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Abstract

We tackle the problem of identifiability and efficient learn-
ing of mixtures of Random Utility Models (RUMs). We show
that when the PDFs of utility distributions are symmetric,
the mixture of k RUMs (denoted by k-RUM) is not identi-
fiable when the number of alternatives m is no more than
2k − 1. On the other hand, when m ≥ max{4k − 2, 6}, any
k-RUM is generically identifiable. We then propose three al-
gorithms for learning mixtures of RUMs: an EM-based algo-
rithm, which we call E-GMM, a direct generalized-method-
of-moments (GMM) algorithm, and a sandwich (GMM-E-
GMM) algorithm that combines the other two. Experiments
on synthetic data show that the sandwich algorithm achieves
the highest statistical efficiency and GMM is the most compu-
tationally efficient. Experiments on real-world data at Preflib
show that Gaussian k-RUMs provide better fitness than a sin-
gle Gaussian RUM, the Plackett-Luce model, and mixtures
of Plackett-Luce models w.r.t. commonly-used model fitness
criteria. To the best of our knowledge, this is the first work on
learning mixtures of general RUMs.

Introduction

In rank aggregation, the goal is to aggregate rank data to
make an optimal decision, where each data point is a linear
order over a set of alternatives. Rank aggregation has many
applications. For example, in political elections, agents cast
votes to elect a president; in information retrieval, rankings
over documents are combined into a list; in crowdsourcing,
crowd workers sometimes give rankings as answers, which
are aggregated to estimate the correct ranking.

In this paper, we take a machine learning approach to-
wards rank aggregation, by addressing the problem of effi-
ciently learning mixtures of Random Utility Models (RUMs).
RUMs are a widely applied statistical model for human be-
haviors (Thurstone 1927). In a single, non-mixture RUM,
each agent samples a utility for each alternative indepen-
dently and reports the ranking over alternatives by sorting
their utilities. A special case of RUMs is the Plackett-Luce
model (Plackett 1975; Luce 1959), which can be seen as the
extension of multinomial logistic regression to rank data.
General RUMs can fit data better than Plackett-Luce models
and thus provide more accurate predictions (Azari Soufiani,
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Parkes, and Xia 2012). Unfortunately, unlike the Placket-
Luce model, general RUMs are hard to learn due to the
lack of closed-form formula of the likelihood function. One
prominent example is Thurstone’s case V model (Thurstone
1927), where the utility distributions are Gaussian and can
be seen as an extension of multinomial probit regression to
rank data. See Related Work for more discussions.

A mixture of k RUM models, denoted by k-RUM, com-
bines k RUM components via the mixing coefficients �α =
[α1, α2, . . . , αk]. Given a k-RUM, a ranking can be gener-
ated as follows: (i) the rth component is selected with proba-
bility αr; (ii) a ranking is generated from the rth RUM com-
ponent. Like other mixture models, k-RUMs can potentially
provide better fitness and can be used for clustering.

We are not aware of previous work on learning mixtures
of general RUMs. There are some recent works on mix-
tures of Plackett-Luce models (Gormley and Murphy 2008;
Mollica and Tardella 2016; Tkachenko and Lauw 2016;
Zhao, Piech, and Xia 2016), which are special k-RUMs.

The motivation of our work on learning mixtures of gen-
eral RUMs is that general k-RUMs outperforms a single
RUM, the Plackett-Luce model, and mixtures of Plackett-
Luce models w.r.t. various commonly-used model fitting cri-
teria, as we will show later in the paper based on experiments
on real-world data. This means that general k-RUMs often
improve predictions and decisions compared to the state-of-
the-art models.

In this paper, we address the following two fundamen-
tal questions on learning mixtures of RUMs. Is a k-RUM
learnable? Can we design efficient algorithms for learning
k-RUMs in general?

Our Contributions

In this paper, we measure learnability by “identifiability”,
which means different parameters correspond to different
distributions of rank data. Identifiability is important to mix-
ture models for parameter estimation and clustering. The
identifiability of k-RUMs depends on the number of compo-
nents k in the mixture model and the number of alternatives
m, as we show in the following two theorems.

Theorem 1. Let M be any symmetric RUM from the loca-
tion family. When m ≤ 2k − 1, k-RUMM over m alterna-
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tives is non-identifiable1.
Here k-RUMM denotes the mixture of k RUMs, each of

which is chosen from the RUM model M. As a corollary, the
k-mixture of Thurstone’s original case V model (with Gaus-
sian distributions) is non-identifiable when m ≤ 2k−1. Our
second theorem proves generic identifiability. k-RUMM is
generically identifiable, if the Lebesgue measure of non-
identifiable parameters is 0.
Theorem 2. For any RUMM where all utility distributions
have support (−∞,∞), when m ≥ max{4k − 2, 6}, k-
RUMM over m alternatives is generically identifiable.

We propose three algorithms to learn k-RUMs. The first
one is an EM-based algorithm (Dempster, Laird, and Ru-
bin 1977), which we call E-GMM. It works as follows: the
E-step is standard, calculating the membership of each rank-
ing in the data w.r.t. the k components based on the likeli-
hood ratios. In the M step, we adopt the generalized-method-
of-moments (GMM) algorithm proposed by Azari Soufiani,
Parkes, and Xia (2014) to estimate parameters for each RUM
component.

Our second algorithm is a direct GMM algorithm (Hansen
1982) that tries to match the moments for k-RUM. We prove
that under mild conditions the algorithm is consistent. That
is, it converges to the ground truth with probability going
to 1 as the number of independently generated rankings ap-
proaches infinity.

Our third algorithm combines the advantages of the E-
GMM algorithm and the GMM algorithm. We first run
GMM, use the output as the initial values to run E-GMM.
The algorithm is thus called the sandwich algorithm (GMM-
E-GMM). We note that the two GMMs in the sandwich al-
gorithm are different.

Experiments on synthetic data show that the sandwich al-
gorithm is the most statistically efficient and the GMM algo-
rithm is the fastest. Observing that the E-GMM algorithm is
not as good as the sandwich algorithm w.r.t. both statistical
efficiency and computational efficiency, we don’t show the
results of the E-GMM algorithm in this paper.

Experiments on real-world Preflib data (Mattei and
Walsh 2013) show that k-RUMs provide better model fit-
ness than a single RUM, the Plackett-Luce model, and
mixtures of Plackett-Luce models w.r.t. commonly-used
model fitness criteria, including Akaike Information Crite-
rion (AIC) (Akaike 1974), corrected AIC for finite samples
(AICc) (Hurvich and Tsai 1989), and Bayesian Information
Criterion (BIC) (Schwarz 1978). We note that such com-
parisons and conclusions are enabled by our algorithms on
learning general k-RUMs, which are the first of their kind.

Related Work and Discussions

Our (non)-identifiability theorems are the first ones for
mixtures of general RUMs. Recently Zhao, Piech, and
Xia (2016) characterized identifiability of mixtures of
Plackett-Luce models. We focus on a different class of mix-

1All identifiability results in this paper hold modulo label
switching, which means that if we label the components differently,
the parameter is treated the same.

tures of RUMs—those whose utility distributions have sym-
metric PDFs, including Thurstone’s case V model. In or-
der to prove the (non)-identifiability theorem, we adopted
novel techniques by avoiding direct calculation of the like-
lihood. This is the major difference between our proofs and
the proofs of Zhao, Piech, and Xia (2016) for mixtures of
Plackett-Luce models, where closed-form formulas for the
likelihood function are available. We emphasize that our
non-identifiability theorem does not apply to mixtures of
Plackett-Luce models because the utility distributions in the
Plackett-Luce model (Gumbel distributions) are not sym-
metric.

Our work also makes a number of algorithmic contribu-
tions to the literature of rank aggregation, sometimes known
as learning to rank (Liu 2011). In particular, GMM-based
techniques for learning a single (non-mixture) RUM, includ-
ing the Plackett-Luce model, have been extensively inves-
tigated (Negahban, Oh, and Shah 2012; Azari Soufiani et
al. 2013; Azari Soufiani, Parkes, and Xia 2014; Chen and
Suh 2015; Khetan and Oh 2016b; 2016a). Learning algo-
rithms have also been proposed for mixtures of Plackett-
Luce models, including EM-based algorithms (Gormley and
Murphy 2008; Mollica and Tardella 2016; Tkachenko and
Lauw 2016) and a generalized method of moments algo-
rithm (Zhao, Piech, and Xia 2016). To the best of our knowl-
edge, our algorithms for learning k-RUMs are quite general
and are the first algorithms for learning mixtures of RUMs
beyond mixtures of Plackett-Luce models.

Our E-GMM is inspired by the EMM algorithm for learn-
ing mixtures of Plackett-Luce models proposed by Gorm-
ley and Murphy (2008). However, the EMM cannot be eas-
ily applied to learn general k-RUMs, because EMM uses a
Minorize-Maximization (MM) algorithm to estimate param-
eters of each Plackett-Luce component, but no MM algo-
rithm is known for general RUMs. To address this challenge,
we adopt a GMM by Azari Soufiani, Parkes, and Xia (2014)
in the M step. Our GMM algorithm is inspired by the GMMs
in the previous work discussed above but we use a different
set of moment conditions.

Recently tensor-decomposition techniques have been ex-
plored to learn models with latent variables, see for exam-
ple the work by Anandkumar et al. (2014). However, such
techniques cannot be easily applied to learn RUMs and their
mixtures. In the proof of Theorem 2 we shed some light on a
potential algorithm, which requires multiple tensor decom-
positions and each component is only labeled by its mix-
ing probability. Designing computationally tractable tensor-
decomposition algorithms is a promising direction for future
work.

Preliminaries

Let A = {ai|i = 1, 2, · · · ,m} denote a set of m alterna-
tives. Let L(A) be the set of linear orders (full rankings)
over A, which are transitive, antisymmetric and total binary
relations. Let P = {V1, V2, · · · , Vn} denote the data (also
called a preference profile), where for all j ≤ n, Vj ∈ L(A).

Definition 1 (Random Utility Model (RUM)). Given m ≥ 2
alternatives, a random utility model M associates each al-
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ternative ai with a utility distribution. The parameter space
is Θ = {�θ = {�θi|i = 1, 2, · · · ,m}}, where �θi is the pa-
rameter of the utility distribution of ai. The sample space
is S = L(A)n. An agent’s ranking is generated in the fol-
lowing steps: first, the agent samples a random utility Ui

for each alternative independently from μi(·|�θi); second, she
ranks the alternatives w.r.t. these utilities. Formally, given a
parameter �θ, the probability of ranking V = ai1 � ai2 �
· · · � aim is

PrM(V |�θ) =
∫ ∞

−∞

∫ ∞

xim

· · ·
∫ ∞

xi2

μim(xim |�θim)

· · ·μi1(xi1 |�θi1)dxi1dxi2 · · · dxim

We assume that rankings are generated i.i.d. There-
fore, given a preference profile P and �θ ∈ Θ, we have
PrM(P |�θ) = ∏n

j=1 PrM(Vj |�θ).
In this paper, we focus on the location family, where each

utility distribution μi is only parameterized by its mean, de-
noted by θi. In other words, the shapes of the utility distribu-
tions are fixed. We note that shifting the means of all alterna-
tives simultaneously by the same distance will not affect the
distribution of the rankings. To eliminate this problem, we
require

∑m
i=1 θi = 0. We further say that an RUM is sym-

metric if the PDF of each utility distribution is symmetric
around its mean.

Definition 2 (k-RUMM). Given an RUM M within the lo-
cation family, for any k ∈ N

+ and m ≥ 2, we define the
k-RUMM as follows. The sample space is S = L(A)n. The
parameter space has two parts. The first part is the mixing
coefficients �α = (α1, . . . , αk) where for all r ≤ k, αr ≥ 0,
and

∑k
r=1 αr = 1. The second part is (�θ(1), �θ(2), . . . , �θ(k)),

where �θ(r) is the parameter of the r-th random utility compo-
nent. All components come from the same class of RUM M,
i.e. the shape of the utility distribution of any alternative is
fixed. The probability of a ranking V is Prk-RUMM(V |�θ) =∑k

r=1 αr PrM(V |�θ(r)), where PrM(V |�θ(r)) is the proba-
bility of generating V in the r-th RUM.

Example 1 Consider a 2-RUM over 3 alternatives. The
mixing coefficients are �α = (0.3, 0.7). Let all utility dis-
tributions be Gaussian distributions with standard devia-
tion 1. The two RUM components are parameterized by
�θ(1) = (−3,−1, 4) and �θ(2) = (5,−2,−3), respectively.
Taking the ranking a1 � a3 � a2 as an example, we have
Pr(a1 � a3 � a2) = 0.3× ∫∞

−∞
∫∞
x2

∫∞
x3

φ(x2 + 1)φ(x3 −
4)φ(x1 + 3)dx1dx3dx2 + 0.7 × ∫∞

−∞
∫∞
x2

∫∞
x3

φ(x2 +

2)φ(x3+3)φ(x1−5)dx1dx3dx2, where φ(x) is the PDF of
the standard Gaussian distribution.

Identifiability of k-RUMM
We first recall the identifiability of a statistical model.

Definition 3 (Identifiability) Let M = {Pr(·|�θ) : �θ ∈ Θ}
be a statistical model. M is identifiable if for all �θ,�γ ∈ Θ,
we have Pr(·|�θ) = Pr(·|�γ) =⇒ �θ = �γ.

We note that single RUMs are generally identifiable and
can be learned using an MC-EM algorithm (Azari Soufiani,
Parkes, and Xia 2012) or a GMM algorithm (Azari Soufi-
ani, Parkes, and Xia 2014). However, identifiability of single
RUMs does not imply identifiability of mixtures of RUMs.

To eliminate the label switching problem (Redner
and Walker 1984), we say that k-RUMM is identifi-
able if there do not exist (1) 1 ≤ k1, k2 ≤ k,
non-degenerate �θ(1), �θ(2), · · · , �θ(k1), �γ(1), �γ(2), · · · , �γ(k2),
meaning that these k1+k2 vectors are pairwise different; (2)
all strictly positive mixing coefficients (α(1)

1 , . . . , α
(1)
k1

) and

(α
(2)
1 , . . . , α

(2)
k2

), so that for any ranking V in P we have:

k1∑
r=1

α(1)
r PrM(V |�θ(r)) =

k2∑
r=1

α(2)
r PrM(V |�γ(r))

A statistical model is generically identifiable, if the
Lebesgue measure of parameters that does not satisfy the
condition in Definition 3 is zero in the parameter space.

Theorem 1 Let M be any symmetric RUM from the loca-
tion family. When m ≤ 2k − 1, k-RUMM over m alterna-
tives is non-identifiable.

Proof: The proof is constructive. We prove the case where
m = 2k− 1. The proof for cases where m < 2k− 1 is simi-
lar. For any k and m = 2k−1, we will define non-degenerate
�θ(1), . . . , �θ(k), �γ(1), . . . , �γ(k) with mixing probabilities �α =

[α1, . . . , αk]
T and �β = [β1, . . . , βk]

T , respectively. We let
θ
(1)
1 , . . . , θ

(k)
1 , γ

(1)
1 , . . . , γ

(k)
1 be 2k pairwise different num-

bers where for all r = 1, . . . , k, θ(r)1 + γ
(r)
1 = 0. For any

�θ(r), we let θ(r)2 = . . . = θ
(r)
m = − θ

(r)
1

m−1 s.t.
∑m

i=1 θ
(r)
i = 0.

�γ(r)’s are defined similarly.
Because the parameters for a2, . . . , am are equal in each

RUM component, the distribution over data in each RUM
component can then be represented compactly using m
events instead of m! rankings, i.e. a1 at the first position,
second position, etc. For convenience we define Fθ as

Fθ =

⎡
⎢⎣

Pr(a1 top|�θ(1)) · · · Pr(a1 top|�θ(k))
...

. . .
...

Pr(a1 bottom|�θ(1)) · · · Pr(a1 bottom|�θ(k))

⎤
⎥⎦ .

Fγ can be defined similarly. We will prove that there exist
positive �α and �β s.t. Fθ · �α = Fγ · �β, which will prove
non-identifiability.

Consider the matrix ΔF = Fθ − Fγ . For all 1 ≤ r ≤ k,
the rth column of ΔF is the following:

ΔF(r) =

⎡
⎢⎣

Pr(a1 top|�θ(r))− Pr(a1 top|�γ(r))
...

Pr(a1 bottom|�θ(r))− Pr(a1 bottom|�γ(r))

⎤
⎥⎦ .

Because the utility distributions of all alternatives are
symmetric, we have

Pr(a1 position i|�θ(r)) = Pr(a1 postion m− i+ 1|�γ(r)).
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Therefore, the first element of ΔF(r) is exactly the same
as the last element of it except for a negative sign. The
same holds for the second element and the last but one el-
ement, etc. The center element (the kth element) is zero.
Since this holds for all r, the last k − 1 rows of ΔF
are in the reversed order of the negative top k − 1 rows,
while the center row consists of only zeros. So the rank
of ΔF is at most k − 1. Since ΔF has k rows, there ex-
ists a nonzero �λ = [λ1, λ2, . . . , λk]

� s.t. ΔF · �λ = 0. El-
ementwise we have ∀i: ∑k

r=1 λr Pr(a1 position i|�θ(r)) =∑k
r=1 λr Pr(a1 position i|�γ(r)).
If the entries in �λ are all nonnegative, we let �α = �β = �λ,

and the proof is done. If there are negative elements in λ, we
can switch the corresponding components �θ(r) and �γ(r) and
flip the sign of λr until all elements in �λ are nonnegative.
This finishes the proof. �

We conjecture that this bound is tight since the counterex-
ample has the fewest number of moments, which means the
parameter is the most likely to be under-constrained.

Theorem 2 For any RUMM where all utility distributions
have support (−∞,∞), when m ≥ max{4k − 2, 6}, k-
RUMM over m alternatives is generically identifiable.

Proof: We will focus on the parameters whose mixing co-
efficients (entries of �α) are pairwise different. Formally, for
any r1, r2 ∈ {1, . . . , k},

αr1 = αr2 =⇒ r1 = r2. (1)

Such parameters have Lebesgue measure 1 because the pa-
rameters with any pair of identical mixing coefficients are in
a lower dimensional space. The generic identifiability will
be proved by analyzing the uniqueness of tensor decompo-
sitions. We will construct a rank-one tensor T(r)(�θ(r)) to
represent the rth RUM component. Then the k-RUMM can
be represented by the weighted average of tensors of its com-
ponents, i.e. T(�θ) =

∑k
r=1 αrT

(r)(�θ(r)). We now provide
a set of two sufficient conditions for �θ = (�α, �θ(1), . . . , �θ(k))
to be identifiable, and then prove that both hold generically.

Condition 1. For every �γ = (�β,�γ(1), . . . , �γ(k)), where
�β 	= �α modulo label switching (the set of entries in �β is
different from the set of entries in �α), we have T(�γ) 	=
T(�θ).

Condition 2. For every �γ = (�β,�γ(1), . . . , �γ(k)) that is
different from �θ and �β = �α, we have Prk-RUMM(·|�γ) 	=
Prk-RUMM(·|�θ).

It follows from the definition of identifiability that if both
conditions hold, then �θ is identifiable.
Condition 1 generically holds. We first show that T(�θ)
has a unique decomposition generically, then prove that the
uniqueness of decomposition implies Condition 1.

In the rest of the proof we assume that m is even. The
theorem can be proved similarly for odd m’s. To con-
struct the rank-one tensor T(r)(�θ(r)), we partition the set
of alternatives into m/2 subsets. S1 = {a1, a2}, S2 =

{a3, a4}, . . . , Sm/2 = {am−1, am}. We define the m
2 -

dimensional rank-one tensor T(r)(�θ(r)) for the rth RUMM
component as follows. Let the qth coordinate of Tr be the
probabilities for the pairwise comparison between the two
alternatives in Sq . More precisely, for any 1 ≤ q ≤ m/2 and
any rankings Vq ∈ L(Sq), the qth coordinate of T(r)(�θ(r)),
denoted by p

(r)
q , is the following:

p(r)
q =

[
Pr(a2q−1 � a2q|�θ(r)),Pr(a2q � a2q−1|�θ(r))

]�
(2)

According to Lemma 3 of (Zhao, Piech, and Xia
2016)2, we have PrM(V1, V2, . . . , Vm/2|�θ(r)) =∏m/2

q=1 PrM(Vq|�θ(r)), where for all q = 1, . . . ,m/2,

Vq ∈ L(Sq). It follows that T(r)(�θ(r)) = ⊗m/2
q=1p

(r)
q .

The tensor for the mixture model can be written as
T(�θ) =

∑k
r=1 αrT

(r)(�θ(r)). To analyze the unique-
ness of tensor decomposition of T(�θ), we investi-
gate the Kruskal’s rank of each matrix Pq defined as

Pq =
[
p
(1)
q ,p

(2)
q , · · · ,p(k)

q

]
. The Kruskal’s rank of a

matrix is the largest number K such that every set of K
columns in the matrix is linearly independent. Now we
will prove that the Kruskal rank of Pq , denoted by Kq , is
generically 2, i.e. any two columns of Pq are generically
independent. It is not hard to see that the two entries of
p
(r)
q sum up to 1. So the only case where p

(r1)
q and p

(r2)
q

are linearly dependent is that they are exactly the same.
According to Proposition 1 in (Azari Soufiani, Parkes, and
Xia 2014), Pr(a2q−1 � a2q|�θ(r)) monotonically increases
as θ

(r)
2q−1 − θ

(r)
2q increases because all utility distributions

have support (−∞,∞). Therefore, p(r1)
q = p

(r2)
q if and

only if θ(r1)2q−1 − θ
(r1)
2q = θ

(r2)
2q−1 − θ

(r2)
2q , which has Lebesgue

measure 0. Thus, for all q ≤ m/2, Kq = 2 generically
holds. So

∑m/2
q=1 Kq = m/2 × 2 = m generically holds.

Because k ≤ m+2
4 , we have

∑m/2
q=1 Kq = 2k + m/2 − 1.

Sidiropoulos and Bro (2000) proved that, for any N -way
tensor, if

∑N
q=1 Kq ≥ 2k + N − 1, then the tensor

decomposition is unique. This is true in our case since
N = m/2.

We now prove that uniqueness of decomposition of T(�θ)
implies Condition 1. Suppose for the purpose of contra-
diction, the decomposition of T(�θ) is unique but Condi-
tion 1 does not hold. This means that there exists �γ =

(�β,�γ(1), . . . , �γ(k)) where �β is not equal to �α modulo la-
bel switching, s.t. T(�γ) 	= T(�θ). Because components in
�α are pairwise different, there exists r1 ≤ k such that for
all r2 = 1, . . . , k, αr1 	= βr2 , while T(�θ) = T(�γ) =
T. We will show that for any r2 = 1, . . . , k, we have
αr1T

(r1)(�θ(r1)) 	= βr2T
(r2)(�γ(r2)), which contradicts the

unique decomposition of T. Recall that for any r, the sum

2This lemma proved the independence of two rankings with
mutually exclusive alternatives, which can be easily extended to
multiple rankings.
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of the two entries of p(r)
q is 1. It is not hard to see the sum of

all entries of T(r)(·) is also one. So the sums of all entries
of αr1T

(r1)(�θ(r1)) and βr2T
(r2)(�γ(r2)) are αr1 and βr2 re-

spectively. We recall that for all r2, αr1 	= βr2 holds. There-
fore, αr1T

(r1)(�θ(r1)) 	= βr2T
(r2)(�γ(r2)) holds for all r2,

which is a contradiction. This finishes the proof that Condi-
tion 1 generically holds.
Condition 2 generically holds. Unfortunately the tensor
decomposition technique used for Condition 1 no longer
works for Condition 2. Here is a counterexample. Given �θ =

(�α, �θ(1), . . . , �θ(k)), we can construct �γ = (�α,�γ(1), . . . , �γ(k))

s.t. T(�γ) = T(�θ) in the following way. For any r, we let
γ
(r)
i = θ

(r)
i + 1 for i = 1, 2, γ(r)

i = θ
(r)
i − 1 for i = 3, 4

and γ
(r)
i = θ

(r)
i for i = 5, . . . ,m. The resulting tensor

T(�γ) = T(�θ) because the probability of rankings restricted
to each group are exactly the same.

To address this problem we consider an additional ten-
sor decomposition using a different partition of the al-
ternatives, defined as follows: S′

1 = {a2, a3}, S′
2 =

{a4, a5}, . . . , S′
m/2 = {am, a1}. Let T′(�θ) denote the ten-

sor under this partition. Similar to the proof for Condition 1,
we can show that generically T′(�θ) has a unique decom-
position. Next, we will prove that for any �θ where T(�θ)

and T′(�θ) have unique decompositions (which holds gener-
ically), Condition 2 holds.

Suppose for the sake of contradiction that Condition 2
does not hold for �θ where T(�θ) and T′(�θ) have unique
decompositions. Then, there exists �γ = (�β,�γ(1), . . . , �γ(k))

that is different from �θ modulo label switching, such that
Prk-RUMM(·|�γ) = Prk-RUMM(·|�θ). This means that T(�γ) =

T(�θ) and T′(�γ) = T′(�θ).
We first match the components in �γ and �θ. Recall that

uniqueness of T(�θ) implies Condition 1. Because both T(�θ)

and T′(�θ) have unique decompositions, Condition 1 must
hold for both. It follows that the entries of �β are exactly
entries of �α, otherwise T(�θ) 	= T(�γ), which is a contra-
diction. Since entries of �α are pairwise different, there is a
unique way of matching components in �θ to components in
�γ by matching the corresponding mixing coefficients. Con-
sequently, we can relabel components in �γ s.t. the �β be-
comes exactly �α. Let �γ′ = (�α,�γ′(1), . . . , �γ′(k)) denote the
�γ parameter after relabeling the components. Thus we have
T(�γ′) = T(�γ) = T(�θ) and T′(�γ′) = T′(�γ) = T′(�θ). Be-
cause �γ 	= �θ modulo label switching, we have �γ′ 	= �θ, which
implies that there exists r∗ s.t.

�γ′(r∗) 	= �θ(r
∗). (3)

Next, we will show that from the uniqueness of decomposi-
tion of T(�θ) and T′(�θ), we must have �γ′(r∗) = �θ(r

∗), which
is a contradiction. To this end, we show how to uniquely
determine the parameters of k-RUMM (i.e. �γ′ and �θ) from
decompositions of T(�θ) and T′(�θ).

T(�γ′) = T(�θ) has a unique decomposition means that
for any r1 ∈ {1, . . . , k}, there exists r2 ∈ {1, . . . , k}
s.t. αr1T

(r1)(�γ′(r1)) = αr2T
(r2)(�θ(r2)), which implies the

sums of all entries of αr1T
(r1)(�γ′(r1)) and αr2T

(r2)(�θ(r2))
are equal, i.e. αr1 = αr2 . It follows from (1) that r1 = r2.
Namely, we have αrT

(r)(�γ′(r)) = αrT
(r)(�θ(r)) for all

r = 1, . . . , k. It follows that for all r = 1, . . . , k, we have
T(r)(�γ′(r)) = T(r)(�θ(r)), which means T(r∗)(�γ′(r∗)) =
T(r∗)(θ(r

∗)). Similarly, we also have T′(r∗)(�γ′(r∗)) =
T′(r∗)(θ(r

∗)).

For any r and q, p
(r)
q can be easily obtained from

T(r)(�θ(r)) by normalizing the corresponding entries of
T(r)(�θ(r)). E.g., p(r)

1 can be obtained by normalizing en-
tries (1, 1, . . . , 1) and (2, 1, . . . , 1). Such p

(r)
1 is uniquely

determined by T(r)(�θ(r)) because the two entries of p
(r)
1

sum up to 1. Specifically, for all q = 1, . . . ,m/2, p(r∗)
q is

uniquely determined by T(r∗)(�θ(r
∗)) and p

′(r∗)
q is uniquely

determined by T′(r∗)(�θ(r
∗)).

Next, we will prove that for all q = 1, . . . ,m/2,
p
(r∗)
q ,p

′(r∗)
q uniquely determine �θ(r

∗), which contradicts
(3). Now we focus on �γ′(r∗) and �θ(r

∗) restricted to S1. We
claim that there exists a constant C1 s.t. for all i = 1, 2 (i.e.
ai ∈ S1), γ′(r∗)

i = θ
(r∗)
i +C1. The reason is as follows. Re-

call from (2) that p(r∗)
q consists of probabilities of a1 � a2

and a2 � a1 given the component r∗. By Proposition 1 in
(Azari Soufiani, Parkes, and Xia 2014), Pr(a1 � a2|�θ(r∗))
is a function of θ(r

∗)
1 − θ

(r∗)
2 and Pr(a1 � a2|�γ′(r∗)) is a

function of γ′(r∗)
1 −γ

′(r∗)
2 . By matching the probabilities we

have γ′(r∗)
1 − γ

′(r∗)
2 = θ

(r∗)
1 − θ

(r∗)
2 , which means that there

exists a constant C1 s.t. for i = 1, 2, γ′(r∗)
i = θ

(r∗)
i + C1.

Similarly for all q = 1, . . . ,m/2 there exist Cq , s.t.

γ
′(r∗)
i = θ

(r∗)
i + Cq, for i = 2q − 1, 2q (4)

Similarly from T′(r)(�γ(r)) = T′(r)(�θ(r)), for all q =
1, . . . ,m/2, there exists C ′

q s.t.

γ
′(r∗)
i = θ

(r∗)
i + C ′

q, for i = 2q, (2q + 1 mod m) (5)

Therefore, we have C1 = C ′
1 by letting i = 2 in (4) and (5);

C ′
1 = C2 by letting i = 3; C2 = C ′

2 by letting i = 4,
etc. So we have C1 = · · · = Cq = C ′

1 = · · · = C ′
q .

Let Cq = C ′
q = C for all q = 1, . . . ,m/2. Then for

all i = 1, . . . ,m, we have γ
′(r∗)
i = θ

(r∗)
i + C. Because∑m

i=1 γ
′(r∗)
i =

∑m
i=1 θ

(r∗)
i = 0, we have C = 0, which

contradicts (3).
As we have proved, the Lebesgue measure of parameters

where tensor T(�θ) (or T′(�θ)) has a nonunique decomposi-
tion is 0. Therefore, the Lebesgue measure of parameters �θ

where both T(�θ) and T′(�θ) have unique decompositions is
also 0. This finishes the proof. �
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The E-GMM Algorithm

To compute k-RUMM, we propose an EM-based algorithm,
which we call E-GMM, where the GMM algorithm pro-
posed by Azari Soufiani, Parkes, and Xia (2014) is used in
the M step. The detailed algorithm is as follows.

During the E-step, given the t-th step estimate �α(t) and
�θ(1,t), . . . , �θ(k,t), we use Bayes’ rule to calculate the proba-
bility of a ranking Vj to belong to component r for (t+1)-th
iteration, denoted as p(jr)t+1 . We have

p
(jr)
t+1 ∝ α(t)

r Pr(Vj |�θ(r,t)) (6)

We can normalize w.r.t. r because
∑k

r=1 p
(jr) = 1.

In the M-step, mixing probabilities are calculated by

α(t+1)
r =

∑n
j=1 p

(jr)
t+1

n
(7)

and �θ(r,t+1)’s are estimated using the GMM Algorithm from
(Azari Soufiani, Parkes, and Xia 2014). Formally, the E-
GMM algorithm is presented below as Algorithm 1.

Algorithm 1 E-GMM Algorithm
Input: Profile P of n rankings, the number of components
k, the number of iterations T .
Output: α(T+1)

r , �θ(r,T+1), where r = 1, 2, · · · , k.
Initialize α

(1)
r , and �θ(r,1) randomly for all r = 1, 2, · · · , k.

1: for t = 1 to T do
2: Given the estimate at t-th step α

(t)
r , �θ(r,t).

3: E step: calculate the expected membership by (6).
4: M step: calculate α(t+1)

r using (7) and use GMM with
weighted rankings/breakings to estimate θ(r,t+1).

5: end for

GMM for k-RUMM
Generalized-method-of-moments (GMM) (Hansen 1982)
algorithms are a widely applied class of algorithms that
generalize the classical method of moments. Each GMM
is specified by a set of q ≥ 1 moment conditions g(V, �θ),
where V is a data point and �θ is a parameter, such that for
any �θ0, the expectation of each moment condition is zero at
�θ0, when the data are generated from the model given �θ0.
That is, E[g(V, �θ0)] = �0. Then, the algorithm computes �θ to
minimize a certain norm, e.g. the 2-norm, of

∑
V ∈P g(V, θ).

Our GMM algorithm for k-RUMM is defined as follows.
We first define a breaking matrix B(P ) = [bi1i2 ]m×m,
where bi1i2 is the empirical probability that ai1 is preferred
over ai2 , namely the number of times that ai1 � ai2 over
the number of rankings. The diagonal elements are zeros.
For example, let P = (a1 � a2 � a3, a1 � a3 � a2), we

have B(P ) =

[
0 1 1
0 0 0.5
0 0.5 0

]
. We then define the following

(
m
2

)
moment conditions: for any i1 < i2, let gi1i2(P, �θ) =

bi1i2 − Pr(ai1 � ai2 |�θ). In our GMM algorithm, we mini-
mize the following objective function

G =
∑
i2>i1

(bi1i2 − Pr(ai1 � ai2 |�θ))2 (8)

where Pr(ai1 � ai2 |�θ) =
∑k

r=1 αr Pr(ai1 � ai2 |�θ(r)).
Formally, the algorithm is presented as Algorithm 2.

Algorithm 2 GMM for k-RUMM
Input: A Preference profile P .

1: Compute the breaking matrix B(P ).
2: Compute the parameter that minimizes (8).

The advantages of our GMM algorithm are:
1. Gradient and Hessian of G are easy to compute. To

calculate the gradient of G, we need partial derivatives of
Pr(ai1 � ai2 |�θ), which can be broken down to partial
derivatives of Pr(ai1 � ai2 |�θ(r)) w.r.t. �θ(r). This was given
by Proposition 1 by (Azari Soufiani, Parkes, and Xia 2014).

2. Pr(ai1 � ai2 |�θ(r)) can be computed easily by sampling
the utilities from the utility distributions of ai1 and ai2 . For
Gaussian distributions, Pr(ai1 � ai2 |�θ(r)) is the CDF val-
ued at θ(r)i1

−θ
(r)
i2

of another Gaussian distribution with mean
0 and variance being the sum of the variances of utility dis-
tributions of ai1 and ai2 .

For better accuracy we add m more moment conditions,
corresponding to m cyclic triple-wise comparisons, i.e.
T1 = a1 � a2 � a3, T2 = a2 � a3 � a4, . . ., Tm = am �
a1 � a2. Let bTi be the empirical probability of Ti. The new
GMM minimizes: G′ = G+

∑m
i=1(bTi

− Pr(Ti|�θ))2.
We now prove that our GMM algorithm is consistent:

when the data are generated independently from k-RUMM
and the size of data approaches infinity, the algorithm con-
verges to the ground truth with probability that goes to 1.

Theorem 3 If k-RUMM over m alternatives is identifiable,
and the means of the utility distributions of all alternatives in
all RUM components are bounded in close intervals [0, C],
then Algorithm 2 is consistent.

Proof: Hall (2005) provides a set of necessary conditions
for any GMM to be consistent. Therefore, it suffices to check
that all assumptions in Theorem 3.1 in (Hall 2005) holds.

Assumption 3.1: Strict Stationarity: the (n × 1) random
vectors {vt;−∞ < t < ∞} form a strictly stationary pro-
cess with sample space S ⊆ R

n. As the data are generated
i.i.d., the process is strictly stationary.

Assumption 3.2: Regularity Conditions for g(·, ·): the
function g : S × Θ → R

q where q < ∞, satisfies: (i) it
is continuous on Θ for each P ∈ S; (ii) E[g(P, �θ)] exists
and is finite for every θ ∈ Θ; (iii) E[g(P, �θ)] is continuous
on Θ. Our moment conditions satisfy all the regularity con-
ditions since gi1i2(P,

�θ) is continuous on Θ and bounded in
[−1, 1] for any i2 	= i1.

Assumption 3.3: Population Moment Condition. The ran-
dom vector vt and the parameter vector �θ0 satisfy the (q×1)
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Figure 1: MWRSE with 95% confidence intervals and runtime for 2-RUM over 6 alternatives. We use 10 EM iterations for the
sandwich algorithm. Values are averaged over 1000 trials. The ground truth for each component ranges between 0 and 5.

population moment condition: E[g(P, �θ0)] = 0. This as-
sumption holds by the definition of our GMM.

Assumption 3.4: Global Identification. E[g(P, �θ′)] 	= 0

for all �θ′ ∈ Θ such that �θ′ 	= θ0. This is the assumption of
the theorem.

Assumption 3.7: Properties of the Weighting Matrix. Wt

is a positive semi-definite matrix which converges in prob-
ability to the positive definite matrix of constants W . This
holds because W = I .

Assumption 3.8: Ergodicity. The random process
{vt;−∞ < t < ∞} is ergodic. Since the data are generated
i.i.d., the process is ergodic.

Assumption 3.9: Θ is a compact set. The mixing proba-
bilities are compact in interval [0, 1] and in the assumption
of this theorem, the θ

(r)
i s are bounded in [0, C].

Assumption 3.10: Domination of g(P, �θ).
E[supθ∈Θ ||g(P, �θ)||] < ∞. This assumption holds
because all moment conditions are finite. �

The Sandwich Algorithm

The performance of E-GMM algorithm is sensitive to the
initial value. Therefore, we propose the sandwich algo-
rithm (GMM-E-GMM) to give our E-GMM algorithm a
good starting point. We note that the first GMM stands for
our GMM algorithm for learning k-RUMs and the second
GMM stands for Azari Soufiani, Parkes, and Xia’s algo-
rithm [2014] for learning a single RUM in each M-step. The
algorithm is formally shown as Algorithm 3.

Experiments

We implemented all algorithms with Matlab and tested them
on synthetic data and Preflib data.
Synthetic data generation. In each trial, we first generate
the ground truth parameters for k RUM components and

Algorithm 3 Sandwich (GMM-E-GMM) Algorithm
Input: Profile P of n rankings, the number of components
k, the number of iterations T .
Output: αr, �θ(r), where r = 1, 2, · · · , k.

1: Run Algorithm 2, whose output is α
(0)
r , �θ(r,0), where

r = 1, 2, · · · , k.
2: Use the output as the initial value of Algorithm 1.

normalize each �θ(r) s.t.
∑m

i=1 θ
(r)
i = 0. The mixing coef-

ficients �α are generated uniformly at random in [0, 1] and
then normalized s.t.

∑k
r=1 αr = 1. Then with probability

αr, the rth component is selected to generate a full ranking.
We run experiments on two settings: (i) k = 2,m = 6, 1000
trials (Figure 1), and (ii) k = 4,m = 15, 900 trials (Fig-
ure 2). In both figures, results for the E-GMM algorithm are
not shown because the sandwich algorithm strictly improves
E-GMM w.r.t. both statistical efficiency and computational
efficiency. All experiments were run on an Ubuntu Linux
server with Intel Xeon E5 v3 CPUs clocked at 3.50 GHz.
Measures. We note that components with small mixing co-
efficients are generally hard to learn accurately—in the ex-
treme case, when the mixing coefficient for one component
is 0, it is impossible to learn the component. Therefore,
the standard mean square error is not very informative for
our experiments. Consequently, we define MWRSE (mean
weighted root square error) to mitigate the impact of such
components. Formally, let �θ0 denote the ground truth param-
eter and �θ′ denote the estimate. We define WRSE as follows:

WRSE = ||�α0 − �α′||2 +
k∑

r=1

α0,r||�θ(r)0 − �θ′(r)||2

MWRSE is computed by averaging WRSE of all trials.
Observations. The sandwich algorithm has lower MWRSEs
and narrower 95% confidence than GMM under both set-
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Figure 2: MWRSE with 95% confidence intervals and runtime for 4-RUM over 15 alternatives. We use 5 EM iterations for the
sandwich algorithm. Values are averaged over 900 trials. The ground truth for each component ranges between 0 and 10.

tings (left subfigures of Figures 1 and 2), which means the
sandwich algorithm achieves better statistical efficiency. In
terms of runtime, the sandwich algorithm is not as fast as
GMM (right subfigures of Figures 1 and 2). Moreover, the
running time of the E step dominates that of the M step.

Our sandwich algorithm achieves satisfactory statistical
efficiency based on the following high-level reasoning. From
Figure 1 we observe that the MWRSE for the sandwich al-
gorithm is no more than 0.6 for k = 2,m = 6. There-
fore, typically the root squared error for each component is
about 0.6 because the weights sum up to 1. For each sin-
gle parameter, we would expect the error to be typically√

0.62/6 ≈ 0.245, which is reasonably small considering
the range of each single parameter to be [0, 5]. Similarly for
k = 4,m = 15, the error of each single parameter is typi-
cally below

√
22/15 ≈ 0.52, which is also small compared

to the range [0, 10].

Real-World Data. We learn different models, including the
Plackett-Luce model (PL), its mixtures (k-PLs), and Gaus-
sian k-RUMs from 209 linear order datasets on Preflib (Mat-
tei and Walsh 2013) and compute their AIC, AICc and BIC,
defined as: AIC = 2d−2 ln(L), AICc = AIC+ 2d(d+1)

n−d−1 and
BIC = d ln(n) − 2 ln(L), where L is the value of the like-
lihood function evaluated at the estimation, d is the number
of parameters in the model, and n is the number of rankings.
A smaller AIC, AICc or BIC means better fitness.

For mixture models (k-PL and k-RUM), we increase k
until all the three measurements start increasing. We com-
pute the percentage for one model to be strictly better
(lower) than another w.r.t. each measure, shown in Table 1.
For example, in terms of AIC, k-RUM (with the best k) beats
a single RUM in 60.3% of the datasets, which means that in
60.3% of the datasets, the best k for k-RUM is at least 2.

Observations. From Table 1 we can see that the three infor-

mation criteria agree on the following order of models:
k-RUM � k-PL � RUM � PL,

where A � B means that the number of datasets where A
beats B is more than that where B beats A.

k-RUM k-PL RUM PL

AIC

k-RUM 0 60.8% 60.3% 90.0%
k-PL 39.2% 0 79.4% 90.4%
RUM 0 20.6% 0 76.6%

PL 10.0% 0 23.4% 0

AICc

k-RUM 0 60.3% 59.8% 90.0%
k-PL 39.7% 0 79.4% 89.5%
RUM 0 20.6% 0 76.6%

PL 10.0% 0 23.4% 0

BIC

k-RUM 0 66.0% 40.2% 84.2%
k-PL 34.0% 0 59.8% 66.0%
RUM 0 40.2% 0 76.6%

PL 15.8% 0 23.4% 0

Table 1: Model fitness comparisons.

Conclusions and Future Work
We characterize conditions for mixtures of general RUMs
to be non-identifiable and generically identifiable, and de-
signed three algorithms for computing them. Our experi-
ments show that the sandwich algorithm achieves higher sta-
tistical efficiency and GMM achieves higher computational
efficiency. Open questions include improving the identifia-
bility theorems for k-RUMs and designing more efficient al-
gorithms, such as tensor-decomposition-based algorithms.
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