learning (OPS-TL).
Second, we augment Q-learning with policy reuse, while
maintaining the same theoretical guarantee of convergence
as traditional Q-learning. Finally, our empirical experiments
conducted on a grid-based robot navigation domain verify
that our approach (i) accomplishes the optimal source policy
selection process; (ii) transfers useful knowledge to a target
task and significantly speeds up learning process; and (iii)
achieves the same empirical performance as traditional Q-
learning in equivalent situations where no source knowledge
is useful.

In the remainder of this paper, we start by reviewing
related work. Then, background knowledge on RL and
problem formulation is described. After that, we present
our approach and theoretical results followed by empirical
results comparing our approach with the state-of-the-art
algorithm. Finally, we conclude and outline directions for
future work.

Related Work

As transfer in RL has received much attention recently,
we now discuss in greater detail the relationship between
our algorithm and others. (Talvitie and Singh 2007) treated
previously learned policies as experts and mediated these
experts intelligently. Since the mixing time of experts is
known in episodic domains, this method is not as effective

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3562

as standard algorithms. In contrast, our approach works
fine for episodic tasks. PRQL (Fernández and Veloso 2013)
selected source tasks from a library probabilistically using
a softmax method. However, because it stops doing explo-
ration soon after greedy policy’s reward exceeds the reuse
reward, it does not guarantee convergence to the optimal
policy. (Sinapov et al. 2015) learned transferability between
a source-target task pair using meta-data. This method has
a low efficiency, for it is expensive to generate a large set
of data using every source-target pair. On the contrary, our
approach adapts an MAB method to select source policies
and accomplishes the optimal selection process. (Rosman,
Hawasly, and Ramamoorthy 2016) proposed a Bayesian
method to do policy reuse in a policy library. But it mainly
solves the problem of short-lived sequential policy selection,
therefore this method does not learn a full policy. (Rusu et
al. 2016) leveraged prior knowledge via lateral connections
to previously learned features in neural networks. Although
they have showed positive transfer even in orthogonal or
adversarial tasks, there is no theoretical foundation of their
algorithm.

Some related works focus on multi-task learning (MTL),
which is very similar to transfer learning. MTL assumes that
all MDPs are drawn from the same distribution and learning
is parallel on several tasks (Ramakrishnan, Zhang, and
Shah 2017). In contrast, we make no assumption regarding
the distribution over MDPs and concentrate on transfer
learning problem. In one previous MTL work, (Wilson et al.
2007) represented the distribution of MDPs with a hierarchi-
cal Bayesian model. The continuously updated distribution
served as a prior for rapid learning in new environments.
But as Wilson et al mentioned in their work, their algorithm
is not computationally efficient. In more recent MTL works,
(Brunskill and Li 2013) proposed a technique that involves
two phases of learning to reduce sample complexity of RL.
(Fachantidis et al. 2015) determined the most similar source
tasks based on compliance, which can be interpreted as a
sort of distance metric between tasks.

Preliminaries and Problem Formulation
This section briefly reviews RL background and describes
problem formulation. RL is a dominant framework to solve
control and decision-making problems via mapping situa-
tions to actions. The learning environment of RL is an MDP
defined as a tuple of 〈S,A, T,R, b0, γ〉, where S denotes a
discrete state space. At a time step t, an agent in a specific
state st performs an action at in a discrete action space
A. Based on transition function T (st, at, st+1), the agent
switches to next state st+1 and gets a reward rt according to
reward function R(st, at, st+1). An agent begins to interact
with its environment from a start state sampled from an
initial belief b0 and keeps taking actions until it reaches
a final state or an absorbing state. A policy π directs the
agent which action to take, given a particular state. The
agent’s goal is to learn an optimal policy that maximizes
the expected value of cumulative reward after training. γ
is a discount factor to reduce the impact of future rewards
on learning policy. Q-learning is a model-free RL method,
which is able to find an optimal policy for any finite MDP. A

Start

Select a source policy

Combine selected policy with random policy

Execute the policy and update Q-function

End

-greedy�

1 tp�tp

Figure 1: Flow chart of OPS-TL

Q-learning agent learns the expected utility for each action
in every given state Q(s, a) by doing value iteration update
in each step as below:

Q(st, at) ← (1− α)Q(st, at) + α(rt + γmax
a

Q(st+1, a))

where α is a learning rate.
Given a source policy library L = {π1, ..., πn}, where

∀j, πj ∈ L denotes the optimal policy for source task Ωj in
one domain, our goal is to reuse source policies in library L
optimally and solve a target task Ω. We assume that tasks are
episodic with maximum number of steps H in each episode
and take average reward of k episodes W (k) as a metric of
a learning algorithm:

W (k) =
1

k

∑k

i=0

∑H

h=0
γhri,h

where ri,h is the reward of time step h in episode i. The
convergence speed and value of W (k) indicate the learning
performance. Our approach applies transfer learning to Q-
learning, so it is an off-policy learning method. Since the ex-
ploration strategy will affect average reward during learning
greatly, we do evaluation following a fully greedy strategy
after each learning episode and obtain a learning curve of
average reward.

Approach

The rewards of reusing source policies are stochastic in RL.
Therefore, there is a dilemma between exploiting the policy
which yields high current rewards and exploring the policy
which may produce more future rewards. We adapt an MAB
method for this problem. Our approach accomplishes online
source policy selection via evaluating the utility of each
source policy during learning a target task. The exploration
process is guided by the intelligently selected policy in Q-
learning, which is an off-policy learner. In the situation
where no source knowledge is useful, ε-greedy strategy
in our approach will play a major role to maintain the
same learning performance as traditional Q-learning. In this

3563

section, we firstly present an optimal online source policy
selection method. After that, we introduce how to reuse
source knowledge through Q-learning. Finally, we provide
theoretical optimality analysis for our algorithm.

Figure 1 provides the overview of our algorithm. Firstly,
we execute ε-greedy exploration strategy with a probability
of 1− pt, and select a source policy from a library using an
MAB method with a probability of pt, where pt decreases
over time. That is to say, at the beginning of learning, we
exploit source knowledge mostly. As learning goes, past
knowledge becomes less useful, so we exploit ε-greedy
strategy to go on learning. In order to exploit a past policy,
our algorithm combines the past policy with the random
policy. Once the policy of current episode is determined, our
algorithm will execute the policy and update the Q-function.
Therefore, how to optimally select a source policy and to
reuse the selected policy are key to transfer learning.

Source Policy Selection

An agent has no prior knowledge which source policy is
useful for current target task before trying. It has to decide
which source policy to reuse in the next episode based
on previous rewards to obtain a larger cumulative reward.
Different source policies can be regarded as bandits with
stochastic rewards in MAB. Source policy selection and
MAB are both the exploitation versus exploration tradeoff
in essence.

The pseudo code of OPS-TL is shown in Algorithm 1. In
order to solve target task Ω, this method chooses ε-greedy
policy with a probability of 1 − pt and chooses a policy
from source policy library L = {π1, ..., πn} using UCB1
with a probability of pt (Line:3-5). The ε-greedy algorithm
is shown in Algorithm 3. When a past policy is chosen, we
execute combining method of Algorithm 2 on the chosen
past policy πk in episode k (Line:6-7). We need to keep
policy πj’s average gain Wj(k) and number of selected
times Tj(k) in the previous k episodes (∀j = 1, ..., n) for
UCB1 (Line:8-9, 13-14). ψh controls the reuse degree and
Algorithm 1 is executed for K episodes.

UCB is a simple and efficient algorithm that achieves
optimal logarithmic regret of MAB (Lai and Robbins 1985).
MAB defines a collection of n independent bandits with dif-
ferent expected rewards {μ1, μ2, ..., μn}. An agent sequen-
tially selects bandits to make cumulative regret minimum.
The regret is the difference between expected reward of the
selected bandit and maximum reward expectation μ∗. UCB1
of UCB family algorithms maintains number of steps Ti(k),
where machine i has been selected in k steps and empirical
expected reward μ̂i. Each machine in the collection is played
once initially and UCB1 selects machine j(k) as follows in
every time step afterwards:

j(k) = arg max
i=1...n

(μ̂i +

√
2ln(k)
Ti(k)

)

Source Policy Reuse

To take full advantage of the selected policy, the random pol-
icy is indispensable for interacting with unexplored states.

Algorithm 1 OPS-TL (Ω, L, pt, ψh,K,H, ε)
1: Initialize:

Q(s, a) = 0, ∀s ∈ S, a ∈ A
∀j = 1, ..., n :
[Wj(0), Q] ← π-reuse(πj ,Ω, Q, ψh, H)
Tj(0) = 1

2: for k = 1 to K do
3: Choose a policy πk:
4: With a probability of 1− pt, πk = πε-greedy
5: With a probability of pt:

j = argmax
1≤j≤n

(Wj(k − 1) +

√
2ln(

∑n
j=1 Tj(k − 1))

Tj(k − 1)
)

πk = πj

6: if πk ∈ L then
7: [R,Q] ← π-reuse(πk,Ω, Q, ψh, H)

8: Wj(k) =
Wj(k−1)Tj(k−1)+R

Tj(k−1)+1 ,
9: Tj(k) = Tj(k − 1) + 1;

10: else
11: Q ← ε-greedy(Ω, Q, ε,H)
12: end if
13: ∀j′ �= j :
14: Wj′(k) = Wj′(k − 1), Tj′(k) = Tj′(k − 1).
15: end for
16: return Q

Without random actions, past policies will lead an agent
to their original goals rather than the goal of target task.
Exploiting the useful source policy can be regarded as
directed exploration. Therefore, we combine source policy
πpast with random policy πr probabilistically in policy reuse
strategy demonstrated by Algorithm 2. At time step h, we
take action based on πpast with a probability ψh, and take a
random action with a probability of 1− ψh (Line:3-4).

Algorithm 2 shares some similar ideas with PRQL. They
both take an action probabilistically in one episode. How-
ever, we mix no greedy action in reuse episodes to maintain
a fixed expected value of reuse reward. In addition, each
source policy is uncorrelated so stochastic assumption of
MAB is satisfied. We choose ε-greedy strategy with a
probability of 1−pt outside reuse episodes instead. ε-greedy
strategy is crucial when there is no useful source policy in
the library. As pt decreases over time, our algorithm will
reuse source policy less and converge to ε-greedy strategy.

Theoretical Analysis

We present two theoretical results that provide the founda-
tion of our approach below.
Theorem 1. Given a source policy library L, if
UCB1 selects source policy according to the reward
of each episode in Algorithm 2, the expected regret is
logarithmically bounded.

Proof. Because there is no greedy action in each reuse
episode, all the source policies are not correlated. In ad-
dition, for each policy πj , its reward in every episode is

3564

Algorithm 2 π-reuse (πpast,Ω, Q, ψh, H)
1: Set initial state s randomly.
2: for h = 1 to H do
3: With a probability of ψh, a = πpast(s)
4: With a probability of 1− ψh, a = πr(s)
5: Receive next state s′ and reward rh
6: Update Q(s, a):

Q(s, a) ← (1− α)Q(s, a) + α(rh + γmax
a′

Q(s′, a′))

7: Set s ← s′
8: if s is the goal of Ω then
9: break

10: end if
11: end for
12: R =

∑H
h=0 γ

hrh
13: return R and Q

Algorithm 3 ε-greedy (Ω, Q, ε,H)
1: Set initial state s randomly.
2: for h = 1 to H do
3: With a probability of 1− ε, a = argmaxa Q(s, a)
4: With a probability of ε, a = πr(s)
5: Receive next state s′ and reward rh
6: Update Q(s, a):

Q(s, a) ← (1− α)Q(s, a) + α(rh + γmax
a′

Q(s′, a′))

7: Set s ← s′
8: if s is the goal of Ω then
9: break

10: end if
11: end for
12: return Q

an independent sample from the same distribution with a
fixed expectation. As Algorithm 2 uses the same possibility
to combine each source policy with a random policy, the
return of Algorithm 2 can represent the utility of the selected
policy to a certain extent. So the stochastic assumption of
MAB is satisfied. UCB can achieve the logarithmic regret
bound asymptotically which is proved minimum by Lai
and Robbins in their classical paper (Auer, Cesa-Bianchi,
and Fischer 2002), so it is an optimal allocation strategy
when there is no preliminary knowledge about the reward
distribution. As a result, we optimally select source policies
from a library theoretically, which is OPS-TL without the
ε-greedy strategy.

Theorem 2. Q(s, a) of Algorithm 1 will converge to the
optimal Q-function Q∗ for target task Ω as traditional Q-
learning if

∑
t αt(s, a) = ∞,

∑
t α

2
t (s, a) < ∞.

Proof. Since pt controlling the exploration rate decreases
with time, Algorithm 1 will execute ε-greedy strategy more
and more frequently. ε of ε-greedy strategy is less than
1, so Algorithm 1 will keep doing exploration for infinite
episodes. Q-learning with a proper learning rate converges

to the optimal Q-function for any finite MDP (Melo 2001).
The probability of executing random actions in Algorithm 1
will never equal to 0, so all state-action pairs will be visited
infinitely often. As a result, Algorithm 1 will converge to the
optimal Q-function as traditional Q-learning.

Both our learning method and selection method are op-
timal. Thus, our approach is an optimal online strategy to
select source policies theoretically.

Empirical Results

To demonstrate that our algorithm is empirically sound
and robust, we carry out experiments in a grid-based robot
navigation domain with multiple rooms and compare the
results with the state-of-the-art algorithm, PRQL (Fernández
and Veloso 2013).

Experimental Settings

Our navigation domain has been used by (Fernández and
Veloso 2013). Some recent works of transfer learning also
conduct experiments in a similar grid-world domain (Lehn-
ert, Tellex, and Littman 2017; Laroche and Barlier 2017).
The map of our navigation domain is composed of N ×M
(21 × 24 in our case) states which denote free positions,
goal area and wall. Each state is plotted as a 1 × 1 cell.
An agent’s position is represented by a two-dimensional
coordinates (x, y) continuously. Afterwards, we take integer
part of (x, y) to determine discrete state of an agent. The
agent in this problem can take four actions, respectively
up, down, left and right. Arbitrary action makes agent’s
position move in the corresponding direction with a step
size of 1. To make this problem more practical, we design
a stochastic MDP by adding a uniformly distributed random
variant within (−0.2, 0.2) to x and y respectively after an
action. When an agent reaches a wall state, the wall will
keep the agent in the state before taking actions. After an
agent reaches the goal area, it will obtain a reward of 1 and
then this episode ends. Arriving at the other states except the
goal state generates no reward. An agent has no high-level
view of the map and only observes its current state.

In Figure 2, g and g′ represent the goals of target task
Ω and Ω′. Numbers in Figure 2 denote goals of a source
task library {Ω1,Ω2,Ω3,Ω4}. Source policies in the library
are optimal to their respective tasks. Obviously, Ω1 is the
most similar to Ω, because their goals are in the same room,
and the other tasks are dissimilar to Ω. This problem has a
large number of states, and the initial belief b0 is a uniform
distribution. Therefore, learning from scratch is rather slow
and transfer learning can significantly accelerate the learning
process.

In this experiment, α = 0.05, γ = 0.95 for Q-function
update. K is set as 4000, which is enough for our approach
to learn a policy with high reward. To prevent an agent from
entering a dead loop, H is set as 100. Because goals of
different tasks are different, an agent takes actions according
to the past policy with a larger probability at the beginning
of an episode. Afterwards, it takes more random actions. So
ψh is set as 0.95h. In addition, pt is set to 1−k/(k+1500),
which decreases over time. So our approach converges to

3565

1 4

3

g'

g

2

Figure 2: Target tasks and source task library in the map

ε-greedy at last. To make parameters simple, ε of ε-greedy
strategy is set as 0.1 (with probability 0.9 follows the
greedy strategy, and with probability 0.1 acts randomly). We
conduct these experiments with PRQL and Q-learning to
do comparison. Q-learning utilizes ε-greedy with the same
parameter as ε-greedy of our approach. The parameters of
PRQL are consistent with those in (Fernández and Veloso
2013).

UCB1-tuned tunes upper confidence bound according to
variance of bandit rewards as follows:

j(k) = arg max
i=1...n

(μ̂i +

√
cln(k)
Ti(k)

)

where

c = min(
1

4
, σ̂2

i (k) +

√
2ln(k)
Ti(k)

)

(14 is upper bound on the variance of a Bernoulli random
variable). UCB1-tuned outperforms UCB1 in a multitude of
experiments. Although it has not been proved theoretically
optimal, another algorithm UCB-V which also considers the
variance of bandit rewards has already been proved optimal
in theory (Audibert, Munos, and Szepesvári 2009). The
variance and expectation of reward in this experiment are
much smaller than 1

4 . We tried a lot of parameter settings and
picked the best c value, 0.0049, for Algorithm 1. A larger c
will lead to a higher exploration rate, so it is more suitable
to the circumstance with a larger variance.

In the next section, we compare the empirical perfor-
mance between our algorithm and PRQL especially.

Experimental Results

In order to manifest that our approach achieves the optimal
source policy selection, we firstly show the learning curve
by doing evaluation after each episode and the frequency of
selecting source policies. Next, we compare the expected re-
turn among PRQL, our approach and traditional Q-learning.

Then, we set reward functions of target tasks randomly
and conduct the above experiment again to demonstrate
robustness of our approach. Afterwards, we conduct an
experiment to indicate that our method is equally applicable
to a circumstance where no similar task exists in source task
library. Finally, we present a scenario when PRQL does not
converge to the greedy policy. However, in the same case,
our approach still converges to ε-greedy strategy.

0 500 1000 1500 2000 2500 3000 3500 4000
episodes

-0.1

0

0.1

0.2

0.3

0.4

W
(e

va
lua

tio
n)

PRQL o Q-learning

Figure 3: Performance comparison of PRQL, OPS-TL and
traditional Q-learning on target task Ω

Figure 3 shows the learning curve of PRQL, our approach
and traditional Q-learning when solving target task Ω. We
compare the average reward generated by following a fully
greedy policy after each episode, since these three learning
methods are all off-policy. Each learning process in Figure 3
has been executed 10 times. The average value is shown and
error bars represent standard deviations.

In Figure 3, x axis represents the number of episodes and
y axis represents average evaluation reward. From Figure
3, we can have three observations. First, our algorithm
uses less time to reach a threshold of average reward than
PRQL. Average reward of our approach is greater than
0.3 in only 500 episodes and more than 0.35 in the end.
Second, the asymptotic performance of our approach is
better than PRQL. Although the gap is not overwhelmingly
big, it is comparable to the convergence value of cumulative
reward, since reward in this experiment is sparse and not
exceedingly large. Third, reward of Q-learning increases
much more slowly than our approach, so knowledge transfer
in our approach is intensely efficient and no negative transfer
occurs. In addition, standard deviations of our approach are
the smallest among the three curves, which demonstrates
that our approach has an extremely stable performance in
the 10 executions.

Since our approach selects source policies deterministi-
cally, we cannot compare the probability of selecting each
source policy. Therefore, we show the frequency of selecting
source policies by our approach and PRQL in Figure 4.

We can see that our approach almost does not select
irrelevant tasks any more after 500 episodes. In contrast,

3566

0 500 1000 1500 2000 2500 3000 3500 4000
episodes

0

0.2

0.4

0.6

0.8

1
fre

qu
en

cy
 o

f s
ele

cti
ng

 e
ac

h
so

ur
ce

 p
oli

cy
1

2

3

4

(a) OPS-TL

0 500 1000 1500 2000 2500 3000 3500 4000
episodes

0

0.2

0.4

0.6

0.8

1

fre
qu

en
cy

 o
f s

ele
cti

ng
 e

ac
h

so
ur

ce
 p

oli
cy

1

2

3

4

(b) PRQL

Figure 4: Frequency of selecting each source policy

frequency of choosing dissimilar tasks by PRQL is still
around 0.1 in 500 episodes. It costs a shorter time for our
method to detect that source task Ω1 is proper to transfer
from. The curve of Ω1 drops slowly in our method because
we keep using the past policy to explore the environment
and our reuse method is different from PRQL. To satisfy the
stochastic assumption of MAB, we split greedy actions from
the reuse process. As frequency is different from probability,
we select ε-greedy strategy with a high probability when k
is large.

Since the initial belief b0 in this experiment is an uni-
form distribution, the expected return can be denoted as
1
S

∑
s∈S maxa Q(s, a). Figure 5 shows the expected return

of our approach, PRQL and Q-learning.
In Figure 5, the curve of our approach rises fastest, which

demonstrates that our agent reaches the goal more times
using the same time. So we obtain more retrurn during
learning and these return “back up” to other states. The
expected return converges slowly, for only reaching the goal
state generates a reward. Therefore, we have not shown the

Figure 5: Expected return of PRQL, OPS-TL and Q-learning

convergent part, so the curves seem polynomial.
To demonstrate robustness of our algorithm, we randomly

select goals of target tasks, guaranteed that these goals
are in the same room as one of source tasks in Figure 2.
So there is a similar source task to transfer from. In the
next experiment, we discuss the situation where no source
knowledge is useful. We choose 9 different goals for this
experiment, which are shown in Figure 6 with numbers.

1

4
5

6
8

9

2
7

3
G

Figure 6: Randomly selected target tasks

Figure 7 shows average evaluation reward of our algo-
rithm, PRQL and Q-learning when solving tasks denoted in
Figure 6. The reward of our algorithm has a faster increment
than PRQL in all the cases. Moreover, convergence value
of reward in our algorithm is sometimes a little larger.
PRQL converges to the greedy policy and does not explore
any more, soon after the reward of greedy policy exceeds
all source policies. Thus, it may converge to a suboptimal
policy in the end. However, our approach keeps exploring, so
every state-action pair is visited infinitely often. As a result,
our algorithm surely converges to the optimal policy.

3567

Figure 7: Average reward of PRQL, OPS-TL and Q-learning to solve randomly selected target tasks

To indicate that our method can be applied to a circum-
stance where there is no similar task in source task library,
we conduct the above experiment again to solve target task
Ω′ in Figure 2 using the same source task library. As we can
see, the goal of Ω′ is in a totally different room compared
to the goals of source tasks. So all the source policies in the
library are useless for Ω′. The performance comparison of
PRQL, our approach and Q-learning is shown in Figure 8.

0 500 1000 1500 2000 2500 3000 3500 4000
episodes

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

W
(e

va
lua

tio
n)

PRQL o Q-learning

Figure 8: Performance comparison of PRQL, OPS-TL and
traditional Q-learning on target task Ω′

As shown in Figure 8, during the first 1000 episodes,
the three curves have a similar growth trend, for all the

algorithms do exploration in their own way at the beginning.
Afterwards, the curve of PRQL starts to flatten, because it
has converged to the greedy policy and no random actions
is taken. In contrast, our approach has almost the same
performance as Q-learning and their curves keep rising,
since these two methods go on doing exploration with
ε-greedy strategy. ε-greedy strategy of our approach plays
a paramount role during learning.

We set position marked with G in Figure 6 as the goal
of task Ωs to present a case when PRQL does not converge
to the greedy policy. We show the probability of executing
each policy by PRQL to solve Ωs in Figure 9. The goal of
Ωs is just on the way to the goal of Ω1, so Ω1 is perfect for
Ωs except inside the upper-left room.

PRQL ends up reusing the most similar source task Ω1

to solve Ωs rather than the greedy policy in 2 of the 10
times. When there is a source task especially similar to the
target task, the reward of reusing the most similar policy
may exceed the reward of the greedy policy, so PRQL
converges to the most relevant source task. In contrast, our
algorithm controls the exploration rate by tuning pt. We
choose ε-greedy strategy with a probability of 1− pt. As pt
decreases over time, our algorithm will invariably converge
to ε-greedy strategy no matter how similar the target task is
to source tasks.

Summary and Future Directions

This work focuses on transfer learning in RL. In this paper,
we develop an optimal online method of selecting source
policies. Our method formulates online source policy selec-
tion as an MAB problem. In contrast to previous works, this

3568

0 500 1000 1500 2000 2500 3000 3500 4000
episodes

0

0.2

0.4

0.6

0.8

1
pr

ob
ab

ilit
y o

f s
ele

cti
ng

 e
ac

h
po

lic
y 1

2

3

4

g

Figure 9: Probability of selecting each policy by PRQL to
solve Ωs for one particular execution

work provides firm theoretical ground to achieve the optimal
source policy selection process. In addition, we augment Q-
learning with policy reuse and maintain the same theoretical
guarantee of convergence as traditional Q-learning. Further-
more, we present empirical validation that our algorithm
outperforms the state-of-the-art transfer learning method
and promotes transfer successfully in practice.

These promising results suggest several interesting direc-
tions for future research. One of them is to combine inter-
mapping between source tasks and target tasks with policy
reuse. So we are able to deal with more general circumstance
of different state and action spaces. Second, we intend to
formulate source task selection problem in an MDP setting
and select source tasks based on the current state, thus the
moment of transfer is determined automatically. Finally, it
is of importance to extend the proposed algorithm to deep
RL and test it in benchmark problems.

References

Ammar, H. B., and Taylor, M. E. 2011. Reinforcement
learning transfer via common subspaces. In International
Workshop on Adaptive and Learning Agents, 21–36.
Springer.
Ammar, H. B.; Eaton, E.; Taylor, M. E.; Mocanu, D. C.;
Driessens, K.; Weiss, G.; and Tuyls, K. 2014. An
automated measure of MDP similarity for transfer in
reinforcement learning. In Workshops at the Twenty-Eighth
AAAI Conference on Artificial Intelligence.
Ammar, H. B.; Eaton, E.; Ruvolo, P.; and Taylor, M. E.
2015. Unsupervised cross-domain transfer in policy gradient
reinforcement learning via manifold alignment. In Proc. of
AAAI.
Audibert, J.-Y.; Munos, R.; and Szepesvári, C. 2009.
Exploration–exploitation tradeoff using variance estimates
in multi-armed bandits. Theoretical Computer Science
410(19):1876–1902.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-

time analysis of the multiarmed bandit problem. Machine
learning 47(2-3):235–256.
Barreto, A.; Munos, R.; Schaul, T.; and Silver, D. 2016.
Successor features for transfer in reinforcement learning.
arXiv preprint arXiv:1606.05312.
Brunskill, E., and Li, L. 2013. Sample complexity
of multi-task reinforcement learning. arXiv preprint
arXiv:1309.6821.
Fachantidis, A.; Partalas, I.; Taylor, M. E.; and Vlahavas,
I. 2015. Transfer learning with probabilistic mapping
selection. Adaptive Behavior 23(1):3–19.
Fernández, F., and Veloso, M. 2013. Learning domain
structure through probabilistic policy reuse in reinforcement
learning. Progress in Artificial Intelligence 2(1):13–27.
Gupta, A.; Devin, C.; Liu, Y.; Abbeel, P.; and Levine,
S. 2017. Learning invariant feature spaces to trans-
fer skills with reinforcement learning. arXiv preprint
arXiv:1703.02949.
Lai, T. L., and Robbins, H. 1985. Asymptotically efficient
adaptive allocation rules. Advances in Applied Mathematics
6(1):4–22.
Laroche, R., and Barlier, M. 2017. Transfer reinforcement
learning with shared dynamics. In AAAI, 2147–2153.
Lazaric, A.; Restelli, M.; and Bonarini, A. 2008. Transfer
of samples in batch reinforcement learning. In Proceedings
of the 25th international conference on Machine learning,
544–551. ACM.
Lehnert, L.; Tellex, S.; and Littman, M. L. 2017. Advantages
and limitations of using successor features for transfer in
reinforcement learning. arXiv preprint arXiv:1708.00102.
Melo, F. S. 2001. Convergence of Q-learning: A simple
proof. Institute Of Systems and Robotics, Tech. Rep 1–4.
Nguyen, T.; Silander, T.; and Leong, T. Y. 2012.
Transferring expectations in model-based reinforcement
learning. In Advances in Neural Information Processing
Systems, 2555–2563.
Pan, S. J., and Yang, Q. 2010. A survey on transfer learning.
IEEE Transactions on knowledge and data engineering
22(10):1345–1359.
Parisotto, E.; Ba, J. L.; and Salakhutdinov, R. 2015. Actor-
mimic: Deep multitask and transfer reinforcement learning.
arXiv preprint arXiv:1511.06342.
Perkins, T. J.; Precup, D.; et al. 1999. Using options for
knowledge transfer in reinforcement learning. University of
Massachusetts, Amherst, MA, USA, Tech. Rep.
Ramakrishnan, R.; Zhang, C.; and Shah, J. 2017.
Perturbation training for human-robot teams. Journal of
Artificial Intelligence Research 59:495–541.
Rosman, B.; Hawasly, M.; and Ramamoorthy, S. 2016.
Bayesian policy reuse. Machine Learning 104(1):99–127.
Rusu, A. A.; Rabinowitz, N. C.; Desjardins, G.; Soyer, H.;
Kirkpatrick, J.; Kavukcuoglu, K.; Pascanu, R.; and Hadsell,
R. 2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671.

3569

Sinapov, J.; Narvekar, S.; Leonetti, M.; and Stone, P. 2015.
Learning inter-task transferability in the absence of target
task samples. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems,
725–733. International Foundation for Autonomous Agents
and Multiagent Systems.
Song, J.; Gao, Y.; Wang, H.; and An, B. 2016.
Measuring the distance between finite Markov decision
processes. In Proceedings of the 2016 International
Conference on Autonomous Agents & Multiagent Systems,
468–476. International Foundation for Autonomous Agents
and Multiagent Systems.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement
learning: An introduction, volume 1. MIT press Cambridge.
Talvitie, E., and Singh, S. P. 2007. An experts algorithm for
transfer learning. In IJCAI, 1065–1070.
Taylor, M. E., and Stone, P. 2009. Transfer learning
for reinforcement learning domains: A survey. Journal of
Machine Learning Research 10(Jul):1633–1685.
Taylor, M. E.; Stone, P.; and Liu, Y. 2007. Transfer learning
via inter-task mappings for temporal difference learning.
Journal of Machine Learning Research 8(Sep):2125–2167.
Torrey, L.; Walker, T.; Shavlik, J.; and Maclin, R. 2005.
Using advice to transfer knowledge acquired in one
reinforcement learning task to another. In ECML, 412–424.
Springer.
Wilson, A.; Fern, A.; Ray, S.; and Tadepalli, P. 2007.
Multi-task reinforcement learning: a hierarchical Bayesian
approach. In Proceedings of the 24th international
conference on Machine learning, 1015–1022. ACM.

3570

