
Sum-Product Autoencoding: Encoding and
Decoding Representations Using Sum-Product Networks

Antonio Vergari
antonio.vergari@uniba.it
University of Bari, Italy

Robert Peharz
rp587@cam.ac.uk

University of Cambridge, UK

Nicola Di Mauro
nicola.dimauro@uniba.it
University of Bari, Italy

Alejandro Molina
alejandro.molina@tu-dortmund.de

TU Dortmund, Germany

Kristian Kersting
kersting@cs.tu-darmstadt.de

TU Darmstadt, Germany

Floriana Esposito
floriana.esposito@uniba.it
University of Bari, Italy

Abstract

Sum-Product Networks (SPNs) are a deep probabilistic ar-
chitecture that up to now has been successfully employed for
tractable inference. Here, we extend their scope towards un-
supervised representation learning: we encode samples into
continuous and categorical embeddings and show that they
can also be decoded back into the original input space by
leveraging MPE inference. We characterize when this Sum-
Product Autoencoding (SPAE) leads to equivalent recon-
structions and extend it towards dealing with missing embed-
ding information. Our experimental results on several multi-
label classification problems demonstrate that SPAE is com-
petitive with state-of-the-art autoencoder architectures, even
if the SPNs were never trained to reconstruct their inputs.

Introduction

Recent years have seen a significant interest in learning
tractable representations facilitating exact probabilistic in-
ference for a range of queries in polynomial time (Lowd and
Domingos 2008; Choi and Darwiche 2017). Being instances
of arithmetic circuits (Darwiche 2003), Sum-Product Net-
works (SPNs) were among the first learnable representa-
tions of these kind (Poon and Domingos 2011). They are
deep probabilistic models that, by decomposing a distribu-
tion into a hierarchy of mixtures (sums) and factorizations
(products), have achieved impressive performances in vari-
ous AI tasks, such as computer vision (Gens and Domingos
2012; Amer and Todorovic 2016), speech (Zohrer, Peharz,
and Pernkopf 2015), natural language processing (Cheng
et al. 2014; Molina, Natarajan, and Kersting 2017), and
robotics (Pronobis, Riccio, and Rao 2017). So far, how-
ever, SPNs have mainly been used as “black box” inference
machines: only their output—the answer to a probabilistic
query—has been used in the tasks at hand.

We here extend the scope of SPNs towards Representa-
tion Learning (Bengio, Courville, and Vincent 2012). We
leverage their learned inner representations to uncover ex-
planatory factors in the data and use these in predictive tasks.
Indeed, other probabilistic models have traditionally been
used in similar ways, such as Restricted Boltzmann Ma-
chines (RBMs): After unsupervised training, a feature rep-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

resentation can be extracted and fed into a classifier (Coates,
Lee, and Ng 2011; Marlin et al. 2010), or used to initial-
ize another neural architecture (Hinton and Salakhutdinov
2006). A particular advantage of such generative encoding-
decoding schemes is that we can work with a potentially
easier-to-predict target space, e.g., for structured predic-
tion. Several variants of non-probabilistic autoencoders ex-
ist (Vincent et al. 2010; Rifai et al. 2011), tackling this prob-
lem by jointly learning encoding and decoding functions via
optimizing the closeness of their decoded reconstructions.

Specifically, we demonstrate that SPNs are naturally well
suited for Representation Learning (RL), compared to the
aforementioned models, since they offer: i.) exactly an-
swering a wider range of queries in a tractable way, e.g.
marginals (Poon and Domingos 2011; Bekker et al. 2015),
enabling natural inference formulations for RL; ii.) a recur-
sive, hierarchical and part-based definition, allowing the
extraction of rich and compositional representations well
suited for image and other natural data; and iii.) time and
effort saved in hyperparameter tuning since both their struc-
ture and weights can be learned in a “cheap” way (Gens and
Domingos 2013). This makes SPNs an excellent choice for
encoding-decoding tasks: although learned in a generative
way and without training them to reconstruct their inputs,
SPNs extract surprisingly good representations and allow to
decode them effectively.

To encode samples, we either use the SPNs’ latent vari-
able semantics or treat them as neural networks, adopting the
natural inference scenario SPNs offer—computing a Most
Probable Explanation (MPE) (Poon and Domingos 2011;
Peharz et al. 2017)—dealing with both categorical and con-
tinuous embeddings. We characterize conditions when the
proposed decoding schemes for SPNs deliver the same sam-
ple reconstructions. Moreover, we leverage MPE inference
to cope with partial embeddings, i.e. comprising missing
values—a difficult scenario even for probabilistic autoen-
coders. The benefits of the resulting Sum-Product Autoen-
coding (SPAE) routines are demonstrated by extensive ex-
periments on Multi-Label Classification (MLC) tasks. SPAE
is competitive to RBMs, deep probabilistic (Germain et
al. 2015) and non-probabilistic autoencoders like contrac-
tive (Rifai et al. 2011), denoising (Vincent et al. 2010) and
stacked autoencoders tailored for label embeddings (Wicker,

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

4163

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

(a)

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

.61

1.0

.83

1.0 .58 1.0 .77

(b)

× ×

× ×× ×

X1

X2

0

1

1 X4 X3 0

(c)

Figure 1: Visualizing MaxProdMPE. In (a), a complete and
decomposable SPN S (sum weights are assumed uniform,
omitted for clarity). In (b) we propagate node activations
bottom-up (marginalized nodes in blue) when turning S into
an MPN M to solve argmaxq∼Q S(q, X2 = 1, X4 = 0),
Q = {X1, X3}. In (c), the induced tree θ in the top-down
traversal of M is shown in red. The assignment for RVs Q
(resp. O = {X2, X4}) labels the violet (resp. purple) leaves.

Tyukin, and Kramer 2016), either embedding original fea-
tures, the target space, or both.

Sum-Product Networks

We denote random variables (RVs) by upper-case letters,
e.g. X , Y , and their values as the corresponding lower-case
letters, e.g. x ∼ X . Similarly, we denote sets of RVs as X,
Y and their combined values as x, y. For Y ⊆ X and a
sample x, we denote with x|Y the restriction of x to Y.

Definition An SPN S over a set of RVs X is a probabilis-
tic model defined via a rooted directed acyclic graph (DAG).
Let S be the set of all nodes in S and ch(n) denote the set of
children of node n ∈ S. The DAG structure recursively de-
fines a distribution Sn for each node n ∈ S. When n is a leaf
of the DAG, i.e. ch(n) = ∅, it is associated with a compu-
tationally tractable distribution1 φn � Sn over sc(n) ⊆ X,
where sc(n) denotes the scope of n.

When n is a inner node of S, i.e. ch(n) �= ∅, it is ei-
ther a sum or product node. If n is a sum node, it com-
putes a nonnegatively weighted sum over its children, i.e.
Sn =

∑
c∈ch(c) wnc Sc. When n is a product node, it com-

putes a product over its children, i.e. Sn =
∏

c∈ch(c) Sc.
The scope of inner node n is recursively defined as sc(n) =⋃

c∈ch(n) sc(c).
The distribution represented by SPN S is defined as

the normalized output of its root. This distribution clearly
depends both on the DAG structure of S and on its
parameterization—the set of all sum-weights and any pa-
rameters of the leaf distributions—which we denote as w.

Let S⊕ (resp. S⊗) be the set of all sum (resp. prod-
uct) nodes in S. In order to allow for efficient inference,
an SPN S is required to be complete, i.e. it holds that
∀n ∈ S⊕, ∀c1, c2 ∈ ch(n) : sc(c1) = sc(c2), and decom-
posable, i.e. it holds that ∀n ∈ S⊗, ∀c1, c2 ∈ ch(n), c1 �=
c2 : sc(c1) ∩ sc(c2) = ∅ (Poon and Domingos 2011).

1For discrete (resp. continuous) RVs, φn represents a probabil-
ity mass function (resp. density function). We will generically refer
to both as probability distribution functions (pdfs).

Furthermore, w.l.o.g. we assume that the SPNs considered
here are locally normalized (Peharz et al. 2015), i.e. ∀n ∈
S⊕,

∑
c∈ch(n) wnc = 1.

Inference To evaluate the probability of a sample x ∼ X,
we evaluate φn(x|sc(n)) for each leaf n. Subsequently, in a
bottom-up pass probability Sn(x|sc(n)) (short-hand Sn(x))
is computed for all n ∈ S, till the root.

Marginals of the SPN distribution can be computed in
time linear in the network size (Poon and Domingos 2011;
Peharz et al. 2015). To evaluate the probability of o ∼ O,
where O ⊂ X, we simply evaluate φ(o) for the leaves
(marginalizing any RVs not in O) and proceed bottom-up
to inner nodes in the usual way. Efficient marginalization is
a remarkable key advantage of SPNs and other ACs, as this
is a core routine for most inference scenarios.

On the other hand, the scenario of Most Probable Ex-
planation (MPE) inference is generally NP-hard in SPNs
(Peharz et al. 2017). Given two sets of RVs Q,O ⊂ X,
Q∪O = X and Q∩O = ∅, and evidence o ∼ O, inferring
an MPE assignment for Q is defined as finding:

q∗ = argmaxq S(q |o) = argmaxq S(q,o). (1)

Eq. 1, however, can be solved efficiently and exactly in se-
lective SPNs (Choi and Darwiche 2017; Peharz et al. 2017),
i.e. SPNs where it holds that ∀xi ∈ X, ∀n ∈ S⊕ : |{c | c ∈
ch(n) : Sc(x

i) > 0}| ≤ 1. In selective SPNs, MPE is solved
via the MaxProdMPE algorithm (Chan and Darwiche 2006;
Peharz et al. 2017; Conaty, Mauá, and de Campos 2017).

For a given SPN S, MaxProdMPE first constructs the
corresponding Max-Product Network (MPN) M by replac-
ing each sum node with a max node maxc∈ch(n) wncMc(x)
and each leaf distribution φn with a maximizing distribution
φM
n (Peharz et al. 2017).2 In the first bottom-up step, one

computes M(x|O) (Fig. 1b). In step two, via Viterbi-style
backtracking, the MPE solution to Eq. 1 can be retrieved.
Starting from the root, one follows all children of product
nodes and one maximizing child of max nodes. From this
top-down pass one determines an induced tree θ (Fig. 1c), a
tree-shaped sub-network whose leaves scopes define a parti-
tion over X. By taking the argmax over the leaves of the
induced tree, one retrieves an MPE solution. For general
SPNs, the solution delivered by MaxProdMPE is not ex-
act, but is commonly used as an approximation to the MPE
problem (Poon and Domingos 2011; Peharz et al. 2017).

Learning The semantics of SPNs enables simple and
yet surprisingly effective algorithms to estimate both the
network structure and parameters (Dennis and Ventura
2012; Peharz, Geiger, and Pernkopf 2013). Many vari-
ants (Rooshenas and Lowd 2014; Vergari, Di Mauro, and
Esposito 2015; Melibari et al. 2016) build upon one of
the most prominent algorithms, LearnSPN, a greedy top-
down learner introduced by Gens and Domingos (2013).
LearnSPN acts as a recursive data crawler, by decomposing
a given data matrix along its rows (i.e. samples), generat-
ing sum nodes and estimating their weights, and its columns

2The previously introduced notation for S, S, S⊕, etc. carries
over as M , M, Mmax.

4164

(i.e. RVs), generating products. This way of learning SPNs
can also be interpreted as running a hierarchical feature ex-
tractor. Our proposed SPAE routines are the first approach
to exploit this interpretation.

Sum-Product Autoencoding

We now extend the use of an SPN S, trained generatively
to estimate p(X) over some data set {xi ∼ X}i, towards
Representation Learning. More precisely, we are interested
in encoding a sample xi as an embedding ei in a new d-
dimensional space EX through a function f provided by the
structure and parameters of S:

(encoding) ei = fS(x
i) .

For decoding, on the other hand, we seek for an approximate
inverse function g : EX → X such that

(decoding) gS(e
i) = x̃i ≈ xi,

is its reconstruction in the original feature space X; here the
embedding ei can be the result of an encoding process fS or
the output of a predictive model whose target space is EX.
To this end, we will now develop two encoding-decoding
schemes for SPAE, namely a probabilistic one—leveraging
the latent variable semantics in SPNs— and a deterministic
one, by interpreting SPNs as neural networks.

Probabilistic Perspective: CAT embeddings

By noting that each sum node n ∈ S⊕ essentially represents
a mixture model over its child distributions {Sc}c∈ch(n),
SPNs naturally lend themselves towards an interpretation as
hierarchical latent variable (LV) models. In particular, we
can associate to each n ∈ S⊕ a marginalized LV Zn assum-
ing values in {0, . . . , |ch(n)| − 1}. The LV interpretation
of SPNs helps to connect SPNs with existing probabilistic
models (Zhao, Melibari, and Poupart 2015) and justifies ap-
proaches developed for LV models, such as the expectation-
maximization algorithm (Peharz et al. 2017).

Let ZS be the set of the LVs associated to all the sum
nodes in an SPN S. By explicitly incorporating ZS in our
SPN representation by means of augmented SPNs (Peharz
et al. 2017), we can reason about the joint distribution V =
(X,ZS) while exploiting the usual inference machinery of
SPNs. Given an SPN S over X, the augmented SPN S over
V introduces indicator leaves φzik = 1{Zi = zik} for each
Zi ∈ ZS and value zik ∼ Zi. These indicators are intercon-
nected via product nodes – so-called links – between sum
nodes and their children, and essentially switch on/off par-
ticular children, making the the latent selection process of
sum nodes explicit. In order to make S a complete and de-
composable SPN over V, additional structural changes may
be necessary. In particular, for any n ∈ S⊕ and c ∈ ch(n),
let pnc be the corresponding link, which is a child of n and
a joint parent of c and φznc

. If n has a sum node ancestor a
having a child link node m that is not ancestor of n, then a
so-called twin sum node n is introduced which is a parent of
all indicators {φznk

}k and a child of m. By this construction,
the augmented SPN is a complete and decomposable SPN

over V. For details, see the supplementary material (Vergari
et al. 2017) and (Peharz et al. 2017).

For an augmented SPN S it holds that S(X) = S(X),
i.e. when all ZS are marginalized, we retrieve the distribu-
tion of S. Moreover, augmented SPNs are always selective,
thus MPE can be solved exactly and efficiently (see previ-
ous Section). This property will be crucial in our SPAE for
Representation Learning.

CAT embedding process The LV semantics of SPNs of-
fers a natural way to formulate the encoding problem: embed
each sample xi into the space induced by their associated
LVs, i.e. EX = ZS and d = |S⊕|. Thus, we define fS as:

fS(x
i) = fMPE(x

i) � z̃i = argmaxzi S(zi |xi), (2)

i.e. xi is encoded as the categorical vector z̃i comprising
the most probable state for the LVs in S. Analogously, the
decoding of z̃i through gS can be defined as:

gS(z̃
i) = gMPE(z̃

i) � x̃i = argmaxxi S(xi | z̃i). (3)

To solve both (2) and (3), we perform MPE inference on the
joint pdf of V = (X,ZS), by running MaxProdMPE on
the augmented SPN S. Each application of MaxProdMPE
involves a bottom-up and a backtracking pass over the MPN
M corresponding to S, yielding in total 4 passes over M , as
illustrated in Fig 2.

For the encoding step, the bottom-up pass yields M(x),
where LVs are marginalized (Fig 2b). A tree θ′ is induced in
the top-down pass (Fig 2c), and z̃i is obtained by collecting
the states corresponding to the indicators φzjk in θ′.

For the decoding stage, the bottom-up pass computes
M(z̃i) (Fig. 2d), i.e. the LVs now assume the role of “ob-
served data”, while X is now unobserved. A tree θ′′ is grown
in the top-down pass (Fig 2e), and x∗ is built from the MPE
assignments computed at the leaves contained in θ′′.

Although operating on augmented SPNs provides a prin-
cipled way to derive encoding and decoding routines, it also
poses some practical issues. First, even if S—being selec-
tive over V—provides exact solutions to Eq. 2 and 3, the
embedding z∗ typically contains LVs which do not contain
any information about the data. This stems from the fact that
a particular LV Zn might be rendered independent from X,
given certain context of all LVs “above” Zn (see (Peharz et
al. 2017) for details). Second, the size of M can grow up to
|M |2 and explicitly constructing it would be wasteful.

Therefore, we will conveniently compute fMPE and gMPE

operating directly on M , and not on M , i.e. we simulate
MaxProdMPE in the original MPN. The result is a shorter
and context-dependent embedding vector, for which, how-
ever, the decoding stage should not rely on LVs which have
been ignored in the encoding stage. This is formally estab-
lished by the following proposition, showing that the two
induced trees θ′ and θ′′ are identical.

Proposition 1. Let S be an SPN over X, M its correspond-
ing MPN, and M its augmented version over V = (X,ZS).
Let θ′ (resp. θ′′) be the tree built by computing fMPE(x

i)
(resp. gMPE(fMPE(x

i))) on M , given a sample xi ∼ X.
Then, it holds that θ′ = θ′′.

4165

× ×

× ×× ×

X1

φz0
1

X1

φz1
1

X3 X4 X3 X4

φz0
2

φz1
2

φz1
3

φz0
3

X2 X2

(a)

.22 .26

.24

.46 .36

.43 .38.49 .34

.71

1.0

.92

1.0

1.0 1.0

.58 .84 .51 .66

1.0

1.0

1.0

1.0

.69 .77

(b)

× ×

× ×× ×

X1

φz0
1

0

1

0 X4 X3 X4

φz0
2

1

φz1
3

0

X2 0

(c)

0.0 .25

.13

.50 .50

1.0 1.00.0 0.0

1.0

0.0

1.0

1.0

.50 .50

1.0 1.0 1.0 1.0

0.0

1.0

0.0

1.0

1.0 1.0

(d)

× ×

× ×× ×

X1

φz0
1

0

1

0 X4 X3 X4

φz0
2

1

φz1
3

0

X2 1

(e)

Figure 2: Encoding and decoding via LVs. (a) The SPN S augmenting the one in Fig. 1a (all sum weights assumed uniform).
In (b), to encode x=(1, 0, 0), LVs in M are marginalized out (all indicators output 1, in blue). In (c) the tree θ′ is induced top-
down, selecting the query LV indicators (violet), computing z=(1, 1, 0). To decode z, corresponding LV indicator activations
are propagated bottom-up in (d). In (e), non-zero activations force the (re)construction of the tree θ′′, leading to x̃=(1, 1, 0).

Prop. 1 also highlights a high level interpretation of en-
coding and decoding samples through ZS : z̃i encodes xi

into a tree representation, decoding means to “materialize”
the same tree back, and then to apply MPE inference over its
leaves, yielding x̃i. In a sense, SPAE works by demanding
encoding and decoding to subsets of leaves, using induced
trees to select them for each sample considered.

We now introduce fCAT and gCAT as encoding and decod-
ing routines for CATegorical embeddings, operating on M
and producing reconstructions equivalent to fMPE and gMPE.
To compute fCAT(x

i) one evaluates M(xi) in a bottom-up
pass and then grows a tree path θ while collecting the states:

zij = argmaxk∈{0,...,|ch(nj)|} wnjckMck(x
i), (4)

for each Zj ∈ Zθ
S , where Zθ

S is the set of LVs associated
only to the max nodes traversed in θ. On the other hand, we
build gCAT(z̃

i) as the procedure that mimics only the top-
down pass of MaxProdMPE by materializing the tree path θ
encoded in z̃i. Growing θ from the root, if the currently tra-
versed node nj ∈ M is a max node, the embedding value zij ,
corresponding to the LV Zj associated to nj , determines the
child branch to follow; if it is a product node, all its child
branches are added to θ, as usual. As before, performing
MPE inference on the leaves of θ retrieves the decoded sam-
ple x̃i = gCAT(z̃

i).

Proposition 2. Given a sample xi ∼ X, it hold that
gMPE(fMPE(x

i)) = gCAT(fCAT(x
i)).

By construction, embeddings via fCAT equals the ones
built by fMPE up to the LVs in Zθ

S , all other LVs are unde-
fined in z̃i. Consequently, CAT embeddings are very sparse.
While the undefined LVs can be estimated in several ways,
their reconstructions through gCAT would be unaffected3.

Deterministic perspective: ACT embeddings

SPNs can also be interpreted as deep NNs whose con-
strained topology determines sparse connections and in
which nodes are neurons labeled by the scope function sc,
enabling a direct encoding of the input (Bengio, Courville,
and Vincent 2012) and retaining a fully probabilistic seman-
tics (Vergari, Di Mauro, and Esposito 2016). Indeed, like

3In the supplemental material (Vergari et al. 2017) we investi-
gate also dense CAT embeddings, obtained by estimating the unde-
fined LVs in z̃i by applying Eq. 4 to them as well. We demonstrate
their equivalent reconstructions and evaluate them empirically

RBMs, but differently from deep estimators like NADEs and
MADEs (Germain et al. 2015), each neuron activation, i.e.
Sn(x), is a valid probability value by definition. Following
this interpretation, SPNs can also be used as feature extrac-
tors by employing neuron ACTivations to build embeddings,
as it is common practice for neural networks and autoen-
coders (Rifai et al. 2011; Marlin et al. 2010).

ACT embedding process Let N = {nj}dj=1 ⊆ S be a
set of nodes in S, collected by a certain criterion. A sample
xi is encoded into a d-dimensional continuous embedding
fS(x

i) = ei ∈ EX ⊆ R
d by collecting the activations of

nodes in N, i.e. eij = Snj
(xi). Let fACT(xi) � eiM be the

ACT embedding built from the inner nodes4 of the MPN
M built from S, i.e. N = Mmax ∪ M⊗. We can note how
ACT embeddings implicitly encode an induced tree: node
activations eiM are sufficient to determine which max node
child branch to follow, according to Eq. 4. Therefore, we
can build a decoder gACT that mimics the top-down pass of
MaxProdMPE. Specifically, θ can be grown by choosing the
child ck of a max node nj such that the value wnjcke

i
ck

is
the max among the k siblings, and hence equal to einj

. As
for gCAT, all product node children are traversed and x̃i is
built by collecting MPE assignments at the leaves of θ.
Proposition 3. Given a sample xi ∼ X, it holds that,
gACT(fACT(x

i)) = gCAT(fCAT(x
i)).

While Props. 2 and 3 ensure that CAT and ACT SPAE
routines provide the same decoding to one sample encoded
by them, the information content of each embedding is
clearly different. Consequently, CAT and ACT SPAE rou-
tines will yield different performances when employed for
predictive tasks. Lastly, instead of selecting all inner nodes
in M we could have employed only a subset of them, e.g.
selecting only nodes near the root, seeking high level rep-
resentations (Vergari, Di Mauro, and Esposito 2016). How-
ever, we would need to accommodate gCAT and gACT in order
to deal with the ”missing” nodes. We deal with this next.

Dealing with Partial Embeddings

Up to now we have considered only fully decodable embed-
dings, i.e. embeddings comprising all the information re-
quired to materialize a complete and well-formed tree nec-
essary to decode e into x̃. In some real cases, however, only

4In the supplemental material (Vergari et al. 2017) we investi-
gate ACT embeddings using leaf activations as well.

4166

incomplete or partial embeddings are available: some values
ej are corrupted, invalid or just missing. E.g., consider data
compression, one may want to store only the most relevant
values of an embedding and discard the rest. Since SPAE
routines are built on probabilistic models, they offer a natu-
ral and efficient way to deal with such cases. As follows, we
denote with ej /∈ e the embedding j-th value missing.

In theory, for ACT embeddings, a partial embedding ei

would still be decodable if each missing value could be re-
constructed by the corresponding node non-missing chil-
dren activations, i.e. for each Mn(x

i) �∈ ei it holds that
∀c ∈ ch(n) : eic = Mc(x) ∈ ei. For the general case, we
propose to impute CAT and ACT missing values by perform-
ing MPE inference to estimate them.

In practice, if for an ACT (resp. CAT) embedding the
component eij /∈ ei (resp. zij /∈ zi) corresponds to a node
nj activation (resp. LV Zj state), then it can be imputed
by employing MaxProdMPE on the sub-network Mnj

. In a
sense, this generalizes to inner nodes and their scopes what
already happens at leaf level. Lastly, consider that to impute
k missing values from one embedding, instead of running
MaxProdMPE k times, we can run the bottom-up pass just
once for the whole M and then reuse computations while
traversing top-down for the k nodes. In the experimental sec-
tion, we empirically evaluate the effectiveness and resilience
of SPAE on embedding values missing at random.

Discussion of CAT and ACT Embeddings

Before moving on to our empirical evaluation let us provide
some intuition of CAT and ACT embeddings.

CAT embeddings from an SPN S are points in the la-
tent space induced by ZS . They are compact and linearized
representations of the tree paths in S, also called the com-
plete sub-circuits resp. induced tree components of S (Zhao,
Melibari, and Poupart 2015; Zhao and Poupart 2016). Di-
rectly encoding only leaf subsets would not have allowed
the flexibility and robustness to deal with partial embed-
dings. Evaluating the visible effects of conditioning on sub-
sets of CAT embedding components is harder than dealing
with the continuous case (Bengio, Courville, and Vincent
2012), since we cannot easily interpolate among categorical
vectors nor we explicitly model dependencies in ZS (Peharz
et al. 2017). However, one can still interpret the semantics
of learned CAT embeddings by visualizing the latent factors
of variations encoded in ZS through the clusters of sam-
ples sharing the same representations. For an SPN learned
on a binarized version of MNIST5, Fig. 3 depicts random
samples sharing the same CAT encoding. Even though sam-
ples may belong to different digit classes, they clearly share
stylistic aspects like orientation and stroke.

ACT embeddings, on the other hand, are points in the
space induced by a collection of proper marginal pdfs. From
their neural interpretation, SPN nodes are part-based fil-
ters operating over sub-spaces induced by the node scopes.
Sum nodes act as averaging filters, and product nodes com-
pose other non-overlapping filters. From the perspective of

5See the supplemental material (Vergari et al. 2017) for details,
code and learning settings for all experiments

Figure 3: Visualizing the factors of variations encoded by
CAT embeddings: 4 clusters of 9 binarized MNIST samples
sharing the same encoding. Each cluster clearly shows some
latent style pattern like straight, curved or slanted strokes.

Figure 4: Visualizing SPN activations learned on binarized
MNIST: 4 clusters of node filters with similar scope lengths,
i.e. |sc(n)|. The compositionality of the learned representa-
tions is evident through the different levels of the hierarchy:
the longer the scope the higher the level of abstraction. The
scope information alone (out-of-scope pixels are depicted in
a checkerboard pattern) may be able to convey a meaningful
representation of “object parts”, e.g. the ‘O’ shapes.

Figure 5: Visualizing SPN activations on the NIPS corpus
at different levels of abstraction via wordclouds: the words
within a node’s scope with sizes proportional to their MPE
relevance counts. Compositionality is clearly visible in the
center topic obtained by composing the top and bottom sub-
topics on the left—the one in the center corresponds to a
product node over the two children on the left. When dif-
ferent nodes share a scope (center and right), they filter for
alternative topic meanings. (Best viewed in color)

LearnSPN-like structure learners, each filter is learned to
capture a different aspect of the sub-population and sub-
space of the data it is trained on. Thereby, each SPN com-
prises a hierarchy of filters at different levels of abstraction.
This innate compositionality enhances the interpretability
of the embedded representations. Filters from neurons in
NNs can be visualized back in the original input space as
the data samples producing their largest activation by solv-
ing an inverse problem by costly iterative optimization (Er-
han et al. 2009). For a node n in an SPN S over X this
equals to compute x∗

|sc(n) = argmaxx∼X Sn(x), which
can be solved by MaxProdMPE, requiring only two evalu-
tions of S. Fig. 4 shows some of these approximated MPE
solutions into the pixel space as the filters learned by the
SPN trained on the aforementioned version of MNIST. Note
how differently complex local patterns emerge when they

4167

are sorted by their hierarchy level, e.g. from small blobs to
shape contours and finally full digits. Similarly, for a Poisson
SPN (Molina, Natarajan, and Kersting 2017) learned on the
bag-of-words NIPS text datasets, the hierarchy over MPE
filters can be easily interpreted as structure over topics visu-
alizable through word counts, Fig. 5.

As already stated, CAT and ACT embeddings act dif-
ferently when plugged in predictive tasks. Indeed, when
employed as features for a predictor (its input) we expect
ACT embeddings to perform better than CAT ones due to
their greater information content. E.g. the digits in a clus-
ter in Fig. 3 are indistinguishable by their CAT embeddings
while their ACT representations differ. Conversely, when
employed to encode target RVs (a predictor’s output) we
forsee classification for the CAT case to be easier than re-
gression with ACT embeddings, since the latter greater vari-
ability in values and the simpler prediction task due to the
sparsity of the former. However, mispredicted ACT compo-
nents may still be able to grow a complete tree path, differ-
ently from CAT ones. All in all, how much competitive our
SPAE routines are has to be verified empirically.

Finally, consider that, for both CAT and ACT embed-
dings, the choice of the embedding size d is data-driven:
it depends on the SPN structure learned from data. Hence,
d does not need to be fixed or tuned by hand as for other
neural models. Nevertheless, to “control” it one can either
regularize structure learning or not consider some nodes in
the SPN, i.e., dealing with partial embeddings.

Experimental Evaluation

To evaluate SPAE, we focus on Multi-Label Classification
(MLC): predict the target labels represented as binary arrays
yi ∼ Y associated to sample xi ∼ X. MLC is challenging
testbed for autoencoders, since it not only asks for encoding
and decoding in the feature space, but also in the label space.
Especially, our aim here is to investigate the following ques-
tions: (Q1) How close to perfect reconstructions can SPAE
routines get on networks learned from real data? (Q2) How
meaningful and useful are these representations when em-
ployed for complex predictive tasks? (Q3) How resilient to
missing embedding values are SPAE decoding schemes?

Experimental Protocol Since there is no unique way to
assess performances on structured output, we report the jac-
card (JAC) and exact match (EXA) scores, as metrics highly
employed in the MLC literature and whose maximization
equals to focus on different sets of probabilistic dependen-
cies (Dembczyński et al. 2012)6. For all experiments we use
10 standard MLC benchmarks: Arts, Business, Cal, Emo-
tions, Flags, Health, Human, Plant, Scene and Yeast, prepro-
cessed as binary data in 5 folds as in (Di Mauro, Vergari, and
Esposito 2016). We learn both the structure and weights of
all models on X and Y separately for each fold. For SPNs
we employ LearnSPN-b (Vergari, Di Mauro, and Esposito
2015), a variant of LearnSPN learning deeper structures.

(Q1) Reconstruction performance In order to assess the
validity of the proposed encoding/decoding processes per-

6In the supplemental material we report also hamming scores.

se, here, for each SPN learned on X (resp. Y) we mea-
sure the average fold JAC and EXA scores between sam-
ples xi and their reconstructions g(f(xi)) (resp. yi and
g(f(yi))). Recall that for this task CAT and ACT routines
provide the same decoding (Prop. 3). While SPNs are not
trained to reconstruct their inputs, monitoring these scores
helps understanding if structure learning autonomously pro-
vided a structure and parametrization favoring autoencod-
ing. Reconstructions for test samples over X score 69.70
JAC and 16.29 EXA on average considerably increasing to
84.86 resp. 66.50 over Y. Detailed results are reported in the
supplemental material. This suggests that SPNs have been
able to model label dependencies easier, growing leaves to
better discriminate different states on smaller data.

(Q2) MLC prediction performance. In the simplest
(fully-)supervised case for MLC one would learn a pre-
dictor p, from the original feature space to the label one:
X

p
=⇒ Y. We define three more learning scenarios in which

to employ the representations learned by SPNs: I) learn p on
the features encoded by a model r: (X fr−→ EX)

p
=⇒ Y;

II) learn p to predict the embedded label space EY en-
coded by a model t, then use t to decode them back to
Y: (X p

=⇒ (Y
ft−→ EY))

gt−→ Y; III) combine the previ-
ous two scenarios, encoding both feature and label spaces:
((X

fr−→ EX)
p
=⇒ (Y

ft−→ EY))
gt−→ Y. We employ for p

only linear predictors to highlight the ability of the learned
embeddings to disentangle the represented spaces. For sce-
nario I) p is a L2-regularized logistic regressor (LR) while
for II) and III) it may be either a LR or a ridge regressor
(RR) if it is predicting CAT or ACT embeddings.

As a proxy measure to the meaningfulness of the learned
representations, we consider their JAC and EXA prediction
scores and compare them against the natural baseline of
LR being applied to raw input and output, X LR

=⇒ Y. We
also employ a standard fully-supervised predictor for struc-
tured output, a Structured SVM employing CRFs to perform
tractable inference by Chow-Liu trees on the label space
(CRFSSVM) (Finley and Joachims 2008). Concerning r and
t models as encoder and decoder competitors, we employ
generative models such as: 1) RBMs, whose conditional
probabilities have been largely used as features (Larochelle
and Bengio 2008; Marlin et al. 2010), with 500, 1000 and
5000 hidden units (h); 2) deep probabilistic autoencoders as
MADEs (Germain et al. 2015) concatenating embeddings
from 3 layers of 500 or 1000 (resp. 200 or 500) hidden units
for X (resp. Y); non-probabilistic autoencoders (AEs) with
3 layer deep encoder and decoder networks, compressing
the input by a factor γ ∈ {0.7, 0.8, 0.9} such as 3) stacked
AEs (SAEs) tailored for MLC (Wicker, Tyukin, and Kramer
2016); 4) contractive AEs (CAEs) (Rifai et al. 2011) and 5)
denoising AEs (DAEs) (Vincent et al. 2010). Note that for
all the aforementioned models we had to perform an exten-
sive grid search first to determine their structure and then to
tune their hyperparameters (see supplemental material).

Used configurations for each setting are reported in Tab. 1
together with the scores aggregated over all 10 datasets as
averaged relative improvement w.r.t. the LR baseline. The

4168

Table 1: Average relative test set (percentage) improvements
w.r.t LR on 10 benchmark datasets for multi-label classifica-
tion. For each scenario, score, and decoding method, best
results are bold. The extra two columns use kNN decoding,
improved scores w.r.t normal decoding are denoted by ◦.

ba
se

lin
e X

p
=⇒ Y JAC EXA

p : LR 0.00 0.00
p : CRFSSVM +15.83 +103.90

sc
en

ar
io

I

(X
fr−−→ EX)

LR
=⇒ Y

r : RBMh∈{500,1000,5000} +1.46 -1.62
r : MADEh∈{500,1000} +2.57 +2.99
r : CAEγ∈{0.7,0.8,0.9} -0.15 +4.13
r : DAEγ∈{0.7,0.8,0.9} +0.70 +4.17
r : SPAEACT +3.54 +17.18 gkNN

r : SPAECAT -11.90 -11.53 JAC EXA

sc
en

ar
io

II

(X
p
=⇒ (Y

ft−−→ EY))
gt−−→ Y

t : MADEh∈{200,500}, p : RR -30.42 -28.02 ◦+14.57 ◦+88.62
t : SAEγ∈{0.7,0.8,0.9}, p : RR +5.96 +95.78 - -
t : CAEγ∈{0.7,0.8,0.9}, p : RR +7.60 +78.81 ◦+25.81 +132.03
t : DAEγ∈{0.7,0.8,0.9}, p : RR +13.39 +102.22 ◦+17.01 +71.20
t : SPAEACT, p : RR +15.19 +98.58 ◦+21.94 ◦+107.00
t : SPAECAT, p : LR +24.07 +141.81 +22.83 +134.43

sc
en

ar
io

II
I

((X
fr−−→ EX)

p
=⇒ (Y

ft−−→ EY))
gt−−→ Y

r, t : MADE, p : RR -27.15 -25.14 +12.77 +85.78
r, t : CAEγ∈{0.7,0.8,0.9}, p : RR +5.21 +79.20 ◦+24.32 ◦+125.21
r, t : DAEγ∈{0.7,0.8,0.9}, p : RR +13.97 +98.25 ◦+16.67 +76.17
r : SPAEACT, t : SPAEACT, p : RR +15.98 +106.65 ◦+21.45 ◦+109.7
r : SPAECAT, t : SPAECAT, p : LR +13.73 +107.05 +11.61 +102.08
r : SPAEACT, t : SPAECAT, p : LR +25.47 +144.78 +23.47 +135.36

higher the improvement, the better. As one can see, SPAE
is highly competitive to all other models in the three sce-
narios, for all scores, even when compared to the fully su-
pervised and discriminative CRFSSVM. More in detail, sce-
nario I proved to be hard for many models, suggesting that
the dependencies on X might not contribute much to pre-
dict Y (Dembczyński et al. 2012). ACT embeddings yield
the largest improvements. As expected, by encoding X into
a less informative space, CAT embeddings cannot beat the
LR baseline. In scenario II, disentangling label dependencies
is beneficial for all models. CAT embeddings largely out-
performs all models, confirming sparsity over EY to help.
Scenario III confirms the above observations, showing the
advantages of combining both input and target embeddings,
and both ACT and CAT achieving the overall best scores.

So, which aspect influenced the most the reported gains?
Larger embedding sizes are not responsible, since our
learned SPNs have sizes comparable to or smaller than
RBM, and MADE (see supplemental material). It is also
not due to a better model of the data distributions: MADE
log-likelihoods are higher than SPN ones. We argue that
it is due to the hierarchical part-based representations of
SPAE embeddings: while performing its hierarchical co-
clustering, LearnSPN discovers meaningful ways to dis-
criminate among data at different granularities.

Figure 6: Partial embeddings: Average EXA scores (y axis)
while imputing different percentages of missing random em-
bedding components (x axis) by employing ACT (blue cir-
cles) or CAT (orange crosses). (Best viewed in color)

(Q2) kNN Decoding We isolate the effectiveness of our
decoding schemes by employing a 5 nearest neighbor de-
coder (gt = gkNN) over EY for scenarios II and III. Even
here (last two columns of Tab. 1), SPAE is competitive.
While gkNN generally improves decoding for autoencoder
models, tree paths encoded in CAT embeddings achieve bet-
ter scores when decoded by gCAT.This suggests that exploit-
ing a form of sparse structured information—growing a tree
top-down—is likely beneficial to decoding.

(Q3) Resilience to missing components Lastly, we eval-
uate the resilience to missing at random values when decod-
ing CAT and ACT label embeddings in scenario II. That is,
for each predicted label embedding we remove at random
a percentage of values varying from 0 (full embedding) to
90%, by increments of 10%. Fig. 6 summarizes the EXA re-
sults for CAT and ACT decoding on 9 datasets (the EXA
score on Cal is always 0). First, both routines are quite ro-
bust, degrading performances by less than 50% on average
when half components are missing. Second, CAT scores de-
cay slower than ACT and are generally better. Third, one
can note the positive effect in predicting the label modes by
MPE when almost all values are missing. In summary, all
questions (Q1)-(Q3) can be answered affirmatively.

Conclusions

We investigated SPNs under a Representation Learning lens,
comparing encoding and decoding schemes for categori-
cal and continuous embeddings. An extensive set of experi-
ments on Multi-Label Classification problems demonstrated
that the resulting framework of Sum-Product Autoencoding
(SPAE) indeed produces meaningful features and is compet-
itive to state-of-the art autoencoders.

SPAE suggests several interesting avenues for future
work: explore embeddings based on other instances of arith-
metic circuits (Choi and Darwiche 2017), extracting struc-
tured representations, and to perform differentiable MPE in-
ference allowing SPNs to be directly trained to reconstruct
their input, bridging the gap even more between SPNs, au-
toencoders and other neural networks.

Acknowledgements The authors would like to thank the
anonymous reviewers for their valuable feedback. RP ac-
knowledges the support by Arm Ltd. AM and KK acknowl-

4169

edge the support by the DFG CRC 876 ”Providing Infor-
mation by Resource-Constrained Analysis”, project B4. KK
acknowledges the support by the Centre for Cognitive Sci-
ence at the TU Darmstadt.

References

Amer, M., and Todorovic, S. 2016. Sum product networks
for activity recognition. TPAMI 38(4):800–813.
Bekker, J.; Davis, J.; Choi, A.; Darwiche, A.; and Van den
Broeck, G. 2015. Tractable learning for complex probability
queries. In NIPS.
Bengio, Y.; Courville, A. C.; and Vincent, P. 2012. Unsu-
pervised Feature Learning and Deep Learning: A review and
new perspectives. arXiv 1206.5538.
Chan, H., and Darwiche, A. 2006. On the robustness of most
probable explanations. In UAI, 63–71.
Cheng, W.; Kok, S.; Pham, H. V.; Chieu, H. L.; and Chai,
K. M. A. 2014. Language modeling with Sum-Product Net-
works. In INTERSPEECH 2014, 2098–2102.
Choi, A., and Darwiche, A. 2017. On relaxing determinism
in arithmetic circuits. In ICML, 825–833.
Coates, A.; Lee, H.; and Ng, A. Y. 2011. An analysis of single
layer networks in unsupervised feature learning. In AISTATS.
Conaty, D.; Mauá, D. D.; and de Campos, C. P. 2017. Ap-
proximation complexity of maximum a posteriori inference
in sum-product networks. In UAI, 322–331.
Darwiche, A. 2003. A differential approach to inference in
bayesian networks. J.ACM.
Dembczyński, K.; Waegeman, W.; Cheng, W.; and
Hüllermeier, E. 2012. On label dependence and loss
minimization in multi-label classification. MLJ 88(1):5–45.
Dennis, A., and Ventura, D. 2012. Learning the Architecture
of Sum-Product Networks Using Clustering on Varibles. In
NIPS, 2033–2041.
Di Mauro, N.; Vergari, A.; and Esposito, F. 2016. Multi-label
classification with cutset networks. In PGM.
Erhan, D.; Bengio, Y.; Courville, A.; and Vincent, P. 2009.
Visualizing Higher-Layer Features of a Deep Network. ICML
2009 Workshop on Learning Feature Hierarchies.
Finley, T., and Joachims, T. 2008. Training structural svms
when exact inference is intractable. In ICML, 304–311.
Gens, R., and Domingos, P. 2012. Discriminative Learning
of Sum-Product Networks. In NIPS, 3239–3247.
Gens, R., and Domingos, P. 2013. Learning the Structure of
Sum-Product Networks. In ICML, 873–880.
Germain, M.; Gregor, K.; Murray, I.; and Larochelle, H.
2015. MADE: masked autoencoder for distribution estima-
tion. arXiv 1502.03509.
Hinton, G. E., and Salakhutdinov, R. R. 2006. Reducing the
dimensionality of data with neural networks. Science.
Larochelle, H., and Bengio, Y. 2008. Classification using
discriminative restricted boltzmann machines. In ICML, 536–
543.
Lowd, D., and Domingos, P. 2008. Learning arithmetic cir-
cuits. In UAI, 383–392.

Marlin, B. M.; Swersky, K.; Chen, B.; and Freitas, N. D.
2010. Inductive Principles for Restricted Boltzmann Machine
Learning. In AISTATS, 509–516.
Melibari, M.; Poupart, P.; Doshi, P.; and Trimponias, G. 2016.
Dynamic sum product networks for tractable inference on se-
quence data. In PGM.
Molina, A.; Natarajan, S.; and Kersting, K. 2017. Poisson
sum-product networks: A deep architecture for tractable mul-
tivariate poisson distributions. In AAAI.
Peharz, R.; Tschiatschek, S.; Pernkopf, F.; and Domingos, P.
2015. On theoretical properties of sum-product networks. In
AISTATS.
Peharz, R.; Gens, R.; Pernkopf, F.; and Domingos, P. M.
2017. On the latent variable interpretation in sum-product
networks. TPAMI 39:2030–2044.
Peharz, R.; Geiger, B.; and Pernkopf, F. 2013. Greedy Part-
Wise Learning of Sum-Product Networks. In ECML-PKDD.
Poon, H., and Domingos, P. 2011. Sum-Product Networks: a
New Deep Architecture. In UAI.
Pronobis, A.; Riccio, F.; and Rao, R. P. N. 2017. Deep spa-
tial affordance hierarchy: Spatial knowledge representation
for planning in large-scale environments. In ICAPS Workshop
on Planning and Robotics.
Rifai, S.; Vincent, P.; Muller, X.; Glorot, X.; and Bengio, Y.
2011. Contractive auto-encoders: Explicit invariance during
feature extraction. In ICML.
Rooshenas, A., and Lowd, D. 2014. Learning Sum-Product
Networks with Direct and Indirect Variable Interactions. In
ICML.
Vergari, A.; Peharz, R.; Di Mauro, N.; Molina, A.; Kersting,
K.; and Esposito, F. 2017. Code and supplemental material
for the present paper. github.com/arranger1044/spae.
Vergari, A.; Di Mauro, N.; and Esposito, F. 2015. Simplify-
ing, Regularizing and Strengthening Sum-Product Network
Structure Learning. In ECML-PKDD, 343–358.
Vergari, A.; Di Mauro, N.; and Esposito, F. 2016. Visualizing
and understanding sum-product networks. arXiv:1608.08266.
Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; and Man-
zagol, P.-A. 2010. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denois-
ing criterion. JMLR 11:3371–3408.
Wicker, J.; Tyukin, A.; and Kramer, S. 2016. A nonlinear
label compression and transformation method for multi-label
classification using autoencoders. In PAKDD, 328–340.
Zhao, H., and Poupart, P. 2016. A unified ap-
proach for learning the parameters of sum-product networks.
arXiv:1601.00318.
Zhao, H.; Melibari, M.; and Poupart, P. 2015. On the Rela-
tionship between Sum-Product Networks and Bayesian Net-
works. In ICML.
Zohrer, M.; Peharz, R.; and Pernkopf, F. 2015. Representa-
tion learning for single-channel source separation and band-
width extension. IEEE/ACM Transactions on Audio, Speech,
and Language Processing 23(12):2398–2409.

4170

