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Abstract

Understanding and predicting latent emotions of users to-
ward online contents, known as social emotion mining, has
became increasingly important to both social platforms and
businesses alike. Despite recent developments, however, very
little attention has been made to the issues of nuance, subjec-
tivity, and bias of social emotions. In this paper, we fill this
gap by formulating social emotion mining as a robust label
ranking problem, and propose: (1) a robust measure, named
as G-mean-rank (GMR), which sets a formal criterion con-
sistent with practical intuition; and (2) a simple yet effective
label ranking model, named as ROAR, that is more robust
toward unbalanced datasets (which are common). Through
comprehensive empirical validation using 4 real datasets and
16 benchmark semi-synthetic label ranking datasets, and a
case study, we demonstrate the superiorities of our proposals
over 2 popular label ranking measures and 6 competing label
ranking algorithms. The datasets and implementations used
in the empirical validation are available for access1.

Introduction

It has become increasingly important for businesses to better
understand their users and leverage the learned knowledge
to their advantage. One popular method for such a goal, so-
called social emotion mining, is to mine users’ digital foot-
prints to unearth users’ “emotions” toward particular prod-
ucts or services on social platforms. Users’ latent emotions
can be indirectly peeked via various channels–e.g., low star
rating given to an Amazon review, angry comments left to
a YouTube video, upvote to a news story in Reddit, or re-
twitting a friend’s post. In particular, we note one recently-
introduced function to social platforms where users may se-
lect one emoticon, out of many choices, to more precisely
express their emotions. Facebook introduced this function
in 2016, while Chinese news portal, Sina, supports a similar
function. Two Facebook posts are shown in Fig. 1 as exam-
ples. Then, a natural question is whether one can predict the
emotions expressed as emoticons in such a setting.

Most existing research on social emotion mining focuses
on extracting informative features to infer emotions from
data (Jia, Chen, and Yu 2009; Lin and Chen 2008; Lin,
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(a) (b)

Figure 1: Two Washington Post Facebook posts with differ-
ent emoticon reactions @ www.facebook.com/washingtonpost/

Yang, and Chen 2008; Tang and Chen 2011; Bai et al. 2012;
Lei et al. 2014; Zhu et al. 2014; Zhang et al. 2014). On
the one hand, as taken by most present works, predicting
one dominant emoticon as a classification problem may fail
to catch the nuance of human emotions. For example, two
posts in Fig. 1 share the same top-2 dominating emoticons,
like and haha, rendering such a classification approach be
less useful. On the other hand, the subjectivity makes pre-
dicting the exact composition of emotions as a regression
problem to be less useful too. For instance, in Fig. 1(a), re-
porting the emotion of users as 69/430 haha, 40/430 love
and 1/430 wow conveys little extra information than simply
saying that users feel more haha than love and few wow.
Therefore, to reflect the nuance and subjectivity of human
emotions, we propose to formulate social emotion mining
as a label ranking problem, where the emotions of users to-
ward a given post are represented by a ranking among a set
of emotion labels. In this way, for nuance, the number of all
possible emotions becomes d!, as opposed to d in a classifi-
cation framework, where d is the size of emotional label set.
For subjectivity, only relative rather than absolute strength
of different emotional labels is mined.

The label ranking problem asks if one can learn a model
to annotate an instance with a ranking over a finite set of
predefined labels. Label ranking can be seen as a specific
type of the preference learning problem (Hüllermeier et al.
2008) in AI. However, in the case of social emotion mining,
some labels may be preferred, causing a skewed distribution
of chosen labels. For example, ordinary Facebook users (i.e.,
posters) tend to post more happy stories and their friends
(i.e., readers) are more willing to give positive feedback
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such as like or haha. Therefore, the ranking distribution
is highly biased toward those rankings with positive labels
ranked higher than negative ones. However, posts with dom-
inating negative labels are usually more informative. None
of existing label ranking methods has considered this “im-
balance” issue.

Although there have been methods to address the imbal-
ance issue in classification, as will be illustrated in next sec-
tion, imbalance in label ranking is still anything but trivial
due to its large and nontrivial target space (i.e., d! correlated
possible rankings). To the best of our knowledge, we are the
first to point out and give a formal definition of imbalance in
label ranking and the first to formulate social emotion min-
ing as a “robust” label ranking problem. Toward this chal-
lenge, we make two contributions: (1) we first show the inad-
equacy of popular performance measures in label ranking to
handle the imbalanced data, propose a novel robust perfor-
mance measure, named as G-mean-rank (GMR), and exper-
imentally demonstrate the superiority of GMR over existing
measures; and (2) we propose a novel robust label ranking
model, ROAR, for imbalanced data without any re-sampling
or costs as hyper-parameters, and show that ROAR out-
performs 6 competing models, in real-life Facebook emoti-
con prediction task and achieves competitive performance in
semi-synthetic benchmark label ranking data sets.

Related Works
There are three classes of label ranking methods. First,
label-wise methods (Har-Peled, Roth, and Zimak 2002;
Dekel, Manning, and Singer 2003; Cheng, Henzgen, and
Hüllermeier 2013) treat label ranking as the regression prob-
lem for the relevant score of each label or position of rank-
ing. Second, pair-wise methods (Hüllermeier et al. 2008;
Cheng et al. 2010; 2012; Destercke 2013; Grbovic, Djuric,
and Vucetic 2013) decompose label ranking problem to bi-
nary classification problem for each pair of labels and then
aggregating pairwise results into rankings. Third, list-wise
methods employ different ranking distance measures to di-
rectly predict rankings without decomposing, such as Mal-
lows model (Mallows 1957) based methods (Cheng, Hühn,
and Hüllermeier 2009; Zhou et al. 2014), Plackett-Luce
model based method (Cheng, Hüllermeier, and Dembczyn-
ski 2010) and weighted distance model (Shieh 1998) based
methods (Lee and Philip 2012; 2010). Our proposed solu-
tion, ROAR, belongs to the third class.

Previous label ranking works (Har-Peled, Roth, and Zi-
mak 2002; Dekel, Manning, and Singer 2003; Hüllermeier
et al. 2008; Cheng, Hühn, and Hüllermeier 2009; Cheng
et al. 2010; 2012; Cheng, Henzgen, and Hüllermeier 2013;
Busa-Fekete, Hüllermeier, and Szörényi 2014) typically
evaluate preformance using ranking distance measure such
as Kendall tau correlation (Kendall 1948) or Spearman’s
rank correlation (Spearman 1904). On the other hand, social
emotion mining works (Lin and Chen 2008; Lin, Yang, and
Chen 2008; Lei et al. 2014; Zhang et al. 2014) typically mea-
sure performance using metrics from information retrieval
community, such as ACC@k and nDCG@k (Järvelin and
Kekäläinen 2002), emphasizing the intuition that higher
ranked positions are more informative. Similarly, some rank

modeling works in statistics (Lee and Philip 2012; 2010;
Shieh 1998) weight the distance between ranks to model
such bias. Note that the bias there is rewarding heterogene-
ity of different ranking positions, rather than bias in ranking
distribution considered in this work. Hence, in imbalanced
data, those performance measures are not good enough.

Imbalanced data problem has been previously investi-
gated under the classification framework (He and Garcia
2009). Popular methods include random sampling (Batista,
Prati, and Monard 2004; Japkowicz and Stephen 2002)
and cost-sensitive methods (Chawla, Japkowicz, and Kotcz
2004; Weiss 2004; Maloof 2003). Both methods try to first
obtain balanced data from original imbalanced data so that
the problem is reduced to the balanced classification. How-
ever, these methods involve tricky hyper-parameter tuning,
especially in multi-class classification (Sun, Kamel, and
Wang 2006), which will become even more severe in label
ranking framework. Besides, there is nontrivial correlation
among rankings rather than independent labels in classifica-
tion. Hence it is hard to determine a sampling parameter or
a cost for each ranking. In contrast, the robust label ranking
method proposed in this work is free of hyper-parameters
related to data imbalance.

Preliminaries

Social Emotion Mining

Here we formulate social emotion mining as the label
ranking problem. Given a post x in social media, with
x ∈ X as feature vector, and a set of emotional labels
Y = {y1, y2, ..., yd}, called emoticons, the goal is to asso-
ciate the post with an aggregated emotion of crowd φ(x)
it triggers, represented by the emoticons. As argued, we
choose φ(x) to be a ranking over the emoticon set, φ(x) =
(φ1(x), φ2(x), ..., φd(x)), where φi(x) ∈ Y and φi(x) �=
φj(x), ∀i �= j. φi = yl indicates that label yl ranks on po-
sition i. For consistent annotation, a ranking position vector
is defined as π(x) = (πy1

(x), πy2
(x), ..., πyd

(x)), where
yi ∈ Y and πyi ∈ {1, 2, ..., d}, which means that label yi
ranks on position πyi(x). With a ranking, the represented
emotion consists of more of emoticons ranking higher and
less of those lower. Therefore, the social emotion mining is
formulated as a label ranking problem.

Problem 1 (Label Ranking) Find a mapping f : X → Ωd,
where Ωd is the set of all possible rankings over a label set
of size d, such that given an instance with feature vector x,
predict ranking φ̂(x) = f(x).

Imbalance in Label Ranking

In social emotion mining context, imbalance in data refers
to the characteristics of data where documents with some
emotional reactions are rarer than those with others. In the
context of label ranking, it means that instances with some
rankings are rarer than those with others. As for a formal
definition of this intuition, a naive choice is treating differ-
ent rankings as different classes and the problem reduces to
a classification problem. However, classification framework
ignores the fact that different rankings are not independent
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or equal-interval with each other. Instead, therefore, here im-
balance is defined based on pairwise comparisons.

Given any pair of labels {yi, yj}, yi, yj ∈ Y , and an in-
stance ν, a pairwise comparison function is defined as:

Iν(yi, yj) =

{
1, if πyi

< πyj
for instance ν

0, otherwise.
(1)

Then, for each label pair yi, yj , imbalance in data distri-
bution D = {(x, φ(x))} ⊂ X ×Ωd can be seen as the differ-
ence between

∑
ν∈D Iν(yi, yj) and

∑
ν∈D Iν(yj , yi). Since

a ranking consists of pairwise comparisons of all pairs, a
single-value imbalance measure for label ranking, IMBA-
rank (or IMBA without ambiguity), of D is defined as:

IMBA(D) =
1

2

d∑
i,j=1,i �=j

∣∣∣∣log(
∑

ν∈D Iν(yi, yj) + 1∑
ν∈D Iν(yj , yi) + 1

)

∣∣∣∣ .
(2)

When data is perfectly balanced, IMBA-rank should be
0. The more imbalanced the data is, the larger IMBA-rank
gets.

Robust Performance Measure

We first show that commonly used performance measures in
label ranking are no longer adequate in imbalance case, and
then introduce a robust one.

Previous Measures for Label Ranking

One of the most popular performance measures in label
ranking community is Kendall’s tau correlation (Kendall
1948). The correlation tau for two rankings {π, π̂} is for-
mally defined as:

tau =
C(π, π̂)−D(π, π̂)

C(π, π̂) +D(π, π̂)
, (3)

where D(π, π̂) = |{(i, j)|i < j, πyi
> πyj

∧ π̂yi
< π̂yj

}|
and C(π, π̂) = |{(i, j)|i < j, πyi

> πyj
∧ π̂yi

> π̂yj
}| de-

note the number of discordant and consistent-ordered pairs
of labels between two rankings, respectively. To empha-
size the importance of higher positions in ranking, previous
works on social emotion mining usually use ACC@k as per-
formance measure. The ACC@k of an instance is defined
as:

ACC@k(φ, φ̂) = I(φi = φ̂i|∀i ∈ {1, 2, ..., k}), (4)

where I() is the indicator function.
Concerning one pair of labels and two candidate ranking

positions, the imbalanced label ranking problem reduces to
imbalanced classification problem. Both tau and ACC@k
consider only true fractions without distinguishing true pos-
itives and true negatives, which has been well known to
be inadequate in imbalanced classification (He and Garcia
2009). This is similarly true for other label ranking perfor-
mance measures, such as Spearman’s rank correlation and
nDCG@k.

For a better illustration, consider a toy data set as an ex-
ample. Here the label set Y = {yi|i ∈ {1, 2, 3, 4}} with
d = 4. The dataset contains 100 instances where 90 of them

are associated with rank φ9 = (y1, y2, y3, y4) while the rest
are associated with φ1 = (y1, y4, y2, y3). Then, a trivial
label ranking model predicts all instances to be with rank
φ̂ = φ9 for this toy data set. Then, the performance of the
trivial model is tau ≈ 93% and ACC@k = 90% if k = 2,
which is relatively high compared with a perfect model with
tau = 100% and ACC@k = 100%. Hence, both measures
help little in recognizing such trivial solution in imbalanced
data or giving sufficient attention to minority rankings.

Robust Measure for Label Ranking: GMR

As shown above, it is critical to distinguish negative and pos-
itive classes for performance measure in imbalanced classifi-
cation problem. Similarly in label ranking problem, we first
decompose it into pairwise comparison classification prob-
lem. For each ordered pair of labels (yi, yj), the class of in-
stance ν is defined as Positive if Iν(yi, yj) = 1 or Negative
if Iν(yj , yi) = 1. Since the Negative class of ordered pair
(yi, yj) is the same as Positive class of (yj , yi), only pos-
itive class for each ordered pair is considered. Hence only
recall can be defined. Similar to classification, the recall for
ordered pair (yi, yj) in data set D is defined as

recallD(yi, yj |f) =
∑

ν∈D Iν(yi, yj)Iν̂(yi, yj) + 1∑
ν∈D Iν(yi, yj) + 2

, (5)

where Iν̂(yi, yj) is the pairwise comparison function for pre-
dicted ranking for instance ν, and the extra +1 term in nu-
merator and +2 term in denominator are smooth terms. To
combine recalls of different pairs, inspired by G-Mean (Sun,
Kamel, and Wang 2006) for imbalanced multi-class classi-
fication, geometric mean is used and G-mean-rank (GMR)
for data set D is defined as:

GMRD(f) = P

√√√√ d∏
i �=j

recallD(yi, yj |f) , (6)

where P is the number of ordered pairs involved. For each
pair of labels, GMR is the same as G-mean for two-class
classification. Hence according to the definition of imbal-
ance in label ranking, GMR is insensitive to imbalanced
label ranking data.

Using the aforementioned toy dataset again, the perfor-
mance of the trivial algorithm in terms of GMR is GMR ≈
53%, which is not high compared to 97% for a perfect one.
Therefore, GMR rightfully gives sufficient penalty to a triv-
ial solution which is not supposed to perform well, a behav-
ior that we intended.

Is GMR Superior to Previous Measures?

To show the robustness of GMR compared to two popular
measures–i.e., tau and ACC@k, we apply the idea of toy
example above to real datasets. We use four Facebook post
datasets with emoticon set size of d = 6, whose detail can
be found in Empirical Validation section later.

We extend the idea of the trivial model in the toy example
by designing a naive model, denoted as NAIVE, that assigns
the most common ranking in a training set to all instances in
a test set regardless of their feature values. As the datasets
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Table 1: Comparison of GMR with ACC@3 and tau using
real datasets

Datasets
Measures Methods ROU NYT WSJ WaPo
IMBA 3.03 1.94 2.96 2.14

RPC 0.850 0.185 0.191 0.182
ACC@3 KNN-PL 0.770 0.125 0.169 0.144

NAIVE 0.837 0.0532 0.171 0.0976
Gain (%) −3 191 5 67

RPC 0.933 0.497 0.595 0.541
tau KNN-PL 0.929 0.495 0.584 0.544

NAIVE 0.932 0.399 0.567 0.503
Gain (%) −0.1 24 4 8

RPC 0.241 0.429 0.345 0.358
GMR KNN-PL 0.408 0.458 0.513 0.461

NAIVE 0.152 0.0796 0.0881 0.0770
Gain (%) 113 457 387 432

we use are rankings converted from number of votes for dif-
ferent emoticons, the most common ranking (i.e., the output)
in NAIVE is set as the ranking of emoticons according to the
number of accumulated votes in the training set. Therefore,
NAIVE is a “dumb” solution and is not supposed to work
well.

Next, we choose 2 state-of-the-art models, RPC and
KNN-PL, as examples of good models, whose detail will
be explained in Robust Label Ranking Model section. The
idea is that a robust performance measure should be able
to clearly distinguish good models (e.g., RPC and KNN-PL)
from bad ones (e.g., NAIVE) even when a dataset is severely
unbalanced.

The result is shown in Table 1. For ACC@k, k is set
as 3 to mimic the behavior of Facebook, where only top-
3 emoticons of posts are shown by default. The row, Gain
(%), in Table 1 shows the average improvement of two good
models over NAIVE in terms of three different measures.
In all four datasets, the improvement in terms of GMR is
always far larger than ACC@3 and tau, which illustrates
the robustness of GMR. Table 1 also shows the IMBA-
rank of each dataset as IMBA. Note that the improvement
in terms of ACC@3 and tau decreases as IMBA-rank
increases. For the most imbalanced dataset, ROU, the im-
provement in terms of both ACC@3 and tau is even nega-
tive, which indicates that GMR is capable of capturing the
fact that two state-of-the-art models far outperform a naive
poorly-designed model.

Now we are ready to formally define robust label ranking
problem.

Problem 2 (Robust Label Ranking) Find a mapping f :
X → Ωd, for data distribution D, with large IMBA-
rank(D), such that GMRD(f) ≥ GMRD(f ′), ∀f ′ : X →
Ωd.

Robust Label Ranking Model

Competing models

In this work, to our best knowledge, we consider all existing
state-of-the-art label ranking models as follows.

• Ranking by Pairwise Comparison (RPC) (Hüllermeier et
al. 2008): It predicts pairwise order for each pair of la-
bels using logistic regression and then combines them into
ranking output with Borda count (de Borda 1781).

• Label-Wise Decomposition (LWD) (Cheng, Henzgen,
and Hüllermeier 2013): It predicts position probability
distribution of each label and then combines them to min-
imize expected Spearman’s footrule (Diaconis and Gra-
ham 1977).

• Soft Multi-Prototype (SMP) (Grbovic, Djuric, and
Vucetic 2013): It fits label ranking data with multiple pro-
totypes both in feature and ranking space, and combines
prototypes into ranking prediction given feature values.

• K-Nearest-Neighbor with Plackett-Luce model (KNN-
PL) (Cheng, Hüllermeier, and Dembczynski 2010): It pre-
dicts ranking by aggregating rankings of instances whose
feature values are nearest to given feature value. The ag-
gregation is based on Plackett-Luce model.

• K-Nearest-Neighbor with Mallows model (KNN-
M) (Cheng, Hühn, and Hüllermeier 2009): It is the
same with KNN-PL except the aggregation is based on
Mallows model (Mallows 1957).

• Log-Linear model (LogLinear) (Dekel, Manning, and
Singer 2003): It learns utility functions for each label via
pairwise comparison and sorts labels by utility function
values into ranking. Here the utility function is adopted
from (Hüllermeier et al. 2008), in which case LogLin-
ear is equivalent to the Constraint Classification algo-
rithm (Har-Peled, Roth, and Zimak 2002).

• Label Ranking Tree (LRT) (Cheng, Hühn, and
Hüllermeier 2009): It is a decision tree method whose
induction is based on Mallows model (Mallows 1957).

Robust Label Ranking Model: ROAR

Now, we propose a robust label ranking model, named as
ROAR (RObust lAbel Ranking), which is a simple, efficient,
and effective tree based model. The performance measure
GMR is difficult to be directly optimized, as it is not an
average over some performance measure for each instance.
Hence an alternative learning objective function, an induc-
tion criterion in decision tree, is proposed. This supports
the model searching for finest structure in feature and tar-
get space without overfitting, which makes it robust against
imbalanced data.

Learning. To learn a decision tree, a general algorithm be-
gins with all instances in the root node. Then, it partitions the
training data recursively, by one-dimension splits according
to the comparison between thresholds and a feature value.
The decision tree in this work is a binary tree.

The threshold and the feature for each split are selected by
exhaustive search so that the sizes of the neighborhoods in
the target space, estimated by training data in the resultant
child nodes, become the smallest. The size of a neighbor-
hood is estimated by the impurity of the set of rankings in a
node. One intuition about the impurity of a set of rankings
is the impurity of labels on each ranking position. Because
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labels are independent of each other, for a given position, we
choose the popular Gini index, and the Gini index of a tree
node T for position i is defined as:

Ginii(T ) =
∑
y∈Y

(ni(T )− niy(T ))niy(T )

ni(T )2
, (7)

where niy(T ) =
∑

ν∈T I(φi(xν) = y) is the number of
instances with label y ranking on position i and ni(T ) =∑

y∈Y niy(T ) denotes the number of instances with any la-
bel ranking on position i. Then the impurity for rankings of
the node T can be measured by weighted sum of Gini index
for each position, that is,

Gini(T ) =
d∑

i=1

ni(T )Ginii(T )

|T | , (8)

which is called point-wise Gini index. For parent node T
and potential child nodes T− and T+, the split criterion is
defined as
criterion = |T |−1(|T+|Gini(T+) + |T−|Gini(T−)).

(9)
The stopping criterion is straightforward. The partition-

ing stops when no further partitioning is possible, that is,
when there is no partitioning whose criterion is smaller
than Gini(T ) for current node T .

Prediction. Here for ROAR, we use a position-wise rank-
ing aggregation method. From highest to lowest ranking po-
sition, given a position, it assigns the label that has not been
assigned and appears most frequently at that position, to
each position. When there is no such label for a position, it
resorts to label distributions of other positions, from highest
to lowest and does the same.

Consistency with Ranking Theory. This point-wise Gini
index is consistent with our intuition about the purity of a
set of rankings. To show that, we have to assume a measure-
ment of the size of a neighborhood Ω(T ) around a point in
Ωd, noting that the center ranking π0 is unknown. Mallows
model (Mallows 1957) is a popular assumption of probabil-
ity model of rankings, using the annotation from (Cheng,
Hühn, and Hüllermeier 2009), defined as

P (π|θ, π0) =
exp(−θD(π, π0))

ψ(θ)
, (10)

where ψ(θ) =
∑

π∈Ωd
exp(−θD(π, π0)) is a normalization

constant, θ the spread parameter, π0 the center ranking and
D(·, ·) the distance between two rankings, which is the num-
ber of discordant pairs between two rankings. Assuming that
the rankings in T are independently generated according to
Mallows model, the spreading parameter θ measures the size
of Ω(T ). Under the independence assumption, the expecta-
tion of point-wise Gini index for node T is

E(Gini(T )) = E(

d∑
i

ni(T )Ginii(T )

|T | )

=
d∑
i

E(Ginii(T )),

(11)

(a) E(Gini) versus θ (b) Running time

Figure 2: Left figure illustrates the consistency between Gini
index and impurity measure in Mallows model; right figure
shows the efficiency of ROAR compared with LRT.

E(Ginii) =
(ni − 1)

ni
(1−

∑
y∈Y

P (φi = y)2). (12)

According to Mallows model, without loss of generality,
we assume the center ranking φ0

i = yi, ∀i ∈ {1, 2, ..., d}.
Then ranking φ with φi = yj , is with probability P (φ) =
O(exp(−|i−j|θ))

ψ(θ) . Therefore, for large enough θ, P (φi =

yj) = O(exp(−|i− j|θ)). Hence, when θ is larger, which is
when the spread of Mallows model is smaller, then the prob-
abilities P (φi = yj) over yj ∈ Y are more skewed toward
smaller |i − j|. Therefore according to eq. 12, E(Ginii) is
smaller, so is E(Gini(T )), as illustrated in Fig. 2a with dif-
ferent sizes of label set in the limitation of ni → ∞. There-
fore, Gini is a good estimator of the impurity of rankings in
a node.

Time Complexity. In ROAR, the amortized running time
for each potential partition is θ(d2), constant in terms of |T |.
Hence the running time for each induction of a tree node is
Θ(m|T |(log|T |+ d2)). In contrast, LRT takes Ω(|T |) steps
for each potential partition, so that the running time for each
induction of a tree node is Ω(m|T |2d2). The running time
of two methods applied to data of different sizes are shown
in Fig. 2b. As LRT becomes prohibitively slow as data gets
large, it is not considered in following empirical validation.

Empirical Validation

We attempt to validate if: (1) our proposed G-mean-rank is
superior to two popular label ranking measures in imbal-
ance datasets, which has been done in Robust Performance
Measure section; and (2) our proposed ROAR outperforms
6 competing label ranking models. The datasets and imple-
mentations used in the empirical validation are available for
access2.

Datasets and Set-Up

In this work, we use emoticon clicks data of Facebook posts.
For each post, there are six emoticon labels, {like, love,
haha, wow, sad, angry}. Each user (i.e., reader) can select
one of the six labels for each post. For evaluating NAIVE
in Robust Performance Measure section, we use the num-
ber of votes for labels per post as the input. To obtain rank-

2http://pike.psu.edu/download/aaai18/
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Table 2: Summary of four datasets

ROU NYT WSJ WaPo
# posts 17, 394 4, 684 7, 464 6, 117
IMBA 3.03 1.94 2.96 2.14
# like 834K 7.99M 2.44M 3.81M
# love 14K 578K 105K 222K
#haha 3, 281 434K 130K 248K
#wow 2, 610 328K 84K 179K
# sad 2, 430 786K 70K 332K

# angry 678 1, 07M 93K 549K

ing, for each post, the labels are sorted according to their
number of votes. If the number is zero for some labels, they
are considered ranked at an extra tail position attached to
the normal ranking without preference to each other and
the ranking positions without labels are treated as missing.
There are four data sets: (1) public posts from random ordi-
nary users, denoted as ROU (Random Ordinary Users); (2)
New York Times (NYT)3 posts; (3) the Wall Street Journal
(WSJ)4 posts; and (4) the Washington Post (WaPo)5 posts.
We have crawled all four sets of posts in 2016 after Face-
book introduced six emoticons.

As our focus is on the evaluation of our two proposals
for the robust label ranking problem (instead of finding ef-
fective features), we avoid sophisticated features (e.g., user
related or network structure based), and instead use fun-
damental textual features, extracted via AlchemyLanguage
API (by IBM Watson Lab). For posts in ROU, only posts
with text are included, and the document emotion of the text
given by AlchemyLanguage is used as features. For posts
in other three sets, if there is a link to external original full
news, the document emotion of the full news is used as fea-
ture, and otherwise, only the text in posts is used. The re-
turned document emotion from AlchemyLanguage consists
of [0, 1] scores, for five emotion dimensions, “anger”, “joy”,
“fear”, “sadness” and “disgust”. The scores measure the am-
plitude of each emotion conveyed by the text. Then the four
data sets are with the same feature and target format, that is,
Y = {like, love, haha,wow, sad, angry} with d = 6 and
m = 5 dimensional feature space.

The details of four data sets are shown in Table 2. Com-
paring ROU and the other three sets, the IMBA-rank of
ROU is much higher. This is due to the fact that readers of
the posts from ordinary users are usually their friends, who
tend to give positive feedback, {like, love, haha} rather
than negative one, {sad, angry} All our datasets are sig-
nificantly imbalanced in that like or other positive labels are
more frequent. This is partially due to the interface limita-
tion such that users have to hover their mouse over the Like
button to be able to select other emoticons. To illustrate im-
balance in label ranking more clearly, we show the pairwise
comparison matrix of WaPo, as Table 3, where the number
in each entry (yi, yj) counts the number of posts (support)

3www.facebook.com/nytimes/
4www.facebook.com/wsj/
5www.facebook.com/washingtonpost/

Table 3: Pairwise comparison matrix of WaPo

like love haha wow sad angry
like − 6, 117 6, 093 6, 115 5, 982 5, 906
love 0 − 2, 994 2, 654 2, 978 3, 116
haha 23 2, 003 − 1, 872 2, 415 2, 295
wow 2 2, 623 3, 036 − 3, 093 2, 968
sad 130 2, 203 2, 104 1, 717 − 1, 880
angry 209 2, 014 1, 979 1, 821 2, 040 −

Table 4: Summary of results on Facebook posts datasets
(* means significance level of 0.1, and ** 0.01)

Datasets
Methods ROU NYT WSJ WaPo

RPC 0.933 0.497 0.595 0.541
LWR 0.937 0.499 0.603 0.562
SMP 0.933 0.495 0.601 0.547

tau KNN-PL 0.929 0.495 0.584 0.544
KNN-M 0.928 0.504 0.595 0.550

LogLinear 0.935 0.488 0.593 0.537
ROAR 0.954** 0.634** 0.612* 0.554
RPC 0.241 0.429 0.345 0.358
LWR 0.295 0.433 0.289 0.390
SMP 0.246 0.351 0.257 0.247

GMR KNN-PL 0.408* 0.458 0.513 0.461
KNN-M 0.387 0.455 0.468 0.435

LogLinear 0.209 0.287 0.253 0.203
ROAR 0.343 0.680** 0.534* 0.478*

with yi being higher ranked than yj . For instance, there are
only 209 posts where angry is ranked higher than like com-
pared with 5, 906 in contrast.

We also use 16 semi-synthetic data sets obtained by con-
verting benchmark multi-class classification using Naive
Bayes and regression data using feature-to-label technique
from the UCI and Statlog repositories into label rank-
ing (Cheng, Hühn, and Hüllermeier 2009). These data sets
are widely used as benchmark in label ranking works.

Results

Competing Models

First we test models on Facebook posts data sets, which are
imbalanced. All results are obtained with 5-fold cross val-
idation. We compare ROAR with 6 existing state-of-the-
art label ranking models, RPC6, LWD, SMP7, KNN-PL8,
KNN-M and LogLinear.

6There is only one minor modification. In case of missing la-
bels, missing label pairs indicate that they are not preferred to each
other, as abstention means. Therefore, missing label pairs are as-
signed a small weight α, and counted as one preference relation for
each order. The weight is picked empirically, α = 1/64 used in
this work, and results do not appear sensitive to the weight for a
range of α values.

7There is a hyperparameter k (Grbovic, Djuric, and Vucetic
2013), which is set to default value 100 for Facebook data, and
slightly smaller than number of all possible rankings for each semi-
synthetic data.

8Two KNN based model takes default K = 20.
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Table 5: Summary of results on semi-synthetic data sets

tau GMR

Data RPC LWR SMP KNN-PL KNN-M LogLinear ROAR RPC LWR SMP KNN-PL KNN-M LogLinear ROAR

glass 0.877 0.884 0.476 0.809 0.807 0.812 0.851 0.785 0.795 0.471 0.582 0.625 0.625 0.772
authorship 0.919 0.912 0.636 0.931 0.930 0.497 0.873 0.912 0.910 0.571 0.903 0.903 0.808 0.870
pendigits 0.928 0.930 0.488 0.934 0.933 0.539 0.936 0.945 0.948 0.523 0.949 0.951 0.828 0.954
elevators 0.725 0.789** 0.753 0.724 0.726 0.556 0.715 0.732 0.769 0.618 0.751 0.739 0.793** 0.768
segment 0.927 0.950 0.123 0.940 0.940 0.733 0.956* 0.948 0.963 0.220 0.955 0.958 0.885 0.969**

wine 0.914 0.910 0.944 0.936 0.948 0.948 0.892 0.901 0.898 0.908 0.909 0.917 0.917 0.887
vowel 0.623 0.750 0.503 0.746 0.749 0.558 0.796** 0.768 0.844 0.517 0.812 0.834 0.766 0.870**
cpu 0.445 0.462 -0.010 0.496 0.497 0.358 0.370 0.534 0.672 0.035 0.672 0.693** 0.675 0.656

vehicle 0.844 0.860 0.817 0.843 0.835 0.756 0.833 0.906 0.908 0.870 0.895 0.896 0.839 0.894
housing 0.667 0.685 0.469 0.647 0.661 0.606 0.775** 0.806 0.817 0.632 0.798 0.806 0.784 0.866**

iris 0.884 0.982* 0.760 0.956 0.960 0.804 0.929 0.890 0.927** 0.823 0.918 0.919 0.847 0.903
stock 0.750 0.850 0.697 0.900 0.899 0.643 0.888 0.859 0.910 0.820 0.936 0.936 0.806 0.932

calhousing 0.243 0.243 0.256 0.325 0.334 0.190 0.338 0.576 0.583 0.558 0.626 0.640 0.589 0.663**
wisconsin 0.626** 0.510 0.056 0.477 0.486 0.563 0.311 0.777** 0.721 0.289 0.697 0.702 0.747 0.628
bodyfat 0.292 0.282 0.139 0.227 0.231 0.272 0.074 0.623 0.618 0.509 0.593 0.591 0.617 0.525

fried 1.000 0.990 0.470 0.902 0.905 0.994 0.879 1.000 0.995 0.697 0.951 0.952 0.997 0.939
# of common wins in both measures in ascending order: SMP=0, KNN-PL=1, KNN-M=1, LogLinear=1, RPC=3, LWR=3, and ROAR=5

For evaluation, as we have shown the superiority of GMR
in imbalanced data, here GMR is used. For consistency with
previous label ranking works, results in terms of tau are also
included in Tabel. 4.

Table 4 shows that ROAR achieves significantly better
performance in all four data sets except ROU in terms of
GMR. In ROU dataset, ROAR loses only to two KNN
based methods. As pointed out previously, that posts emo-
tion extracted from posts in ROU may not be meaningful
enough, hence lack of structural correlation between fea-
ture and target favors instance-based learning method such
as KNN. Hence the experiment shows that ROAR outper-
forms other models in real-world imbalanced label ranking
data.

Next, ROAR and other label ranking models are applied
to benchmark semi-synthetic data sets, evaluated by tau and
GMR. As shown in Table. 5, ROAR achieves competitive
results against other models and wins in the most data sets
in terms of both tau and GMR.

Case study

What does it mean that an model performs better in terms of
GMR in imbalanced label ranking data sets? Here we use
WaPo data set result to answer it. Because imbalance mea-
sure of label ranking data IMBA−rank is defined based on
imbalance between two orders of each pair of labels (eq. 2),
here we want to know whether an model can recall those
minority orders in imbalanced pairs. In WaPo (Table. 3),
we choose (haha, like), (sad, like) and (angry, like) three
minority pair orders, where (yi, yj) means yi ranks higher
than yj . The number of posts with each of these orders is 23,
130 and 209, respectively, compared with that of those op-
posite, 6 093, 5 982 and 5 906. The recall of each pair order
is shown in Fig. 3. It is obvious that ROAR is superior than
any other models. Actually any models except ROAR do
not recall any posts with those minority pair orders, which
is why they get same recall. Hence ROAR works better in
recalling minority pair orders, as it achieves highest GMR
in WaPo (Table. 4). However, this advantage is not well ap-
preciated by tau as shown in Table. 4.

Figure 3: recall of minority pair orders. Actually any mod-
els except ROAR do not recall any posts with those minority
pair orders, which is why they get same recall (not vanish-
ing due to the smooth term in recall definition).

Conclusion

In this work, we formally define robust label ranking prob-
lem for social emotion mining. To overcome the challenges,
we first propose a robust measure, GMR, as the criterion
for the problem. Both synthetic and experimental analysis
show the superiority of GMR over popular measures such
as Kendall’s tau correlation and ACC@k. Then, we also
propose a robust model, ROAR, and empirically validate its
superiority over 6 competing label ranking models in Face-
book posts data sets and benchmark semi-synthetic data sets.
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Busa-Fekete, R.; Hüllermeier, E.; and Szörényi, B. 2014.
Preference-based rank elicitation using statistical models:
The case of mallows. In ICML, 1071–1079.
Chawla, N. V.; Japkowicz, N.; and Kotcz, A. 2004. Editorial:
special issue on learning from imbalanced data sets. ACM
Sigkdd Explorations Newsletter 6(1):1–6.
Cheng, W.; Rademaker, M.; De Baets, B.; and Hüllermeier,
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