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Abstract

Object ranking or “learning to rank” is an important problem
in the realm of preference learning. On the basis of training
data in the form of a set of rankings of objects represented as
feature vectors, the goal is to learn a ranking function that pre-
dicts a linear order of any new set of objects. In this paper, we
propose a new approach to object ranking based on principles
of analogical reasoning. More specifically, our inference pat-
tern is formalized in terms of so-called analogical proportions
and can be summarized as follows: Given objects A,B,C,D,
if object A is known to be preferred to B, and C relates to
D as A relates to B, then C is (supposedly) preferred to D.
Our method applies this pattern as a main building block and
combines it with ideas and techniques from instance-based
learning and rank aggregation. Based on first experimental
results for data sets from various domains (sports, education,
tourism, etc.), we conclude that our approach is highly com-
petitive. It appears to be specifically interesting in situations
in which the objects are coming from different subdomains,
and which hence require a kind of knowledge transfer.

1 Introduction
Preference learning has received increasing attention in ma-
chine learning in recent years (Fürnkranz and Hüllermeier
2011). Roughly speaking, the goal in preference learning is
to induce preference models from observational (or exper-
imental) data that reveal information about the preferences
of an individual or a group of individuals in a direct or indi-
rect way; the latter typically serve the purpose of predictive
modeling, i.e., they are then used to predict the preferences
in a new situation.

In general, a preference learning system is provided with
a set of items (e.g., products) for which preferences are
known, and the task is to learn a function that predicts pref-
erences for a new set of items (e.g., new products not seen
so far), or for the same set of items in a different situa-
tion (e.g., the same products but for a different user). Fre-
quently, the predicted preference relation is required to form
a total order, in which case we also speak of a ranking
problem. In fact, among the problems in the realm of pref-
erence learning, the task of “learning to rank” has prob-
ably received the most attention in the literature so far,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A B

C D

Figure 1: A is to B as C is to D (pictures from ImageNet).

and a number of different ranking problems have already
been introduced. Based on the type of training data and
the required predictions, Fürnkranz and Hüllermeier dis-
tinguish between the problems of object ranking (Cohen,
Schapire, and Singer 1999; Kamishima, Kazawa, and Akaho
2010), label ranking (Har-Peled, Roth, and Zimak 2002;
Cheng, Hühn, and Hüllermeier 2009; Vembu and Gärtner
2010), and instance ranking (Fürnkranz, Hüllermeier, and
Vanderlooy 2009).

The focus of this paper is on object ranking. Given train-
ing data in the form of a set of exemplary rankings of sub-
sets of objects, the goal in object ranking is to learn a rank-
ing function that is able to predict the ranking of any new
set of objects. Our main contribution is a novel approach
that is based on the idea of analogical reasoning, and essen-
tially builds on the following inference pattern: If object A
relates to object B as C relates to D, and knowing that A is
preferred to B, we (hypothetically) infer that C is preferred
to D. Figure 1 provides an illustration with cars as objects.
Cars A and B are more or less the same, except that A is
a cabriolet and has color red instead of black, and the same
is true for cars C and D. Thus, knowing that someone likes
car A more than B, we may conjecture that the same per-
son prefers car C to D. Our method applies this pattern as
a main building block and combines it with ideas and tech-
niques from instance-based learning and rank aggregation.

The rest of the paper is organized as follows. In the next
section, we recall the setting of object ranking and formal-
ize the corresponding learning problem. In the next section,
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we present a formalization of analogical reasoning based
on the concept of analogical proportion. Next, we introduce
our approach to analogy-based learning to rank (able2rank).
Finally, we present an experimental evaluation of this ap-
proach, prior to concluding the paper with a summary and
an outline of future work.

2 Learning to Rank
Consider a reference set of objects, items, or choice alter-
natives X , and assume each item x ∈ X to be described
in terms of a feature vector; thus, an item is a vector x =
(x1, . . . , xd) ∈ R

d and X ⊆ R
d. The goal in object rank-

ing is to learn a ranking function ρ that accepts any (query)
subset

Q = {x1, . . . ,xn} ⊆ X
of n = |Q| items as input. As output, the function produces
a ranking π ∈ Sn of these items, where Sn denotes the set of
all permutations of length n, i.e., all mappings [n] −→ [n]
(symmetric group of order n); π represents the total order

xπ−1(1) � xπ−1(2) � . . . � xπ−1(n) , (1)

i.e., π−1(k) is the index of the item on position k, while π(k)
is the position of the kth item xk (π is often called a ranking
and π−1 an ordering). Formally, a ranking function is thus a
mapping

ρ : Q −→ R , (2)

where Q = 2X \ ∅ is the query space and R =
⋃

n∈N Sn the
ranking space. The order relation � is typically (though not
necessarily) interpreted in terms of preferences, i.e., x � y
suggests that x is preferred to y.

A ranking function ρ is learned on a set of training data
that consists of a set of rankings

D =
{
(Q1, π1), . . . , (QM , πM )

}
, (3)

where each ranking πj defines a total order of the query set
Qj . Once a ranking function has been learned, it can be used
for making predictions for new query sets Q (see Figure 2).
Such predictions are evaluated in terms of a suitable loss
function or performance metric. A common choice is the
(normalized) ranking loss, which counts the number of in-
versions between two rankings π and π′:

dRL(π, π
′) =

∑
1≤i,j≤n�π(i) < π(j)��π′(i) > π′(j)�

n(n− 1)/2
,

where �·� is the indicator function.

2.1 Methods
The ranking function (2) sought in object ranking is a com-
plex mapping from the query to the ranking space. An im-
portant question, therefore, is how to represent a “ranking-
valued” function of that kind, and how it can be learned effi-
ciently. As will be seen later on, our approach avoids an ex-
plicit representation of this function, and instead implements
a query-specific (transductive) inference, in very much the
same way as instance-based learning represents a predictor
(through the sample data) in an indirect way.

x1,1 � x1,2

x2,1 � x2,2 � x3,2 � x4,2

x3,1 � x3,2 � x3,1

...
...

...
xN,1 � xN,2 � xN,1

{
x1,x2, . . . ,xn

}

x3 � xn−1 � . . . � x2

ranking
function

ρ

���������	���


���

���	����	�
�������

�����	�������
�������

xn−1 � x1 � . . . � x2

����

Figure 2: The setting of object ranking.

Most commonly, a ranking function is represented by
means of an underlying scoring function

U : X −→ R ,

so that x � x′ if U(x) > U(x′). In other words, a ranking-
valued function is represented through a real-valued func-
tion. Obviously, U can be considered as a kind of utility
function, and U(x) as a latent utility degree assigned to an
item x. Seen from this point of view, the goal in object rank-
ing is to learn a latent utility function on a reference set X .

The representation of a ranking function in terms of a real-
valued (utility) function also suggests natural approaches to
learning. In particular, two such approaches are prevailing
in the literature. The first one reduces the original ranking
problem to regression; as it seeks a model that assigns ap-
propriate scores to individual items x, it is referred to as the
pointwise approach in the literature. The second idea is to
reduce the problem to binary classification; here, the focus
is on pairs of items, which is why the approach is called the
pairwise approach.

As a representative of the first category, we will include
expected rank regression (ERR) in our experimental study
later on (Kamishima and Akaho 2006; Kamishima, Kazawa,
and Akaho 2010). ERR reduces object ranking to standard
linear regression. To this end, every training example (Q, π)
is replaced by a set of data points (xi, yi) ∈ X × R. Here,
the target yi assigned to object xi ∈ Q is given by

yi =
π(i)

|Q|+ 1
.

This is justified by taking an expectation over all (com-
plete) rankings of X and assuming a uniform distribution. In
spite of this apparently oversimplified assumption, and the
questionable transformation of ordinal ranks into numeri-
cal scores, ERR has shown quite competitive performance in
empirical studies, especially when all rankings in the train-
ing data (3) are of approximately the same length (Melnikov
et al. 2016).

Given a ranking (1) as training information, the pair-
wise approach extracts all pairwise preferences xπ−1(i) �
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xπ−1(j), 1 ≤ i < j ≤ n, and considers these pref-
erences as examples for a binary classification task. This
approach is especially simple if U is a linear function of
the form U(x) = w�x. In this case, U(x) > U(x′)
if w�x > w�x′, which is equivalent to w�z > 0 for
z = x − x′ ∈ R

d. Thus, from the point of view of binary
classification (with a linear threshold model), z can be con-
sidered as a positive and −z as a negative example. In prin-
ciple, any binary classification algorithm can be applied to
learn the weight vector w from the set of examples produced
in this way. As a representative of this class of methods, we
will use support vector machines in our experiments; more
specifically, we include Ranking SVM (Joachims 2002) as a
state-of-the-art baseline to compare with.

3 Analogical Reasoning
Analogical reasoning has a long tradition in artificial intelli-
gence research, and various attempts at formalizing analogy-
based inference can be found in the literature. We are build-
ing on a recent approach that is based on the concept of
analogical proportion (Miclet and Prade 2009; Prade and
Richard 2017), which has already been used successfully in
different problem domains, including classification (Boun-
has, Prade, and Richard 2014a), recommendation (Hug et
al. 2016), preference completion (Pirlot, Prade, and Richard
2016), decision making (Billingsley et al. 2017) and solving
IQ tests (Beltran, Prade, and Richard 2016).

Consider four values a, b, c, d from a domain X. The
quadruple (a, b, c, d) is said to be in analogical proportion,
denoted a : b :: c : d, if “a relates to b as c relates to d”. A
bit more formally, this idea can be expressed as

R(a, b) ∼ R(c, d) , (4)

where the relation ∼ denotes the “as” part of the informal
description. R can be instantiated in different ways, depend-
ing on the underlying domain X. Specifically relevant for
us are the cases of Boolean variables, where X = B =
{0, 1}, and numerical variables, where X = R. In the lat-
ter case, we will distinguish between arithmetic proportions,
where R(a, b) = a − b, and geometric proportions, where
R(a, b) = a/b.

Independently of the concrete choice of X and R, the fol-
lowing axioms can reasonably be required (assuming an ex-
pression a : b :: c : d to be either true or false):

• a : b :: a : b (reflexivity)

• a : b :: c : d ⇒ c : d :: a : b (symmetry)

• a : b :: c : d ⇒ a : c :: b : d (central permutation)

3.1 Boolean Variables

Consider the case of Boolean variables with values in B =
{0, 1}. There are 24 = 16 instantiations of the pattern a :
b :: c : d. The smallest (and hence most informative) subset
of logical proportions satisfying the above axioms consists
of the following 6 instantiations:

a b c d
0 0 0 0
0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0
1 1 1 1

This formalization captures the idea that a differs from b (in
the sense of being “equally true”, “more true”, or “less true”)
exactly as c differs from d, and vice versa. This can also be
expressed by the following formula:

((a ⇒ b) ≡ (c ⇒ d)) ∧ ((b ⇒ a) ≡ (d ⇒ c)) (5)

We remark that the above definition further satisfies the
properties of independence with regard to positive or neg-
ative encoding of features (a : b :: c : d ⇒ ¬a : ¬b :: ¬c :
¬d) as well as transitivity (a : b :: c : d and c : d :: e : f
⇒ a : b :: e : f ). For an in-depth discussion of logical
proportions, we refer to (Prade and Richard 2013).

3.2 Real-Valued Variables
To extend analogical proportions to real-valued variables X ,
we assume these variables take values in [0, 1]. Practically,
this may require a normalization of the original variable in a
preprocessing step (a discussion of this will follow below).

Values in the unit interval can be interpreted as general-
ized (graded) truth degrees. For instance, if x is the speed
of a car, the normalized value x = 0.8 can be interpreted as
the degree to which the property “high speed” applies, i.e.,
the truth degree of the proposition “the car has high speed”.
The idea, then, is to generalize the formalization of analog-
ical proportions in the Boolean case using generalized logi-
cal operators (Dubois, Prade, and Richard 2016). Naturally,
the analogical proportion itself will then become a matter of
degree, i.e., a quadruple (a, b, c, d) can be in analogical pro-
portion to some degree; in the following, we will denote this
degree by v(a, b, c, d).

For example, taking (5) as a point of departure, and gen-
eralizing the logical conjunction x ∧ y by the minimum op-
erator min(x, y), the implication x ⇒ y by Lukasiewicz
implication max(1 − x + y, 0), and the equivalence x ≡ y
by 1− |x− y|, one arrives at the following expression:

vA(a, b, c, d) = 1− |(a− b)− (c− d)|
if sign(a− b) = sign(c− d) and

vA(a, b, c, d) = 1−max(|a− b|, |c− d|)
otherwise. We also consider a variant vA′ of this expression,
which is given by vA′(a, b, c, d) = vA(a, b, c, d) if sign(a−
b) = sign(c− d) and vA′(a, b, c, d) = 0 otherwise.

Based on alternative interpretations of R and ∼ in (4),
other proposals for measuring the degree of analogical pro-
portion can be found in the literature:
• Geometric proportion (Beltran, Jaudoin, and Pivert 2014):

vG(a, b, c, d) =
min(ad, bc)

max(ad, bc)
,

if sign(a− b) = sign(c− d) and max(ad, bc) > 0, and 0
otherwise.
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• Min-Max proportion (Bounhas, Prade, and Richard
2014b):

vMM (a, b, c, d) = 1−max
( |min(a, d)−min(b, c)|,

|max(a, d)−max(b, c)| ).
• Approximate equality proportion (Beltran, Jaudoin, and

Pivert 2014):

vAE(a, b, c, d) = max
(
�a ≈ b��c ≈ d�,

�a ≈ c��b ≈ d�
)
,

where x ≈ y is true if |x − y| ≤ ε for a fixed threshold
ε ∈ [0, 1]. We will also use a graded variant of vAE(·),
denoted as vAE′ , as defined above. To this end, we gener-
alize the indicator function and evaluate the approximate
equality of values a, b as �a ≈ b� = max(1−|a−b|/ε, 0).

3.3 Extension to Feature Vectors
The degree of analogical proportion defined above can be
generalized from individual values to objects in the form of
vectors x = (x1, . . . , xd), where xi ∈ Xi ∈ {B,R}—in the
context of object ranking, x is a feature vector characterizing
a choice alternative. To this end, the degrees of analogical
proportion for the individual entries are aggregated into a
single degree:

v(a, b, c,d) = AGG
{
v(ai, bi, ci, di) | i = 1, . . . , d

}
(6)

The aggregation operator AGG can be specified in different
ways. For example, a conjunctive combination is obtained
with AGG = min. This aggregation is very strict, however,
and does not allow for compensating a low value of analogi-
cal proportion on a single feature by large values on other
features. In our current implementation of analogy-based
object ranking, we therefore use the arithmetic average as
an aggregation.

4 Analogy-based Object Ranking
Recall that, in the setting of learning to rank, we suppose to
be given a set of training data in the form

D =
{
(Q1, π1), . . . , (QM , πM )

}
,

where each πm defines a ranking of the set of objects Qm.
If zi, zj ∈ Qm and πm(i) < πm(j), then zi � zj has been
observed as a preference. In the following, we will denote
by

Dpair =
M⋃

m=1

⋃
1≤i<j≤|Qm|

(zπ−1(i), zπ−1(j))

the set of all pairwise preferences that can be extracted from
D. The goal is to generalize beyond the data D so as to be
able to predict a ranking of any query set

Q = {x1, . . . ,xn} .
Our analogy-based approach to object ranking (able2rank)
consists of two main steps:

• First, for each pair of objects xi,xj ∈ Q, a degree of
preference pi,j ∈ [0, 1] is extracted from D. If these de-
grees are normalized such that pi,j + pj,i = 1, they define
a reciprocal preference relation

P =
(
pi,j

)
1≤i,j≤n

.

Normalization is not a strict requirement, however; in
our concrete implementation, pairwise preference are ex-
pressed in terms of absolute frequencies (see below).

• Second, the preference relation P is turned into a ranking
π using a suitable ranking procedure.

Both steps will be explained in more detail further below.
Before, however, we briefly return to the issue of data pre-
processing.

4.1 Preprocessing
Recall that we assume objects to be represented in terms of
feature vectors x = (x1, . . . , xd). As already mentioned,
analogical reasoning based on analogical proportions as-
sumes real-valued features to be normalized, with values in
the unit interval [0, 1]. Therefore, if the kth feature is real-
valued, we apply the linear transformation

xk ← xk −mink
maxk −mink

where mink and maxk denote, respectively, the smallest and
largest value of that feature in the data. This transformation
is applied separately to the training and the test data.

Prior to normalization, we apply a logarithmic transfor-
mation to some of the features. For each feature, we compute
a numeric measure of the skewness of its distribution and
the distribution of its log-transform (Joanes and Gill 1998).
If the skewness of the latter is smaller than the skewness
of the former, the log-transform is adopted, i.e., each value
xk is replaced by log(xk); otherwise, the feature is left un-
changed.

4.2 Analogical Prediction of Pairwise Preferences
The first step of able2rank, prediction of pairwise prefer-
ences, is based on analogical reasoning. The basic idea is
as follows: Consider any pair of query objects xi,xj ∈ Q.
Moreover, suppose we find a pair of objects (z, z′) ∈ Dpair

in the training data, i.e., a preference z � z′, such that
(z, z′,xi,xj) are in analogical proportion. Then, this is
taken as an indication in favor of the preference xi � xj .
We refer to this principle as analogical transfer of prefer-
ences, because the observed preference z � z′ between ob-
jects z, z′ is (hypothetically) transferred to xi,xj .

Since the training data is not necessarily coherent, both
preferences xi � xj and xj � xi might be supported (via
analogical transfer). We define

pi,j =
ci,j

ci,j + cj,i
,

where ci,j is the number of preferences that support xi �
xj , and cj,i the number of preferences supporting xj � xi.
Here, instead of counting all preferences, we only consider
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the most relevant ones, i.e., those with the largest degrees of
analogical proportion. More specifically, let V = Vi,j ∪ Vj,i

with

Vi,j =
⋃

(z,z′)∈Dpair

v(z, z′,xi,xj) (7)

Vj,i =
⋃

(z,z′)∈Dpair

v(z, z′,xj ,xi) (8)

be the set of analogy scores for xi and xj , and V ∗ ⊂ V the
k largest scores in V . Then

ci,j = |Vi,j ∩ V ∗|, cj,i = |Vj,i ∩ V ∗| . (9)

The degrees of analogical proportion in (7–8) are given by
(6) with v ∈ {vA, vA′ , vG, vMM , vAE , vAE′}. Thus, v plays
the role of a parameter of our method, just like the value
k of relevant proportions taken into account; in our current
implementation, we choose k ∈ {10, 15, 20}. Algorithm (1)
provides a summary of this part of the method.

Algorithm 1 Analogy-based Pairwise Preferences (APP)

Require: Dpair, Q
1: lstXiXj ← [] // initialize the list
2: for all xi,xj ∈ Q do
3: // binary vector: supporting xi � xj as 1 and 0 otherwise
4: XiXj ← []
5: scores ← [] // numeric vector: the degree of support
6: for all z, z′ ∈ Dpair do
7: sij ← v(z, z′,xi,xj)
8: sji ← v(z, z′,xj ,xi)
9: if sij > sji then

10: scores.append(sij)
11: else
12: scores.append(sji)
13: end if
14: XiXj .append( not(xor

(
�z � z′�, �sij > sji�

)
) )

15: end for
16: // re-arrange XiXj based on positions of sorted scores
17: XiXj ← XiXj( arg sort(scores) )
18: lstXiXj .append(XiXj)
19: end for
20: return lstXiXj

4.3 Rank Aggregation
To turn pairwise preferences into a total order, we make use
of a rank aggregation method. More specifically, we apply
the Bradley-Terry-Luce (BTL) model, which is well-known
in the literature on discrete choice (Bradley and Terry 1952).
It starts from the parametric model

P(xi � xj) =
θi

θi + θj
, (10)

where θi, θj ∈ R+ are parameters representing the (latent)
utility U(xi) and U(xj) of xi an xj , respectively. Thus,
according to the BTL model, the probability to observe a
preference in favor of a choice alternative xi, when being
compared to any other alternative, is proportional to θi.

Given the data (9), i.e., the numbers ci,j informing about
how often every preference xi � xj has been observed, the
parameter θ = (θ1, . . . , θn) can be estimated by likelihood
maximization:

θ̂ ∈ arg max
θ∈Rn

∏
1≤i �=j≤n

(
θi

θi + θj

)ci,j

Finally, the predicted ranking π is obtained by sorting the
items xi in descending order of their estimated (latent) util-
ities θ̂i (see Algorithm 2).

We note that many other rank aggregation techniques have
been proposed in the literature and could principally be used
as well; see e.g. (Ahmadi Fahandar, Hüllermeier, and Couso
2017). However, since BTL seems to perform very well, we
did not consider any other method.

Algorithm 2 Rank Aggregation (RA)

Require: lstXiXj , k
1: Initialize comparison matrix Cn×n

2: for all XiXj in lstXiXj do
3: Ci,j ←

∑k
r=1�XiXj(r) = 1�

4: Cj,i ←
∑k

r=1�XiXj(r) = 0�
5: end for
6: θ̂ ← BTL(C)

7: π̂ ← arg sort(θ̂)
8: return π̂

5 Experiments
In order to study the practical performance of our proposed
method, we conducted experiments on several real-world
data sets, using ERR and SVM-Rank (cf. Section 2.1) as
baselines for comparison.

5.1 Data
The data sets1 are collected from various domains (e.g.,
sports, education, tourism) and comprise different types of
feature (e.g., numeric, binary, ordinal). Table 1 provides a
summary of the characteristics of the data sets. Here is a de-
tailed description:
• Decathlon: This data contains rankings of the top 100

men’s decathletes worldwide in the years 2005 and 2006,
with 10 numeric features associated with each athlete.
Each feature is the performance achieved by the athlete in
the corresponding discipline (e.g., the time in 100 meter
race). The ranking of the decathletes is based on a scor-
ing scheme, in which each performance is first scored in
terms of a certain number of points (the mapping from
performance to scores is non-linear), and the total score is
obtained as the sum of the points over all 10 disciplines.
In addition, the results of Olympic games Rio de Janeiro
2016 (24 instances) as well as under-20 world champi-
onships 2016 (22 instances) are considered. The data are
extracted from the Decathlon2000 web site2.
1available at https://cs.uni-paderborn.de/is/
2www.decathlon2000.com
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Table 1: Properties of data sets.

data set domain # instances # features numeric binary ordinal name

Decathlon

Year 2005 100 10 x – – D1
Year 2006 100 10 x – – D2
Olympic games Rio de Janeiro 2016 24 10 x – – D3
Under-20 world championships 2016 22 10 x – – D4

Bundesliga

Season 15/16 18 13 x – – B1
Season 16/17 18 13 x – – B2
Mid-Season 16/17 18 7 x – – B3
Season 16/17 Away 18 6 x – – B4

FIFA

Year 2016 100 40 36 1 3 F1
Year 2017 100 40 36 1 3 F2
Year 2016 (Position:Streaker) 50 40 36 1 3 F3
Year 2017 (Position:Streaker) 50 40 36 1 3 F4

Hotels Düsseldorf 110 28 x x x H1
Frankfurt 149 28 x x x H2

Uni. Rankings Year 2015 100 9 x – – U1
Year 2014 100 9 x – – U2

Volleyball WL Group 3 12 15 x – – V1
Group 1 12 15 x – – V2

Netflix Germany 9 7 x x – N1
USA 13 7 x x – N2

• FIFA: The FIFA Index website3 ranks the best football
players in the world based on different metrics each year.
These metrics belong to different categories, such as ball
skills (ball control, dribbling, etc.), physical performance
(acceleration, balance, etc.), defence (marking, slide tack-
ling, etc.), and so on. We considered the list of top 100
footballers in the years 2016 and 2017, where each player
is described by 40 attributes. Since the metrics of differ-
ent types of players are not comparable, the overall eval-
uation of a player depends on his position (goal keeper,
defender, streaker, etc.). Obviously, predicting the over-
all ranking is therefore a difficult task. In addition to the
full data sets, we therefore also considered two position-
specific data sets, namely the rankings for players with
position streaker in the years 2016 and 2017.

• Hotels: This data set contains rankings of hotels in two
major German cities, namely Düsseldorf (110 hotels) and
Frankfurt (149 hotels). These rankings have been col-
lected from TripAdvisor4 in September 2014. Each hotel
is described in terms of a feature vector of length 28 (e.g.,
distance to city center, number of stars, number of rooms,
number of user rating, etc). The way in which a ranking is
determined by TripAdvisor on the basis of these features
is not known (and one cannot exclude that additional fea-
tures may play a role).

• University Rankings: This data includes the list of top 100
universities worldwide for the years 2014 and 2015. It is
published by the Center for World University Rankings
(CWUR). Each university is represented by 9 features
such as national rank, quality of education, alumni em-
ployment, etc. Detailed information about how the rank-
ing is determined based on these features can be found on

3www.fifaindex.com
4www.tripadvisor.com

the CWUR website5.

• Bundesliga: This data set comprises table standings of
18 football teams in the German Bundesliga (German
football league) for the seasons 2015/16 and 2016/17.6
Each team is described in terms of 13 features, such as
matches, win, loss, draw, goals-for, goals-against, etc. To
study the ability of knowledge transfer, we also included
the table standing for the season 2016/17, in which only
the statistics for away matches are considered (with 6
features). Another case is the table standing in the mid-
season 2016/17 (i.e., only the first half of the season) with
7 features.

• Volleyball WL: This data contains the table standing for
Group1 (statistics of 12 teams divided into subgroups,
each with 9 matches) and Group3 (statistics of 12 teams,
each with 6 matches) of volleyball world league 2017 ex-
tracted from the FIVB website7. There are 12 features in
total, such as win, loss, number of (3-0, 3-1, 3-2, etc.)
wins, sets win, sets loss, etc.

• Netflix: This data set includes the Netflix ISP speed in-
dex (extracted from Netflix website8 in August, 2017) for
Germany and USA with 9 and 13 Internet providers, re-
spectively. The Netflix ISP Speed Index is a measure of
prime time Netflix performance on particular internet ser-
vice providers (ISPs) around the globe. The rankings are
represented by 7 (binary and numeric) features like speed,
speed of previous month, fiber, cable, etc.

5www.cwur.org
6www.bundesliga.com
7worldleague.2017.fivb.com
8ispspeedindex.netflix.com
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5.2 Experimental Setting
Given the data sets for training and testing, able2rank first
preprocesses the individual attributes as explained above
(log-transformation and normalization). We also apply a
standard normalization for the baseline methods (ERR and
SVM), transforming each real-valued feature by standard-
ization:

x ← x− μ

σ
,

where μ and σ denote the empirical mean and standard de-
viation, respectively.

Recall that able2rank has two parameters to be tuned:
The type of analogical proportion v ∈ Sv , where Sv =
{vA, vA′ , vG, vMM , vAE , vAE′}, and the number k ∈ Sk of
relevant proportions considered for estimating pairwise pref-
erences, where Sk = {10, 15, 20}. We fixed these parame-
ters in an (internal) 2-fold cross validation (repeated 5 times)
on the training data, using simple grid search on Sv×Sk (i.e.,
trying all combinations). The combination (v∗, k∗) with the
lowest cross-validated error dRL is eventually adopted and
used to make predictions on the test data (using the entire
training data). The complexity parameter C of SVM is fixed
in a similar way using an internal cross-validation.

5.3 Results
In our experiments, predictions were produced for certain
parts Dtest of the data we collected, using other parts Dtrain

as training data; an experiment of that kind is denoted
Dtrain → Dtest. The results of the conducted experiments
are summarized in Table 2, with the best performance on
each problem displayed in bold-face. Additionally, we re-
port the parameters used by able2rank.

From the results, we conclude that able2rank is quite com-
petitive in terms of predictive accuracy. In 8 of 11 cases, it
achieves the best performance in terms of the average rank-
ing loss dRL (which translates to a p-value of around 10%
when comparing able2rank and SVM with a pairwise sign
test, and of around 0.5% for the comparison with ERR).

6 Conclusion and Future Work
This paper advocates the use of analogical reasoning in the
context of preference learning. Building on the notion of
analogical proportion, we formalize the heuristic principle
suggesting that, if an alternative A is preferred to B, and C
relates to D as A relates to B, then C is likely to be pre-
ferred to D. Based on this formalization, we develop a con-
crete method, able2rank, for the problem of object ranking.
First experimental results on real-world data from different
domains are quite promising and suggest that able2rank is
competitive to state-of-the-art methods for object ranking.

In future work, we plan to elaborate more closely on the
setting of transfer learning, because we believe our analog-
ical approach to preference learning, like analogical reason-
ing in general, to be specifically useful for this purpose. In
fact, preference transfer as defined in this paper only re-
quires the relation R to be evaluated separately for source
objects A and B on the one side and target objects C and

Table 2: Results in terms of loss dRL on the test data.

train → test (v∗, k∗) able2rank ERR SVM
D1 → D2 vA′ , 10 0.066 0.064 0.025
D3 → D4 vMM , 10 0.139 0.147 0.152
B1 → B2 vA, 15 0.046 0.144 0.059
B4 → B2 vA, 20 0.078 0.078 0.026
B3 → B2 vA, 10 0.000 0.033 0.013
F1 → F2 vG, 20 0.225 0.259 0.310
F3 → F4 vG, 10 0.158 0.364 0.169
H1 → H2 vA, 20 0.060 0.084 0.072
U1 → U2 vA′ , 15 0.073 0.163 0.154
V1 → V2 vMM , 10 0.030 0.485 0.015
N1 → N2 vA, 10 0.013 0.090 0.077

D on the other side, but never between sources and tar-
gets; in principle, different specifications of R could even be
used for the source and the target. In the experiments con-
ducted in this paper, some kind of knowledge transfer was
already required, but source and target were still closely re-
lated and essentially from the same domain. As already said,
we plan to extend these experiments toward problems where
source and target are from different domains, and to gener-
alize able2rank correspondingly.

Besides, the basic version of able2rank as presented in
this paper ought to be improved and extended in different
directions. For example, for the time being, the analogical
proportion of feature vectors in able2rank is simply the aver-
age of the analogical proportions on the individual attributes.
However, since different features may have a different influ-
ence on preferences and analogies, the selection or weight-
ing of features appears to be quite important. Therefore, the
development of methods for feature selection and weighting
will be addressed in future work.

Furthermore, the current version of able2rank ignores
possible interactions between features. For example, while
a person may prefer color red to black for T-shirts, this pref-
erence might be reversed in the case of pullovers. Learning
such interactions and capturing them in analogical inference
is a highly non-trivial problem.

Last but not least, issues related to computational effi-
ciency ought to be addressed. Since able2rank follows the
lazy learning paradigm (Aha 1997), just like instance-based
learning and nearest neighbor prediction, it can learn very
easily (simply by storing observed preferences) but is rel-
atively costly at prediction time. In comparison to near-
est neighbor classification, for example, the cost is even
higher due to the need to iterate over pairs of objects in
the training data to find the highest analogical proportions.
Thus, implementing “highest analogy” search in a naive
way, the complexity scales quadratically with the size of
the training data. Consequently, there is a need to reduce
this complexity by means of suitable data structures and
algorithms for efficient retrieval of analogy pairs. Besides,
other means for complexity reduction could be considered,
such as instance selection or editing strategies like those
used in case-based reasoning (McKenna and Smyth 2000;
Delany and Cunningham 2004).
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