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Abstract

In this paper, we propose a novel multi-view learning method
for Alzheimer’s Disease (AD) diagnosis, using neuroimaging
and genetics data. Generally, there are several major chal-
lenges associated with traditional classification methods on
multi-source imaging and genetics data. First, the correlation
between the extracted imaging features and class labels is
generally complex, which often makes the traditional linear
models ineffective. Second, medical data may be collected
from different sources (i.e., multiple modalities of neuroimag-
ing data, clinical scores or genetics measurements), therefore,
how to effectively exploit the complementarity among multi-
ple views is of great importance. In this paper, we propose a
Multi-Layer Multi-View Classification (ML-MVC) approach,
which regards the multi-view input as the first layer, and con-
structs a latent representation to explore the complex corre-
lation between the features and class labels. This captures
the high-order complementarity among different views, as we
exploit the underlying information with a low-rank tensor regu-
larization. Intrinsically, our formulation elegantly explores the
nonlinear correlation together with complementarity among
different views, and thus improves the accuracy of classifi-
cation. Finally, the minimization problem is solved by the
Alternating Direction Method of Multipliers (ADMM). Exper-
imental results on Alzheimers Disease Neuroimaging Initiative
(ADNI) data sets validate the effectiveness of our proposed
method.

Introduction

Alzheimer’s Disease (AD) is a severe irreversible neurode-
generative disease, devastating lives of millions in the world
(Cuingnet et al. 2011). Its early diagnosis, and treatment can
improve the quality of life dramatically for both patients and
their caregivers. There have been several studies (Weiner et
al. 2017) in the recent years exploiting different aspects of the
disease, and hence there are multiple modalities of data (e.g.,
Magnetic Resonance Imaging (MRI) and Positron Emission
Tomography (PET)) or multiple types of features available
for this task (May et al. 1999). Generally, an important aspect
of such works is that these features are often complemen-
tary, since they are from different measurements representing
the same subject(s). On the other hand, it is evident that
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each individual modality alone cannot characterize the cat-
egories comprehensively, as each of them encodes different
but interrelated properties of the data (Chaudhuri et al. 2009;
Xu et al. 2013; Gong et al. 2016; Luo et al. 2013a;
2013b). Considering each modality (or type of features) as
one view of the data, we propose to model the problem as
a multi-view learning framework. Specifically, in this paper,
we introduce a novel model for multi-view learning applied
to the vital task of AD diagnosis.

Owing to the usefulness of exploiting the complemen-
tarity among multiple modalities or multiple types of fea-
tures, multi-view learning has been the focus of intense
investigation. Earlier methods usually tried to minimize
the disagreement between two views based on co-training
(Kumar and Daumé 2011). There are various theoretical
analyses (Blum and Mitchell 1998; Chaudhuri et al. 2009;
Wang and Zhou 2007) supporting the success and appropri-
ateness of such approaches. Besides, multiple kernel learning
(MKL) (Zien and Ong 2007; Liu et al. 2017) is another way
of handling multiple views, which uses a predefined set of
kernels for multiple views and learns an optimal combination
of kernels to integrate these views. Recently, some methods
are proposed to advocate for the learning of a latent com-
mon subspace across different views, typically, based on
canonical correlation analysis (CCA) (Chaudhuri et al. 2009;
Kakade and Foster 2007). For AD diagnosis, the recent works
(Zhu et al. 2014; 2016) propose to transform the original
features from different modalities to a common space by
canonical correlation analysis. Although great progress has
been achieved, some main limitations still exist: (1) Most
existing methods usually explore linear correlation between
multi-view input data and class labels, thus, they are not appli-
cable to uncover complex correlations, compared to nonlinear
methods; (2) MKL based methods map the features into a ker-
nel space to explore the nonlinearity among the features and
labels, however, simply weighting different views will not be
enough for exploiting the complex correlation within each
view and among different views, e.g., high-order correlations.

In this paper, we propose a novel multi-view learning ap-
proach termed as Multi-Layer Multi-View Classification (ML-
MVC), which focuses on addressing the above limitations in
a unified framework. As shown in Fig .1, given the data with
multiple views (taking multiple modalities as example), our
method aims to simultaneously explore the complex correla-
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Figure 1: Illustration of the multi-layer multi-view learning framework for AD prediction. Our model jointly exploits the
nonlinear feature mapping, explores high-order correlation of multiple views and learns classification model.

tion between input and output, as well as the complementarity
among multiple views. Based on the multiple modalities or
multiple types of features of data, referred to as multi-view
input, we introduce a middle layer for feature extraction with
kernel technique to account for nonlinearity. Accordingly, the
classification model is learned based on the mapped and re-
fined middle-layer features (or latent representation) instead
of the original ones. Furthermore, to exploit the correlation
among multiple views, the kernel matrices are jointly stacked
and regarded as a tensor, which is low-rank constrained to
capture the complementary information from multiple views.
As shown in Fig. 1, the dashed box indicates the middle layer
for the latent representation corresponding to the nonlinear
feature mapping and high-order correlation of multiple views.
Empirical results on real data demonstrate the effectiveness
of the proposed method. The optimization of our model is
conducted by the Alternating Direction Method of Multipli-
ers (ADMM) (Boyd et al. 2011).

The highlights of the proposed ML-MVC method and
this paper are summarized as follows: (1) We simultane-
ously explore the complex correlation between features and
classes, while exploiting the high-order correlation among
multiple kernel matrices of different views. (2) The method
can be regarded as a multi-layer model, where the middle
layer is equipped with kernel trick to account for nonlinear-
ity, corresponding to the latent representation. (3) Instead
of performing prediction based on the kernel mapping fea-
tures, our method learns the prediction model based on the
refined kernel mapping features, which thoroughly explores
the correlation of multiple views. (4) Based on the Alternat-
ing Direction Method of Multipliers (ADMM) (Boyd et al.
2011), our method is optimized efficiently and the conver-

gence can be practically reached. (5) The experiments on
multi-modalilty and multi-feature Alzheimers Disease Neu-
roimaging Initiative (ADNI) dataset validate the effectiveness
of our method for classification on multi-view data.

Table 1: Table of main notations used in the paper.

Model Specification

Notation Meaning

X(v) ∈ RDv×N feature matrix of the vth view
Y ∈ RC×N label matrix
Z(v) ∈ RK×N latent representation for the vth view
P(v) ∈ RK×N projection corresponding to the vth view
S ∈ RC×V K classification model
K ∈ RK×N×V tensor of kernel matrices
G ∈ RK×N×V auxiliary variables in tensor form
W ∈ RK×N×V Lagrange multiplier in tensor form
K(m)/G(m) unfolded matrix of tensor K/G
μ > 0 penalty hyperparameter for constraints

Problem Formulation

Notations

Let x1, · · · ,xN ∈ RD denote N feature vectors of N sam-
ples in the D-dimensional space, and X = [x1, · · · ,xN ] is
the D × N feature matrix whose columns are the samples.
For the vth view, we use x(v)

i and X(v) to denote one sample
and the feature matrix, respectively. Y = [y1, · · · ,yN ] is the
corresponding label matrix with yi = [yi1, · · · , yiC ]T being
the label vector of the ith sample, and yij = 1 if sample
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xi belong to the jth class, and yij = 0 otherwise, where C
is the number of classes. We use the bold calligraphic font
to denote a high-order tensor, e.g., K. For clarity, the main
notations used in this paper are listed in Table 1.

Background

Given the multi-view training data as {X(1), ...,X(V );Y},
where X(v) ∈ RDv×N is the feature matrix for the vth view
and Y ∈ RC×N is the class label matrix. Accordingly, a
straightforward formulation for the multi-view learning is as
follows:

min
W,B

||Y −WX−B||2F + λ||W||2F , (1)

where X = [X(1); · · · ;X(V )] ∈ R
∑V

v=1 Dv×N concate-
nates different views directly, with Dv being the dimen-
sionality of the vth view. ‖ · ‖F is the Frobenius norm.
W = [w1, · · · ,wC ]

T ∈ RC×D are learned models for C
classes, where D =

∑V
v=1 Dv. B ∈ RC×N corresponds

to bias. This objective function directly extends the conven-
tional ridge regression for multi-view data. Although simple
in form and easy for optimization, there are two main issues:
(1) The simple concatenation of multiple views may suffer
from the curse of dimensionality and could not well explore
the complementarity among different views. (2) This model
focuses on linear correlation between multi-view input and
class labels, which makes it improper for more complex prob-
lems. In this work, we focus on addressing these issues in a
seamless framework.

Multi-Layer Multi-View Classification

To address the nonlinearity issues, we aim to design a multi-
layer objective function with the following general form

min
S,W(v)

L(SZ,Y)

+ λ1R1

(
{W(v)}Vv=1

)
︸ ︷︷ ︸

Feature-mapping Regularization

+ λ2R2(S)︸ ︷︷ ︸
Model Regularization

, (2)

where L(·) is the loss function and λ1 > 0, λ2 > 0 are
tradeoff factors for two regularization terms R1(·) and R2(·).
Z = [Z(1); · · · ;Z(V )] concatenates the latent representa-
tion of multiple views. Compared with the straightforward
formulation in Eq. 1, rather than directly learning classi-
fication model based on the original features, we intro-
duce a middle layer to learn the latent representation, i.e.,
Z(v) = [z

(v)
1 , ..., z

(v)
N ], where z

(v)
i = W(v)x

(v)
i + b(v) and

the bias b(v) can be omitted since it can be absorbed into the
projection matrix W(v) (Nie et al. 2010). Then, based on the
latent representation, the classification model S is learned,
forming our multi-layer model. For nonlinearity, according
to the Representer Theorem (Dinuzzo and Schölkopf 2012),
we have:
Theorem 1. Given any fixed matrix S, the objective function
in (2) w.r.t. W(v) is defined over a Hilbert space H. If (2)
has a minimizer w.r.t. W(v), it admits a linear representer
theorem of the form W(v) = P(v)X(v)T, where P(v) ∈
RK×N is the coefficient matrix.

According to (Dinuzzo and Schölkopf 2012), the proof of
Theorem 1 is straightforward due to the decoupled prop-
erty for each model w

(v)
c . By introducing kernel map-

ping with Representer Theorem, we have Φ(X(v)) =

[φ(x
(v)
1 ), · · · , φ(x(v)

N )] with φ(·) mapping the original fea-
ture x(v) to φ(x(v)), and accordingly, we have W(v) =
P(v)Φ(X(v))T. For simplicity, we use the same φ(·) for dif-
ferent views. Therefore, based on (2) the objective function
turns out to be

min
S,P(v),˜K(v)

1

2
||SZ−Y||2F

+
γ

2

V∑
v=1

||P(v)Φ(X(v))T||2F
︸ ︷︷ ︸
R1: Feature-mapping Regularization

+
η

2
||S||2F︸ ︷︷ ︸

R2: Model Regularization

.
(3)

Since we aim to explore the correlations among different
views using a tensor structure instead of directly concatenat-
ing each type of features, there is one important issue that
we need to take care of. Specifically, we should note that
the data from different views (e.g., different modalities of
medical imaging data) often have different dimensionalities,
while we have to arrange them into a single tensor with fixed
dimensionality for all of them. Thanks to the advantages
of the kernel technique, our objective function could natu-
rally resolve the mentioned issues and explore the high-order
correlations among multiple views as follows:

min
S,P(v),˜K(v)

1

2
||PO(SZ−Y)||2F

+ α||K̃||∗ +
β

2
||K− K̃||2F︸ ︷︷ ︸

R3: High-order correlation

+
γ

2

V∑
v=1

||P(v) ˜Φ(X(v))T||2F
︸ ︷︷ ︸
R1: Feature-mapping Regularization

+
η

2
||S||2F︸ ︷︷ ︸

R2: Model Regularization

s.t. K = T (K(1), ...,K(V )), K̃ = T (K̃(1), ..., K̃(V )),

Z = [Z(1); · · · ;Z(V )] and Z(v) = P(v)K̃(v),
(4)

where the operator T (·) constructs a tensor by combining
multiple kernel matrices (naturally with equal dimensionality)
as shown in Fig. 1. We have the kernel matrix corresponding
to the vth view K(v) = Φ(X(v))TΦ(X(v)) and try to seek

the more reasonable K̃(v) to exploit the high-order correla-
tion, i.e., K(v) = K̃(v) + E(v). PO acts as a filter function,
which forces the loss to only account for the labeled sam-
ples. Specifically, let oi be an indicator variable showing the
existence of label for sample i, i.e., oi = 1 if we have the
label, and a very small scalar ε > 0 otherwise. o will then
be defined as the indicator vector from all indicator variables
of training samples. Accordingly, we can define a diagonal
matrix O = diag(o), denoted as the filter matrix, and hence
PO(A) = AO. Note that ε > 0 is a small value to strictly
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guarantee the unique solution of the optimization problem
(see P(v) and K̃(v)-subproblems in the next section).

We introduce a low-rank tensor constraint to jointly ex-
plore the intrinsic correlations across multiple kernel matri-
ces of these multiple views. Note that tensor can be seen
as a generalization of the matrix concept, and hence we de-
fine the tensor nuclear norm similar to (Liu et al. 2013b;
Tomioka et al. 2011), which generalizes the matrix (i.e., 2-
mode or 2-order tensor) case (e.g., (Liu et al. 2013a)) to
higher-order tensor as

||K||∗ =
M∑

m=1

ξm||K(m)||∗, (5)

where ξm’s are constants satisfying ξm > 0 and
∑M

m=1 ξm =
1. Without prior, we set ξ1 = ... = ξM = 1/M . K ∈
RI1×I2×...×IM is a M -order tensor, and K(m) is the ma-
trix by unfolding the tensor K along the mth mode defined
as unfoldm(K) = K(m) ∈ RIm×(I1×...×Im−1×Im+1...×IM )

(De Lathauwer et al. 2000; Zhang et al. 2015). The nuclear
norm || · ||∗ controls the tensor under a low-rank constraint.
In essence, the nuclear norm of a tensor is a convex combina-
tion of the nuclear norms of all matrices unfolded along each
mode.

Remarks: 1) The model regularizer R2(·) for S can be
customized for different tasks. For example, we employ
Frobenius norm for AD/PD diagnosis which belongs to multi-
class classification, while for multi-label classification, we
can use other techniques (e.g., low-rank) to explore the cor-
relation among different labels. 2) The matrices K̃(v)s are
approximations of the kernel matrices K(v)s, and it is diffi-
cult to ensure K̃(v)s to be strict kernel matrices. 3) For our
model, the kernels themselves can be regarded as the entries
of feature vectors within a generalized linear model (Roth
2004), i.e., φ(x(v)) = [k(x(v),x

(v)
1 ), ..., k(x(v),x

(v)
N ), 1]T.

To summarize, our model has the following merits: (1) Our
model focuses on exploring complex correlations among the
features and the class labels by introducing a middle layer
equipped with kernel technique; (2) Benefiting from the ker-
nel technique, the high-order correlation of different views is
thoroughly exploited by learning the latent representation ap-
proximate to the kernel matrices of different views equipped
with a low-rank tensor; (3) Both the complex input-output
correlation and the high-order multi-view correlation are
addressed seamlessly in a unified framework.

Optimization

Our objective function in Eq. (4) simultaneously seeks to
optimize multiple projections P(v)s, matrices K̃(v)s and
model S. Since it is not jointly convex with respect to all
the variables P(v)s, K̃(v)s and S, we employ Alternating Di-
rection Method of Multipliers (ADMM) (Boyd et al. 2011).
To adopt the alternating direction minimization strategy to
our problem, we need to make our objective function sep-
arable. Therefore, we introduce auxiliary variables G, and

induce the following equivalent problem to be minimized

L(P(1), ...,P(V ); K̃(1), ..., K̃(V );S;G;W)

=
1

2
||PO(SZ−Y)||2F

+
γ

2

V∑
v=1

||P(v) ˜Φ(X(v))T||2F

+
β

2
||K− K̃||2F + 〈W , K̃− G〉+ μ

2
||K̃− G||2F

+
η

2
||S||2F + α||G||∗,

(6)

where W is the Lagrange multiplier in tensor form. The
operator 〈·, ·〉 defines the tensor inner product and μ is a
positive penalty scalar. For the above objective function, the
sub-problems can be solved as follows:
• Update P(v). The objective function with respect to updat-
ing P(v) is

min
P(v)

1

2
||(

∑
u �=v

S(u)Z(u) + S(v)P(v)K̃(v) −Y)O||2F

+
γ

2
‖P(v) ˜Φ(X(v))T‖2F .

Taking the derivative with respect to P(v) and setting it to
zero, we get

AP(v) +P(v)B = C

with A = γ(STS)−1,B = K̃(v)OTO and

C =(STS)−1
(
S(v)T(Y −

∑
u �=v

S(u)Z(u))
)
OTO.

(7)

The above equation is a Sylvester equation (Bartels and Stew-
art 1972), and we have the follow proposition:

Proposition 1. The Sylvester equation (7) has a unique so-
lution.

Proof. The Sylvester equation AP(v) +P(v)B = C has a
unique solution for P(v) exactly when there are no common
eigenvalues of A and -B (Bartels and Stewart 1972). Since B
is a positive definite matrix, all of its eigenvalues are positive:
bi > 0. While since A is a positive semi-definite matrix,
all of its eigenvalues are nonnegative: ai ≥ 0. Hence, for
any eigenvalues of A and B, ai + bj > 0. Accordingly, the
Sylvester equation (7) has a unique solution.

•Update K̃(v). To update K̃(v), we should optimize the fol-
lowing objective function

min
˜K(v)

1

2
||(

∑
u �=v

S(u)Z(u) + S(v)P(v)K̃(v) −Y)O||2F

+
γ

2
‖|P(v) ˜Φ(X(v))||2F +

β

2

V∑
v=1

||K(v) − K̃(v)||2F

+ 〈W(v), K̃(v) −G(v)〉+ μ

2
||K̃(v) −G(v)||2F ,
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where G = T (G(1), ...,G(V )), W = T (W(1), ...,W(V ))
with G(v) and W(v) corresponding to the vth view. Taking
the derivative with respect to K̃(v) and setting it to zero, we
get the following equation

AK̃(v) + K̃(v)B = C

with A = (β + μ)(PTSTSP)
−1

,B = OTO,

C = (PTSTSP)
−1

(PTSTYOTO+ βK+ μG

−PTST
∑
u �=v

S(u)Z(u)OTO− γPTP−W).

(8)

Similar to (7), the above equation is also a Sylvester equation
(Bartels and Stewart 1972) and has a unique equation.
•Update S. To update the model S, we should optimize the
following objective function

min
S

1

2
||(SZ−Y)O||2F +

η

2
||S||2F .

Taking the derivative with respect to S and setting it to zero,
we get the updating rule as

S = (YOOTZT)(ZOOTZT + ηI)−1. (9)

•Update G. To update the tensor auxiliary variable G, we
should optimize the following objective function

min
G

α||G||∗ + μ

2
||G − (K̃+

1

μ
W)||2F .

According to the tensor rank definition in Eq. (5), we have
the equivalent formulation as

min
G(m)

α
M∑

m=1

||G(m)||∗

+
μ

2

M∑
m=1

||G(m) − (K̃(m) +
1

μ
W(m))||2F .

(10)

Accordingly, G(m) could be efficiently updated with G∗
(m) =

proxtrλm
(K̃(m) +

1
μW(m)). λm = α/μ denotes the thresh-

olds of the spectral soft-threshold operation proxtrλm
(L) =

Umax(S− λm, 0)VT with L = USVT being the Singular
Value Decomposition (SVD) of the matrix L, and the max
operation being taken element-wise. Intuitively, the solution
is truncated according to the matrix K̃(m). We update all
G(m)s and thus the tensor G is updated accordingly.

Additionally, the Lagrange multipliers can be updated as
follows:

W ← W + μ(K̃− G). (11)

For clarification, the optimization procedure is summarized
in Algorithm 1.

Remarks: Note that, simply initializing all the block vari-
ables with zero will mislead the optimizations to trivial solu-
tions. Based on this, we randomly initialize S and can obtain
rather stable performance in practice.

Algorithm 1: Optimization for our ML-MVC model.

Input: Multi-view data {X(1), ..., X(V )}, class label
matrix Y and parameters α, β, γ, η.

Initialize: P(1) = · · · = P(V ) = 0,
G = K̃ = W = 0, ρ = 1.2, ε = 10−6, maxμ =106;
Initialize S with random values.

while not converged do
for each of V views do

Update P(v) according to (7);
Update K̃(v) according to (8);
Update Z(v) with Z(v) = P(v)K̃(v);

end
Update S according to (9);
Update G according to (10);
Update multipliers W according to (11);
Update the parameter μ by μ = min(ρμ; maxμ);
Check the convergence conditions:
||K̃− G||∞ < ε;

end

Output: S, {K̃(v)}Vv=1 and {P(v)}Vv=1.

Complexity and Convergence

Our method is composed of four main sub-problems. For
updating P(v) and K̃(v), the classical algorithm for the
Sylvester equation is the Bartels Stewart algorithm (Bartels
and Stewart 1972), whose complexity is O(N3). The com-
plexity of updating S is O(N2C + CNK + K3), where
C, K and N are the size of label set, the dimension of
latent representation, and the number of samples, respec-
tively. For updating G (the nuclear norm proximal operator),
the complexity is O(N3). Overall, the total complexity is
O(N2C + CNK + K3 + N3) for each iteration. Under
the condition C � K and C � N , the total complexity is
basically O(K3 +N3). It is difficult to generally prove the
convergence for our algorithm. Fortunately, empirical evi-
dence on the real data presented suggests that the proposed
algorithm has very strong and stable convergence behavior
even with randomly initialized S.

Experiments

Experiment setup. In all experiments, the data are split
into 10 non-overlapping folds with 9/10 and 1/10 as train-
ing and testing data, and reporting the average results and
standard deviation. We conduct standard 10-fold cross-
validation for each split with the hyperparameters selected
from {0.01, 0.1, 1, 10, 100} for α, and {0.1, 1, 10, 100} for
the other hyperparameters. Gaussian kernel is employed for
each type of features, i.e., k(xi,xj) = 〈φ(xi), φ(xj)〉 =

exp( ||xi−xj ||2
2σ2 ) where σ = median({||xi − xj ||}i �=j). For

hyperparameters of other methods, they are tuned for the
best performance according to their respective published pa-
pers. We conducted experiments on two different sets of data
with multiple modalities and multiple types of features. We
evaluate the performance of all methods in terms of accuracy.
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Compared methods. To comprehensively evaluate the pro-
posed method, we divide the compared methods into 3 groups,
i.e., methods using one, two and all three types of modali-
ties/features. We employ a support vector classification model
as the basic classifier which is from the LIBSVM toolbox 1

publicly available for the compared methods. The comparison
methods include: • Single view and two-view concatenation
using SVM (with Gaussian kernel); • Multiview CCA (Rup-
nik and Shawe-Taylor 2010) which can obtain one common
space for multiple views. • Matrix Completion (Cabral et al.
2011) which predicts the class label with matrix completion
based on a Rank Minimization criterion, with all views con-
catenated. • Multiclass Multiple Kernel Learning (Zien and
Ong 2007) which provides a convenient and principled way
based on MKL for multiclass problems. •Vector-valued Mani-
fold Regularization based Multi-View Learning (VMR-MVL)
(Minh et al. 2013), which is a semi-supervised multi-view
classification method.

The intuitions for comparing with these methods are: (1)
Single-view methods operate on each view independently
using SVM, thus, they provide the evaluation of the quality
for each view. Moreover, it can clarify if the multi-view
treatment is essential for the overall performance or not. (2)
Multiple-view methods can integrate multiple views, and here
several of them are employed as comparisons to evaluate the
effectiveness of our method in integrating multiple views. (3)
Since nonlinearity (using kernel technique) is involved in our
method, we employed kernel SVM as the basic classifier. (4)
VMR-MVL is a very related method to ours, which also uses
both training and testing multi-view data in the formulation.

Results on data with multiple modalities.

First, we test our method on the multi-modality data set
with 3 modalities, i.e., MRI, PET and Single Nucleotide
Polymorphisms (SNP) genetics data. There are 360 subjects
in this study, including 85 AD, 185 mild cognitive impairment
(MCI), and 90 normal controls (NC) subjects, where MCI
is the early stage of AD and these subjects have their MRIs
scanned at first screening time.

For this study, we download ADNI 1.5T MR and PET im-
ages from the ADNI website 2. The MR images are collected
by using a variety of scanners with protocols individualized
for each scanner. To ensure the quality, these MR images
are corrected for spatial distortion caused by B1 field inho-
mogeneity and gradient nonlinearity. The PET images are
collected by 30-60 min post Fluoro-Deoxy Glucose (FDG)
injection. The operations, i.e., averaging, spatially alignment,
interpolation to standard voxel size, intensity normalization,
and common resolution smoothing are performed for these
images. In our experiments, we extract 93 ROI-based neu-
roimaging features for each neuroimage (i.e., MRI or PET).
In addition, for SNP data, according to the AlzGene database
3, only SNPs that belong to the top AD gene candidates are
selected. Accordingly, there are 3123 SNP features used.

1https://www.csie.ntu.edu.tw/ cjlin/libsvm/
2http://adni.loni.usc.edu/
3http://www.alzgene.org/

Table 2: Accuracy on multi-modality data.

No. Configuration Accuracy

1 View1 0.517 ± 0.064
2 View2 0.508 ± 0.107
3 View3 0.542 ± 0.101
4 View1+View2 0.531 ± 0.061
5 View1+View3 0.575 ± 0.073
6 View2+View3 0.556 ± 0.109
7 AllViewConcatenate 0.608 ± 0.075
8 Multiview CCA 0.581 ± 0.072
9 Matrix Completion 0.514 ± 0.092
10 MultiClass MKL 0.582 ± 0.091
11 VMR-MVL 0.579 ± 0.081
12 Ours (α = 0) 0.579 ± 0.050
13 Ours + Tensor (α = 10) 0.625 ± 0.069

Results and Analysis. The performance of our method along
with the compared methods are reported in Table 2, where
View1, View2 and View3 correspond to MRI, SNP and PET
data, respectively. The values in red, green and blue indi-
cate the top three performers, and several observations are
drawn as follows: (1) The methods using multiple views are
generally superior to the methods with one single view. For
example, compared with SVM using View1, SVM with both
View1 and View3 achieves an improvement of about 6%, and
the performance of SVM with two views are usually much
better than those of SVM with single view. This confirms the
necessity and effectiveness of integrating multiple views. (2)
Compared with other multi-view methods, ours outperforms
all, which demonstrates the effectiveness of our method for
classification with multi-view data. (3) Though competitive
result is achieved, with low-rank tensor constraint, the per-
formance improvement of 4.6% is further obtained. This
validates the effectiveness of exploring multiple views with
low-rank high-order tensor. It is very important to note that
we are classifying the the data into three classes simulta-
neously, as opposed to binary methods that are widely and
conventionally used in neuroimaging fields. Hence, it is not
fair to directly compare our results with theirs, as our method
exploits a more realistic and practical case.

Results on data with multiple types of features.

Here, we also conduct experiments on the resting-state func-
tional MRI (RS-fMRI) data set with multiple types of features.
In this study, there are 195 subjects, including 32 AD, 95
MCI, and 68 NC subjects. The RS-fMRI data are acquired
from ADNI and parcellated into 116 regions according to the
Automated Anatomical Labeling (AAL) template. The mean
RS-fMRI time series of each brain region is band-pass fil-
tered (0.015-0.15 Hz). Head motion parameters (Friston24),
mean BOLD signal of white matter, and mean BOLD signal
of cerebrospinal fluid are all regressed out from the RS-fMRI
data to further reduce artifacts. Similar to fMRI analysis
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Table 3: Accuracy on multi-feature data.

No. Configuration Accuracy

1 View1 0.461 ± 0.128
2 View2 0.466 ± 0.125
3 View3 0.471 ± 0.115
4 View1+View2 0.477 ± 0.117
5 View1+View3 0.462 ± 0.096
6 View2+View3 0.477 ± 0.122
7 AllViewConcatenate 0.467 ± 0.119
8 Multiview CCA 0.482 ± 0.106
9 Matrix Completion 0.410 ± 0.115
10 MultiClass MKL 0.451± 0.113
11 VMR-MVL 0.481 ± 0.131
12 Ours (α = 0) 0.481 ± 0.108
13 Ours + Tensor (α = 100) 0.502 ± 0.122

methods, we construct the functional connectivity network
for each subjects, by calculating the Pearson’s correlation of
the mean signals from each pair of the ROIs. This constructs
a full graph with correlation values and weights on the edges.

Three types of features are extracted from these graphs,
and each is considered as a view in our multi-view method:
(1) Nodal betweenness: The betweenness centrality is a mea-
sure of centrality in a graph, based on shortest paths. For each
pair of nodes in a graph, there exists at least one shortest path
between the nodes. The nodal betweenness centrality is the
number of these shortest paths that pass through node i. (2)
Nodal clustering coefficients: The coefficients are computed
for each node to quantify the probability that the neighbors of
node i are also connected to each other. (3) Nodal local effi-
ciency: The efficiency of a network measures how efficiently
information is exchanged within a network, which gives a pre-
cise quantitative analysis of the networks’ information flow.
The local efficiency represents the efficiency of a subgraph,
which consists of all node i’s neighbors. Results and Anal-
ysis. The performance of all compared methods are listed
in Table 3, where View 1, View 2 and View 3 denote nodal
betweenness, nodal clustering coefficients and nodal local
efficiency, respectively. According to the performance, sev-
eral observations are drawn as follows: (1) Generally, SVM
with multiple views is slightly superior to SVM for each
single view. We note that these multiple types of features
for this dataset are extracted from different aspects of one
single modality, which generally leads to less complemen-
tarity among different views than that of multiple modalities.
(2) Similar to the results reported in Table 2, our method
outperforms all the other competitors, while much better
performance is achieved when using the low-rank tensor con-
straint. (3) The kernelized methods are generally superior
than linear ones, which demonstrates that exploring nonlin-
ear correlation between features and class label is powerful.
Overall, the results validate the effectiveness of simultane-
ously exploring nonlinear correlation between features and

Figure 2: Model analysis on multi-modality (left column)
and multi-feature (right column) data. The rows from top to
bottom correspond to convergence curves, performance with
respect to α and K, respectively.

labels, and exploiting the complimentary information among
multiple views as well.
Model Analysis. To well characterize our model, we provide
several analytical curves for our method. Firstly, as shown in
the top row of Fig. 2, in practice the convergence of our algo-
rithm can be achieved within less than 50 iterations for both
multi-modality and multi-feature cases. Secondly, according
to the middle row of Fig. 2, it is observed that our low-rank
tensor constraint is relatively effective and the performance is
robust with respect to different tradeoff hyperparameter α in
our objective function (4). Finally, the dimensionality of the
latent representation is explored in the bottom row of Fig. 2,
which demonstrates that our method can achieve promising
results with a relatively low dimensionality.

Conclusion

We have proposed a novel multi-view learning method to take
advantage of multiple views of data. By introducing kernel
technique, our model well explores the complex correlations
among features and class labels. Furthermore, by constrain-
ing the kernel matrices of different views to be low-rank
tensor, the high-order correlation among different views is
thoroughly exploited. Experiments on both multi-modality
and multi-feature data clearly validated the superiority of our
method over the state-of-the-arts. Although effective, there
are also several directions to improve our method in the fu-
ture, including incorporating weights for different views and
more efficient optimization algorithm for large-scale data.
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