
Imitation Learning via
Kernel Mean Embedding

Kee-Eung Kim
School of Computer Science

KAIST
kekim@cs.kaist.ac.kr

Hyun Soo Park
Department of Computer Science and Engineering

University of Minnesota
hspark@umn.edu

Abstract

Imitation learning refers to the problem where an agent learns
a policy that mimics the demonstration provided by the ex-
pert, without any information on the cost function of the en-
vironment. Classical approaches to imitation learning usually
rely on a restrictive class of cost functions that best explains
the expert’s demonstration, exemplified by linear functions of
pre-defined features on states and actions. We show that the
kernelization of a classical algorithm naturally reduces the
imitation learning to a distribution learning problem, where
the imitation policy tries to match the state-action visitation
distribution of the expert. Closely related to our approach is
the recent work on leveraging generative adversarial networks
(GANs) for imitation learning, but our reduction to distribu-
tion learning is much simpler, robust to scarce expert demon-
stration, and sample efficient. We demonstrate the effective-
ness of our approach on a wide range of high-dimensional
control tasks.

In imitation learning, an agent learns to behave by mim-
icking the demonstration provided by the expert, situated
in an environment with an unknown cost function. A clas-
sical approach to imitation learning is behavioral cloning,
where the policy is directly learned to map from states to ac-
tions by supervised learning (Sammut 2010). Unfortunately,
this straightforward approach does not generalize well to
unseen states, often requiring a large amount of training
data. A more principled approach is apprenticeship learn-
ing (AL), where the policy is sought that is guaranteed
to perform at least as well as the expert (Russell 1998;
Ng, Russell, and others 2000; Abbeel and Ng 2004). How-
ever, to formally meet the guarantee, AL algorithms typi-
cally assume a restrictive class of cost functions and a plan-
ner that yields a sufficiently accurate optimal policy for a
cost function. This does not reflect the complex nature of
high-dimensional dynamics in real-world problems.

On the other hand, deep neural networks have been shown
strong predictive power to model complex functions: the
parametric function via networks is highly flexible and ex-
pressive, which can be efficiently trained by stochastic gra-
dient descent. Representing the cost function and the agent
policy using neural networks shall yield a plausible policy
that faithfully imitates the expert’s demonstrated behaviors

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in high-dimensional control tasks. In this line of thought, Ho
and Ermon (2016) presented generative adversarial imita-
tion learning (GAIL), which casts the objective of imitation
learning as the training objective of generative adversarial
networks (GANs) (Goodfellow et al. 2014). The key insight
behind GAIL is that imitation learning reduces to matching
the state-action visitation distributions (i.e. occupancy mea-
sure) of the learned policy to that of the expert policy, under
a suitable choice of the penalty on the cost function. How-
ever, GAIL often exhibits unstable training in practice due to
the alternating optimizations of the generator and discrimi-
nator networks to address the minimax objective function, a
well-known challenge in training GANs.

In this work, we show that extending the class of cost
functions to the reproducing kernel Hilbert space (RKHS)
alternatively reduces the imitation learning to the distribu-
tion learning problem under the maximum mean discrep-
ancy (MMD), a metric on probability distributions defined
in the RKHS. However, our derivation is much simpler and
more natural. Although the derivation is almost immediate,
our work is the first to present the kernelization of a clas-
sical AL algorithm (Abbeel and Ng 2004), and establish
analogies with the state of the art imitation learning algo-
rithm, i.e. GAIL. The advantage of our work is that the train-
ing becomes simpler yet robust to local optima since the
hard minimax optimization is avoided. As an end result, our
work becomes closely related to generative moment match-
ing networks (GMMNs) (Li, Swersky, and Zemel 2015) and
MMD nets (Dziugaite, Roy, and Ghahramani 2015), two
approaches to training deep generative neural networks us-
ing the MMD. Our experiments on the same set of high-
dimensional control imitation tasks with the identical set-
tings as in the GAIL paper, with the largest task involv-
ing 376 observation and 17 action dimensions, demonstrate
that the proposed approach performs better than or on a par
with GAIL, and significantly outperforms GAIL particularly
when the expert demonstration is scarce, with performance
gain up to 41%.

Background

MDPs and Imitation Learning We define basic notation
for our problem setting and briefly review relevant work in
the literature. We assume learning in an environment that
can be modeled as a Markov decision process (MDP), with

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3415

state space S, action space A, transition model p(s′|s, a),
initial state distribution p0(s), and cost function c(s, a). We
assume the total discounted cost with discount rate γ, so that
the long-term cost of a policy π : S → p(A) is defined as

Jc(π) � Es0,a0,···[
∑∞

t=0 γ
tc(st, at)],

where the trajectory [s0, a0, · · ·] is generated by s0 ∼
p0(s0), st+1 ∼ p(st+1|st, at), at ∼ π(at|st), ∀t ≥ 0.
We also define the state-action value function Qπ

c (s, a) �
Est=s,at=a,···[

∑∞
t′=t γ

t′−tc(st′ , at′)], the state value func-
tion V π

c (s) � Ea∼π(·|s)[Qπ
c (s, a)] and the advantage func-

tion Aπ
c (s, a) � Qπ

c (s, a)− V π
c (s).

For any policy π, there is a one-to-one correspondence
between the policy and its occupancy measure (Puterman
1994)

ρπ(s, a) � Es0,a0,···[
∑∞

t=0 γ
tδs,a(st, at)]

=
∑∞

t=0 γ
tp(st = s, at = a) (1)

where δ is the Kronecker delta function. Essentially, this is
an unnormalized visitation distribution over states and ac-
tions, which sums to 1/(1 − γ). The long-term cost is then
simply the expected cost under the occupancy measure,

Jc(π) =
∑

s,a c(s, a)ρπ(s, a) � Es,a∼ρπ
[c(s, a)].

When the state and the action spaces are large or con-
tinuous, the classical approach is to work with pre-defined
features �φ(s, a) ∈ �K and assume a linear cost function in
terms of features: c(s, a) � �w��φ(s, a). In this case, it is
easy to see that using the feature expectation

�μπ � Es0,a0,···[
∑∞

t=0 γ
t�φ(st, at)] = Es,a∼ρπ

[�φ(s, a)],
(2)

the long-term cost is Jc(π) = �w��μπ by the linearity of ex-
pectation.

In imitation learning, we assume demonstration dataset
DπE

provided by the expert, whose behavior is governed
by policy πE unknown to the agent. The goal is to compute
policy π that best approximates πE given the demonstration
dataset, without any further information about the underly-
ing MDP model, except a simulator that can sample trajec-
tories given any policy π.

Apprenticeship learning (AL) is an approach to imitation
learning, which formalizes this problem by defining a class
of cost functions C and seeks policy π that performs as well
as πE for all c ∈ C, i.e.

Jc(π) ≤ Jc(πE) for all c ∈ C
Note that if the true cost function is in C, the policy π that
satisfies this inequality is guaranteed to perform as well as,
or better than, πE . This constraint satisfaction problem can
be reformulated as an optimization problem, with the objec-
tive

min
π
ψ∗C(π, πE) where ψ∗C(π, πE) = max

c∈C
[Jc(π)− Jc(πE)]

(3)
The AL algorithm by Abbeel and Ng (2004) can be seen as
choosing the cost function class

C�2 =
{
c(s, a) = �w��φ(s, a)

∣∣∣ ‖�w‖2 ≤ 1
}

which yields

ψ∗C�2 (π, πE) = max
‖�w‖2≤1

[�w��μπ − �w��μπE
] (4)

whereas Multiplicative Weights Apprenticeship Learning
(MWAL) by Syed and Schapire (2007) is associated with
the cost function class

CΔ =
{
�w��φ(s, a)

∣∣∣ �w ∈ Δ
}

where Δ denotes the simplex constraint, i.e. �w ≥ �0 and∑
wi = 1. This yields

ψ∗CΔ(π, πE) = max
�w∈Δ

[�w��μπ − �w��μπE
] (5)

The minimax optimization problem in Eqn. (3) typically
involves repetitive computations of optimal policies for in-
termediate cost functions (Abbeel and Ng 2004; Syed and
Schapire 2007). This is intractable for large-scale problems,
especially those with continuous action spaces. Ho, Gupta,
and Ermon (2016) presented a gradient-based stochastic op-
timization approach, where the parameterized policy (typi-
cally a neural network) πθ is found by alternating between
computing the cost function c∗ that attains maximum in ψ∗C
with fixed πθ, and then improving πθ by gradient descent us-
ing ∇θψ

∗
c∗(πθ, πE). This approach can be used with differ-

ent cost function classes, e.g. C�2 or CΔ. In the experiments,
we will refer to these two gradient-based versions of AL as
Feature Expectation Matching (FEM) and Game-Theoretic
Apprenticeship Learning (GTAL).

Kernel Mean Embedding and MMD This paper seeks a
kernel-based imitation learning algorithm that does not rely
on explicit features �φ(s, a). The very first step is to realize
that the feature expectation given in Eqn. (2) is actually the
mean embedding of the distribution ρπ using the feature �φ.
This motivates the use of kernel mean embedding, which
extends the classical kernel approach to probability distri-
butions (Smola et al. 2007). Specifically, choosing a kernel
implies an implicit feature map φ that represents a probabil-
ity distribution as a mean function,

μp(·) �
∫
X
k(x, ·)dp(x) =

∫
X
φ(x)dp(x)

which is an element in the reproducing kernel Hilbert space
(RKHS) H of functions on X with reproducing kernel k.
This approach has a number of useful properties. First, since
H is an RKHS, by the Riesz representation theorem, there is
a feature map φ(x) from X to � such that

f(x) = 〈f, φ(x)〉H = 〈f, k(x, ·)〉H
when f belongs toH (Reed and Simon 1980; Steinwart and
Christmann 2008). Note that this implies 〈φ(x), φ(y)〉H =
k(x, y), and in addition, Ex∼p[f(x)] = 〈f, μp〉H. Second,
for a class of kernels known as characteristic kernels, the
mean map φ is injective, i.e. ‖μp − μq‖H = 0 if and only
if p and q are the same distribution (p = q). Hence, the
kernel mean embedding can be used to define a metric for

3416

probability distributions (Fukumizu, Bach, and Jordan 2004;
Sriperumbudur et al. 2008).

The maximum mean discrepancy (MMD) (Gretton et
al. 2012) is an instance of the integral probability metric
(IPM) (Müller 1997) defined with an RKHS:

MMD[H, p, q] � sup
‖f‖H≤1

[∫
f(x)dp(x)−

∫
f(y)dq(y)

]

= sup
‖f‖H≤1

〈μp − μq, f〉H (6)

= ‖μp − μq‖H
Hence, MMD[H, p, q] = 0 if and only if p = q with a char-
acteristic kernel. Given two sets of samples DX = {xi}Ni=1

and DY = {yi}Mi=1 from p and q respectively, a (biased)
empirical estimate of the MMD is obtained by

̂MMD
2
[H, DX , DY] = ‖μ̂p − μ̂q‖2H

=
∥∥∥ 1

N

N∑
i=1

φ(xi)− 1

M

M∑
j=1

φ(yj)
∥∥∥2

=
1

N2

N∑
i=1

N∑
i′=1

k(xi, xi′) +
1

M2

M∑
j=1

M∑
j′=1

k(yj , yj′)

− 2

NM

N∑
i=1

M∑
j=1

k(xi, yj)

The function f∗ that attains the supremum in Eqn. (6) is
defined as the witness function. Since f∗ ∝ μp − μq , we
have

f∗(z) ∝ 〈μp−μq, φ(z)〉H = Ex∼p[k(x, z)]−Ey∼q[k(y, z)]

f̂∗(z) ∝ 〈μ̂p−μ̂q, φ(z)〉H = 1
N

N∑

i=1

k(xi, z)− 1
M

M∑

j=1

k(yj , z)

where f̂∗ is the empirical estimate of f∗, and the normaliz-
ing constant is ‖μp − μq‖H.

Generative Moment Matching

Imitation Learning
The cost function class in the imitation learning objec-
tive (Eqn. (4)), i.e. linear functions on pre-defined features,
is too restrictive. We want to learn with a more expressive
class of cost functions, yet keep the optimization tractable.
The main idea behind our approach is to reformulate the im-
itation learning objective using kernels. First, we assume the
cost function class

CH =
{
c(s, a) = 〈c, φ(s, a)〉

∣∣∣ ‖c‖H ≤ 1
}

defined in RKHSH. Then, the objective function becomes

ψ∗CH(π, πE) = sup
‖c‖H≤1

[∫
c(s, a)dρπ(s, a)

−
∫
c(s′, a′)dρπE

(s′, a′)
]

= sup
‖c‖H≤1

〈μπ − μπE
, c〉H (7)

= ‖μπ − μπE
‖H

which is exactly the MMD between two distributions ρπ and
ρπE

, i.e. MMD[H, ρπ, ρπE
]. Hence, imitation learning natu-

rally reduces to matching the state-action distribution of the
agent to that of expert, in which we use the MMD as the
metric between two distributions.

This also yields an insight on how our approach relates to
Generative Adversarial Imitation Learning (GAIL) (Ho and
Ermon 2016). GAIL casts the minimax optimization prob-
lem in Eqn. (3) as the training objective of Generative Ad-
versarial Networks (GANs). It was shown in the GAIL paper
that, instead of assuming a specific cost function class to be
searched, a sophisticated penalty function defined directly
over generic cost functions leads to the objective function

ψ∗GA(πθ, πE) = max
d∈(0,1)S×A

[
Es,a∼ρπθ

[log d(s, a)]

+ Es,a∼ρπE
[log(1− d(s, a))]

]
(8)

where d is a binary function defined over all possible states
and actions. Hence, optimizing minθ ψ

∗
GA(πθ, πE) essen-

tially becomes training a GAN, where the discriminator
d(s, a) tries to discriminate between the trajectories from
πθ and those from πE , and the generator is the policy πθ
that tries to minimize the long-term cost with cost func-
tion c(s, a) = log d(s, a). It can be shown that the opti-
mum of ψ∗GA(π, πE) is the Jensen-Shannon divergence be-
tween the occupancy measures of π and πE : JS(ρπ, ρπE

) �
KL(ρπ‖(ρπ+ρπE

)/2)+KL(ρπE
‖(ρπ+ρπE

)/2) (Goodfel-
low et al. 2014; Ho and Ermon 2016). In summary, assum-
ing that we can obtain the optimum d inside ψ∗GA(π, πE),
the optimization objective of GAIL becomes

min
θ
JS(ρπθ

, ρπE
)

where we are trying to match the state-action distribution of
the agent to that of expert, in which the probability metric is
Jensen-Shannon divergence, instead of MMD.

Our reformulation of the imitation learning objective us-
ing kernels has three immediate advantages over GAIL.
First, we have shown that the imitation learning can be re-
duced to matching two probability distributions, via a much
simpler argument using kernel mean embedding. Second,
we have avoided alternating minimax optimization in GAN,
which is known to be prone to local convergence. In GAIL,
the cost function is defined as the discriminator in GAN,
which is not an exact optimum of Eqn. (8) but an approx-
imation using a neural network. In contrast, the cost func-
tion in our approach is the witness function of MMD, which
is the exact closed-form optimum of Eqn. (7). Lastly, and
practically, we can monitor the progress via MMD, which
indicates how well the policy is imitating. In contrast, the JS
estimate from GANs is known to be not much meaningful.

Our algorithm is shown in Algorithm 1, which we call
generative moment matching imitation learning (GMMIL).
We assume a multi-layer neural network for representing the
policy, e.g. a Gaussian distribution with its mean and preci-
sion parameterized by neural networks that take raw state
encodings as input, and use Trust Region Policy Optimiza-

3417

Algorithm 1: Generative Moment Matching Imitation Learning

Input : Expert dataset of trajectories DπE
= {(sEi , aEi)}Mj=1

Initialize policy parameter θ
for iter = 0, 1, . . . do

Sample trajectories Dπθ
= {(si, ai)}Ni=1 by executing πθ

Calculate the empirical estimate of the witness function f̂∗(s, a) of MMD[Dπθ
, DπE

] for all (s, a) ∈ Dπθ
:

f̂∗(s, a) =
1

N

N∑
i=1

k((si, ai), (s, a))− 1

M

M∑
j=1

k((sEj , a
E
j), (s, a))

Update the policy parameter θ using the TRPO gradient update with cost function c∗(s, a) = f̂∗(s, a).
end

tion (TRPO) (Schulman et al. 2015) for optimizing the pol-
icy with the witness function taken as the cost function.

We remark that our approach closely resembles Gener-
ative Moment Matching Networks (GMMNs) (Li, Swer-
sky, and Zemel 2015) and MMD nets (Dziugaite, Roy, and
Ghahramani 2015), where a neural network generator is
trained to minimize the MMD between the training instances
and generated samples. In our case, the neural network gen-
erator is the imitation policy, and the training instances are
the expert trajectories.

Occupancy measure as sum of distributions Cautious
readers may notice that the occupancy measure in Eqn. (1)
is actually a discounted sum of probability distributions for
each time step, rather than a stationary, unnormalized distri-
bution independent of time steps. This is indeed true, and
a simple re-calculation of the imitation loss (i.e. revised
MMD) becomes

ψ∗CH(π, πE) = MMD[H, ρπ, ρπE
] = ‖μπ − μπE

‖H
μπ =

∑∞
t=0γ

t

∫
φ(s, a)dpπ(st = s, at = a)

μπE
=

∑∞
t=0γ

t

∫
φ(s, a)dpπE

(st = s, at = a)

Assuming that the lengths of trajectories are uniformly T
and the trajectory data are split into time steps each con-
taining N/T instances, i.e. D(t)

π = {(si, ai)(t)}N/T
i=1 and

D
(t)
πE = {(sEj , aEj)(t)}N/T

j=1 for t = 0, . . . , T , the empirical
estimate becomes

̂MMD
2
[H, Dπ, DπE]

= 1
(N/T)2

∑

t,t′
γt+t′ ∑

i,i′
k((si, ai)

(t), (si′ , ai′)
(t′))

− 2
(N/T)2

∑

t,t′
γt+t′ ∑

i,j

k((si, ai)
(t), (sEj , a

E
j)

(t′))

+ 1
(N/T)2

∑

t,t′
γt+t′ ∑

j,j′
k((sEj , a

E
j)

(t), (sEj′ , a
E
j′)

(t′))

which requires O(N2) kernel evaluations. The evaluation of
the cost function at a state-action pair requires O(N) kernel

evaluations, the same computational requirement as in the
stationary unnormalized distribution assumption. Our im-
plementation takes the latter approach, as the implementa-
tion was much simpler and the performance difference was
negligible.

Kernel selection It is straightforward to see that the clas-
sical imitation learning in Eqn. (4) corresponds to using the
linear kernel k((s, a), (s′, a′)) = �φ(s, a)��φ(s′, a′), which
makes μρπ

= Eπ[�φ(s, a)], i.e. retaining the first moment of
ρπ in the feature space �φ. The polynomial kernel of degree
d, given by k((s, a), (s′, a′)) = (�φ(s, a)��φ(s′, a′) + 1)d,
retains moments up to d-th order. The Gaussian kernel,

k((s, a), (s′, a′)) = exp(−σ−1‖[s, a]− [s′, a′]‖22)
where we simply concatenate the raw encodings of states
and actions, is a well-known example of characteristic
kernels, which ensures that ρπ = ρπE

if and only if
MMD[H, ρπ, ρπE

] = 0.
In our implementation, we used the sum of two Gaus-

sian kernels with different bandwidth parameters {σ1, σ2}
to span multiple ranges of data points, similar in spirit
to (Li, Swersky, and Zemel 2015). However, rather than us-
ing the fixed values for the bandwidth parameters, we em-
ployed the median heuristics which is theoretically well jus-
tified (Schölkopf and Smola 2002; Ramdas et al. 2015). The
first bandwidth parameter σ1 was selected as the median
of the pairwise squared-�2 distances among the data points
from the expert policy and from the initial policy, since the
initial policy would be vastly different from the expert pol-
icy. The second bandwidth parameter σ2 was selected as the
median of the pairwise squared-�2 distances among the data
points only from the expert policy, since the learned policy
should be indistinguishable from the expert policy for a suc-
cessful imitation. Although it remains as a future work to
investigate the effectiveness of more sophisticated optimiza-
tion of kernels, e.g. (Sutherland et al. 2017), we found that
these two bandwidth parameters were sufficient for success-
ful imitation in all tasks in our experiments.

Multiple TRPO gradient updates per iteration Algo-
rithm 1 performs single TRPO gradient update on πθ per

3418

iteration, in order to make a direct comparison with GAIL.
However, it turns out that we can perform multiple TRPO
gradient updates per iteration without re-generating trajec-
tories, allowing for more sample efficient learning.

In (Ho, Gupta, and Ermon 2016), it was shown that each
TRPO step that improves πθ using the trajectories Dπ0

=
{(si, ai)}Ni=1 sampled by some other policy π0 can be for-
mulated by minimizing the local approximation to the imi-
tation learning objective 1

ψ∗
C(πθ, πE) = max

c∈C
[Jc(πθ)− Jc(πE)]

≈ max
c∈C

[Jc(π0) +Aπθ0 (πθ)− Jc(πE)] � ψ̃C(θ)

where Aπ0(πθ) � Es∼ρπ0
Ea∼πθ(·|s)[A

π0(s, a)]. The key
step in reusing the trajectories is to re-formulate the objec-
tive using importance sampling

ψ̃C(θ) = max
c∈C

Eρπ0
[c(s, a)]− EρπE

[c(s, a)]

+ Eρπ0

[
πθ(a|s)
π0(a|s) (Q

π0
c (s, a)− V π0

c (s))

]

= max
c∈C

Eρπ0
[c(s, a)]− EρπE

[c(s, a)]

+ Eρπ0

[(
πθ(a|s)
π0(a|s) − 1

)
Qπ0

c (s, a)

]

Assuming the cost function class CH, and introducing no-
tations μπ0 � Eρπ0

[φ(s, a)], μπE
� EρπE

[φ(s, a)], and

μ′πθ
� Eρπ0

[(
πθ(a|s)
π0(a|s) − 1

)
φ(s, a)

]
, we have

ψ̃C(θ) = sup
‖c‖H≤1

〈μπ0 − μπE
+ μ′πθ

, c〉H

which results in the closed-form optimal cost function

c∗(s, a) =
〈μπ0

− μπE
+ μ′πθ

, φ(s, a)〉H
‖μπ0 − μπE

+ μ′πθ
‖H

The empirical estimate of the numerator in the optimal cost
function is obtained by

ĉ∗(s, a) ∝ 1
N

∑N
i=1 k((si, ai), (s, a))

− 1
M

∑N
j=1 k((s

E
j , a

E
j), (s, a))

+ 1
N

∑N
i=1

(
πθ(ai|si)
π0(ai|si) − 1

)
k((si, ai), (s, a))

Thus, we can perform multiple TRPO gradient updates using
the trajectories gathered initially at each iteration. We can
similarly use the importance sampling to perform multiple
updates in GAIL, but this often makes the algorithm unstable
as we show in the experiments.

Experiments

We evaluated GMMIL against other imitation learning al-
gorithms on 9 control tasks in the OpenAI Gym (Brockman
et al. 2016). The control tasks include 3 low-dimensional
classic control tasks (Cartpole, Acrobot, and Mountain Car),

1The trust region constraint is not relevant to the discussion.

and 6 high-dimensional robotic control tasks (Reacher,
HalfCheetah, Hopper, Walker, Ant, and Humanoid) that use
the MuJoCo simulator (Todorov, Erez, and Tassa 2012). The
largest control task, i.e. Humanoid, has 376 observation and
17 action dimensions.

The imitation learning algorithms that we evaluated
against are: Behavioral Cloning that uses supervised learn-
ing; feature expectation matching (FEM) which corresponds
to the cost function class C�2 (Abbeel and Ng 2004);
game-theoretic apprenticeship learning (GTAL) which cor-
responds to the cost function class CΔ (Syed and Schapire
2007); and Generative Adversarial Imitation Learning
(GAIL) (Ho and Ermon 2016). All the algorithms used raw
state and action encoding as features, and we mostly lever-
aged the GAIL source code2 for implementing GMMIL and
conducting experiments. For fair comparison, we used the
same experimental settings as in (Ho and Ermon 2016), in-
cluding the exactly same neural network architectures for
the policies and the optimizer parameters for TRPO.

Fig. 1 reports the performance of each imitation algo-
rithm, under varying numbers of expert trajectories (the tab-
ularization of the results are provided in the supplemen-
tary material). The results show that while algorithms such
as behavioral cloning, FEM and GTAL suffered from poor
performance, especially in high-dimensional MuJoCo tasks,
GAIL and GMMIL attain near-expert performance. In par-
ticular, as observed in Reacher, Walker, and Ant tasks, the
performance of GAIL significantly degraded when the ex-
pert trajectory is scarce. In contrast, GMMIL did not show
any significant performance degradation. We suspect that
the performance degradation of GAIL is due to a num-
ber of issues related to training GANs. First, scarce ex-
pert trajectory poses severe label imbalance for training the
discriminator. The original implementation of GAIL sim-
ply scales the instance weights to mitigate the issue, but
it seems that this is not enough. Second, the support over-
lap of two distributions may become so small that the
gradient of the imitation policy almost vanishes. This is
known to be the problem associated with using the Jensen-
Shannon divergence as the probability metric (Huszár 2015;
Nowozin, Cseke, and Tomioka 2016; Arjovsky, Chintala,
and Bottou 2017). Although GAIL could be improved via
more recent work on GANs that addresses this issue, it is
beyond the scope of this paper.

Fig. 2 shows how the discriminator (i.e. cost function)
learning rate in GAIL affects learning the imitation policy.
We report the performance of GAIL learned with the largest
number of expert trajectories under varying learning rate.
We can clearly observe that too large or too small learn-
ing rates often results in sub-optimal performance. On the
other hand, GMMIL does not involve any learning of the
cost function, but obtained directly from MMD. This figure
shows another practical advantage of using GMMIL.

Fig. 3 compares how quickly GMMIL and GAIL learn
to imitate the expert policy, measured in terms of the re-
turn attained by the intermediate policies at each iteration.
Each iteration amounts to sampling a set of trajectories from

2https://github.com/openai/imitation

3419

0.0 0.2 0.4 0.6 0.8 1.0

Number of trajectories in dataset

0.0

0.2

0.4

0.6

0.8

1.0

P
er
fo
rm
an
ce
(s
ca
le
d
)

Behavioral cloning FEM GTAL GAIL GMMIL

1 4 7 10

0.0

0.2

0.4

0.6

0.8

1.0

Cartpole

1 4 7 10

0.0

0.2

0.4

0.6

0.8

1.0

Acrobot

1 4 7 10

0.0

0.2

0.4

0.6

0.8

1.0

Mountain Car

4 11 18 25

0.0

0.2

0.4

0.6

0.8

1.0

HalfCheetah

4 11 18 25

0.0

0.2

0.4

0.6

0.8

1.0

Hopper

4 11 18 25

0.0

0.2

0.4

0.6

0.8

1.0

Walker

4 11 18 25

−1.5

−1.0

−0.5

0.0

0.5

1.0

Ant

80 160 240

0.0

0.2

0.4

0.6

0.8

1.0

Humanoid
4 11 18

−0.5

0.0

0.5

1.0

Reacher

Behavioral cloning

GAIL(λ = 0)

GAIL(λ = 10−3)

GAIL(λ = 10−2)
GMMIL(λ = 0)

Figure 1: Performance of the learned policy with varying amount of expert data. The x-axis is the number of expert trajectories
used for learning and the y-axis is the return of imitation policy, normalized so that the return of the expert policy is 1 and that
of the random policy is 0. λ is the penalty weight on the causal entropy of the policy, used in GAIL (Ho and Ermon 2016).

0.0 0.2 0.4 0.6 0.8 1.0

Reward learning rate

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rf

or
m

an
ce

(s
ca

le
d)

GAIL GMMIL

100 10−1 10−2 10−3 10−4

−3.0
−2.0
−1.0
0.0

1.0

Reacher

100 10−1 10−2 10−3 10−4
0.0

0.2

0.4

0.6

0.8

1.0

HalfCheetah

100 10−1 10−2 10−3 10−4
0.0

0.2

0.4

0.6

0.8

1.0

Hopper

100 10−1 10−2 10−3 10−4
0.0

0.2

0.4

0.6

0.8

1.0

Walker

Figure 2: Performance evaluations of GAIL with different learning rates for the cost function. We used the settings with the
largest number of expert trajectories, i.e. 18 for reacher; 25 for half cheetah, hopper and walker tasks.

the environment and performing a TRPO gradient update.
Again, we show the results with the largest number of ex-
pert trajectories, but the results were similar for other set-
tings. We omitted the results from classic control tasks since
they were too easy for both algorithms. Note that in most of
the tasks, GMMIL converges in fewer iterations than GAIL,
exhibiting that GMMIL is more sample-efficient than GAIL
requiring fewer samples from the environment. In terms of
the computation time, evaluating the witness function on N
samples takes O(N2), but our GPU-based implementation
takes overall time on par with GAIL.

Fig. 4 compares the convergence rates of GMMIL and
GAIL, both performing 5 TRPO gradient updates per iter-
ation using importance sampling to reuse the trajectories,
gathered at the beginning of each iteration. We stress that im-
portance sampling does not in principle guarantee improving
sample efficiency, as its effectiveness depends on a number
of factors, such as the variance of importance weights. The
figure shows the results on higher dimensional tasks without
tuning the parameters. GMMIL always showed stable con-
vergence, and it was slower than the single update method
in only one of the tasks (i.e. ant). In contrast, GAIL failed

to show meaningful training progress in many of the tasks.
This also highlights the advantage of using the MMD instead
of GAN, since the best cost function is found exactly in each
iteration rather than gradually fit using a neural network.

Summary and Future Work

In this paper, we presented GMMIL, a simple yet effec-
tive imitation learning algorithm that is essentially a kernel-
ized version of the classical apprenticeship learning algo-
rithm (Abbeel and Ng 2004). Compared to GAIL, our ap-
proach provides an alternative reduction of imitation learn-
ing to a distribution matching problem, with a much simpler
argument. It is shown that the training objective is to mini-
mize the loss measured by the MMD between the occupancy
measures of the learned policy and the expert policy. This
allows our approach to avoid the hard minimax optimiza-
tion of GAN inherent to training in GAIL, which results in
more robust and sample-efficient imitation learning. As an
end result, our approach becomes an imitation learning ver-
sion of GMMNs (Li, Swersky, and Zemel 2015) and MMD
nets (Dziugaite, Roy, and Ghahramani 2015).

Through an extensive set of experiments on high-

3420

0.0 0.2 0.4 0.6 0.8 1.0

Number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

P
er
fo
rm
an
ce
(s
ca
le
d
)

GAIL

GMMIL

0 50 100 150 200

−2

−1

0

1

Reacher

0 100 200 300 400 500

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

HalfCheetah

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Hopper

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Walker

0 100 200 300 400 500

−0.50

−0.25

0.00

0.25

0.50

0.75

Ant

0 200 400 600 800

0.0

0.2

0.4

0.6

0.8

1.0

Humanoid

Figure 3: Performance of the learned policy during training iterations, from GMMIL (red) and GAIL (blue). The x-axis is the
iteration, and the y-axis is the scaled return of the policy. We used the settings with the largest number of expert trajectories,
i.e. 25 for half cheetah, hopper, walker, and ant; 240 for humanoid tasks. These results are from single TRPO gradient update
per iteration.

0.0 0.2 0.4 0.6 0.8 1.0

Number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

P
er
fo
rm
an
ce
(s
ca
le
d
)

GAIL

GMMIL

0 20 40 60 80 100

−3

−2

−1

0

1

Reacher

0 20 40 60 80 100

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

HalfCheetah

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Hopper

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Walker

0 50 100 150 200 250 300

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Ant

0 100 200 300 400

0.0

0.2

0.4

0.6

0.8
Humanoid

Figure 4: Performance of the learned policy during training iterations using importance sampling to perform 5 TRPO gradient
updates per iteration, both for GMMIL (red) and GAIL (blue). Note that the x-axis scales are different from Fig. 3.

dimensional robotic imitation tasks with up to 376 state vari-
ables and 17 action variables (i.e. Humanoid), we showed
that GMMIL successfully imitates expert policies, even
when the expert trajectory was scarcely provided. The re-
turns obtained by the learned policy exhibited lower vari-
ances, hinting that using MMD makes the overall optimiza-
tion much more stable compared to the minimax optimiza-
tion in GAIL. In addition, we showed that we can naturally
reuse the trajectories by importance sampling, allowing for
further improving the sample efficiency.

As for the future work, we would like to address many as-
pects in which our formulation could be improved. First of
all, it is well known that the test power of MMD degrades
with the dimensionality of the data (Ramdas et al. 2015).
Although we did not suffer from this issue in our experi-
ments, this could be true with visual domains. Second, even
though TRPO was mostly robust to the variance of the cost
function, we still observed some cases where this was some-
what problematic in the last few iterations, both for GAIL

and GMMIL. It would be interesting to develop a principled
scheme for the cost function that warrants a stable conver-
gence of policy search algorithms.

Acknowledgements

Kee-Eung Kim is supported by IITP/MSIT (2017-0-01778)
and DAPA/ADD via KAIST HSVRC. Hyun Soo Park is sup-
ported by MnDrive Robotics, Sensing, and Advanced Man-
ufacturing and Oculus/Facebook Research.

References

Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning via
inverse reinforcement learning. In Proceedings of the 21st
International Conference on Machine Learning.
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
generative adversarial networks. In Proceedings of the 34th
International Conference on Machine Learning.

3421

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym.
Dziugaite, G. K.; Roy, D. M.; and Ghahramani, Z. 2015.
Training generative neural networks via maximum mean
discrepancy optimization. In Proceedings of the Thirty-First
Conference on Uncertainty in Artificial Intelligence, 258–
267.
Fukumizu, K.; Bach, F. R.; and Jordan, M. I. 2004. Di-
mensionality reduction for supervised learning with repro-
ducing kernel Hilbert spaces. Journal of Machine Learning
Research 5:73–99.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in Neural
Information Processing Systems.
Gretton, A.; Borgwardt, K. M.; Rasch, M. J.; Schölkopf, B.;
and Smola, A. 2012. A kernel two-sample test. Journal of
Machine Learning Research 13:723–773.
Ho, J., and Ermon, S. 2016. Generative adversarial imita-
tion learning. In Advances in Neural Information Processing
Systems.
Ho, J.; Gupta, J.; and Ermon, S. 2016. Model-free imita-
tion learning with policy optimization. In Proceedings of
the 33rd International Conference on Machine Learning.
Huszár, F. 2015. How (not) to train your generative model:
Scheduled sampling, likelihood, adversary? arXiv preprint
arXiv:1511.05101.
Li, Y.; Swersky, K.; and Zemel, R. S. 2015. Generative
moment matching networks. In Proceedings of the 32nd In-
ternational Conference on Machine Learning.
Müller, A. 1997. Integral probability metrics and their gen-
erating classes of functions. Advances in Applied Probabil-
ity 29:429–443.
Ng, A. Y.; Russell, S. J.; et al. 2000. Algorithms for inverse
reinforcement learning. In Proceedings of the 17th Interna-
tional Conference on Machine Learning.
Nowozin, S.; Cseke, B.; and Tomioka, R. 2016. f-GAN:
Training generative neural samplers using variational diver-
gence minimization. In Advances in Neural Information
Processing Systems.
Puterman, M. L. 1994. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Ramdas, A.; Reddi, S. J.; Póczos, B.; Singh, A.; and Wasser-
man, L. A. 2015. On the decreasing power of kernel and
distance based nonparametric hypothesis tests in high di-
mensions. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence.
Reed, M., and Simon, B. 1980. Methods of modern mathe-
matical physics. Functional analysis, volume 1. Academic.
Russell, S. 1998. Learning agents for uncertain environ-
ments. In Proceedings of the 11th Annual Conference on
Computational Learning Theory.
Sammut, C. 2010. Behavioral cloning. In Sammut, C.,

and Webb, G. I., eds., Encyclopedia of Machine Learning.
Springer US. 93–97.
Schölkopf, B., and Smola, A. J. 2002. Learning with Ker-
nels: Support Vector Machines, Regularization, Optimiza-
tion, and Beyond. MIT Press.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M. I.; and
Moritz, P. 2015. Trust region policy optimization. In Pro-
ceedings of the 32nd International Conference on Machine
Learning.
Smola, A.; Gretton, A.; Song, L.; and Schölkopf, B. 2007. A
Hilbert space embedding for distributions. In International
Conference on Algorithmic Learning Theory. Springer.
Sriperumbudur, B. K.; Gretton, A.; Fukumizu, K.; Lanckriet,
G.; and Schölkopf, B. 2008. Injective Hilbert space embed-
dings of probability measures. In Proceedings of the 20th
Annual Conference on Computational Learning Theory.
Steinwart, I., and Christmann, A. 2008. Support vector ma-
chines. Springer Science & Business Media.
Sutherland, D. J.; Tung, H.-Y.; Strathmann, H.; De, S.; Ram-
das, A.; Smola, A.; and Gretton, A. 2017. Generate Models
and Model Criticism via Optimized Maximum Mean Dis-
crepancy. In Proceedings of the 5th International Confer-
ence on Learning Representations.
Syed, U., and Schapire, R. E. 2007. A game-theoretic ap-
proach to apprenticeship learning. In Advances in Neural
Information Processing Systems.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems 5026–
5033.

3422

