
MERCS:
Multi-Directional Ensembles of

Regression and Classification Trees

Elia Van Wolputte, Evgeniya Korneva, Hendrik Blockeel
KU Leuven, Department of Computer Science, 3001 Leuven, Belgium
{elia.vanwolputte, evgeniya.korneva, hendrik.blockeel}@cs.kuleuven.be

Abstract

Learning a function fX→Y that predicts Y from X is the
archetypal Machine Learning (ML) problem. Typically, both
sets of attributes (X,Y) have to be known before a model
can be trained. When this is not the case, or when functions
fX→Y are needed for varying X and Y, this may introduce
significant overhead (separate learning runs for each func-
tion). In this paper, we explore the possibility of omitting
the specification of X and Y at training time altogether, by
learning a multi-directional, or versatile model, which will
allow prediction of any Y from any X. Specifically, we in-
troduce a decision tree-based paradigm that generalizes the
well-known Random Forests approach to allow for multi-
directionality. The result of these efforts is a novel method
called MERCS: Multi-directional Ensembles of Regression
and Classification treeS. Experiments show the viability of
the approach.

Introduction

Learning predictive functions from data is one of the most
common tasks in machine learning or data mining. The
task can be described as follows: given a dataset D with
instances of the form (x, y) with x ∈ X and y ∈ Y , learn
a function f : X → Y that can be used to predict the
value of y, given an instance x. Usually, these instances are
described using a fixed set of variables: a set of variables
X = {X1, . . . , Xm} called the input variables, and an
output variable Y . If Dom maps a variable onto its domain,
then X = Dom(X) =

∏m
i=1 Dom(Xi) and Y = Dom(Y ).

This predictive learning task is easily extended to the case
where more than one target variable needs to be predicted;
instead of a nominal or scalar value y, f then predicts a
tuple y ∈ Y =

∏k
i=1 Dom(Yi) with k the dimensionality

of the output space. This is sometimes called multi-target
prediction or multivariate prediction; variants include
multi-label prediction (Madjarov et al. 2012) and structured
output prediction (Kocev et al. 2013).

In this paper, we consider a related but more general prob-
lem: given a dataset D with instances described by a set of
variables A = {A1, . . . , Am}, learn a model M such that,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for any subsets X ⊆ A and Y ⊆ A, M can be used to pre-
dict Y from X. We will call such a model a versatile model.

Definition 1 (Versatile model) A versatile model is a
model M(A), learned from a dataset D, that can be used
to predict any set of variables Y ⊆ A from any other set
X ⊆ A.

The ability to omit this specification of X and Y at train-
ing time has a wide variety of potential applications, e.g.:

• Imputation: assume new instances are given with some
attribute values missing, and the attributes missing vary
from one instance to another. The missing values need to
be filled in by the model M . This kind of missing value
imputation is closely related to tasks such as pattern com-
pletion, e.g., image completion in vision (Drori, Cohen-
Or, and Yeshurun 2003).

• Specialization: assume X and Y are constant, but only
known at prediction time. One could learn the function
fX→Y from the data at that time, but this may be slow,
and it requires that the training data are still available. If
a versatile model M was learned in advance, this can be
used to efficiently derive fX→Y from it, without needing
to re-access data.

• Anomaly detection: assume a new instance is given, with
all attributes known, and the task is to determine if this
instance is anomalous; that is, do some of the values in
the instance differ from what one would expect after in-
specting the earlier data D? (Aggarwal 2015) This can be
tested by predicting each attribute value and comparing it
to the observed value.

Furthermore, versatile models are especially useful in
the context of big or streaming data, where learning many
different, specialized, predictive models can be slow. Here,
it is particularly desirable that versatile model learners scale
well in terms of model size, training time, and prediction
time.

In this paper, we present a versatile model learner that
is primarily based on decision tree learning. Decision
trees, and ensembles of them (forests), are known to have
excellent scalability both in terms of learning and prediction
(Domingos and Hulten 2000). However, their learning
algorithms assume a fixed set of input and output variables.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

4276



ANN NN PGM MERCS
Scalable learning - + - +
Scalable inference + - - +
Interpretability - + + +
Data summarization + - + +
Nominal/numerical - + - +

Table 1: MERCS combines desirable properties not encoun-
tered simultaneously in other approaches.

The main contribution of this work is that we propose a
method, MERCS, which constructs an ensemble of trees of
which the input and output variables vary, to the extent that
the ensemble contains enough trees to allow for predictions
of any Y from any X. Additionally, the benefits of decision
trees carry over to the MERCS model, ensuring efficient
learning and fast predictions.

In the remainder of the paper, we first discuss possible
alternative approaches to versatile model learning. We next
describe the MERCS approach in detail, and present an ex-
perimental comparison with Bayesian networks, which are
among the most closely related methods in terms of versatil-
ity. The results confirm the usefulness of MERCS for learn-
ing versatile models from big data.

Related Work

While the term versatile models is not canonical nomen-
clature, the concept itself is not entirely new. Nearest
neighbor methods and neural networks can under certain
circumstances be used as versatile models, and prob-
abilistic graphical models (PGMs) constitute versatile
models in the true sense of the word, by virtue of the
joint probability distribution that they represent. Each of
these approaches has its strengths and weaknesses, but the
MERCS approach combines a set of desirable properties
that are not encountered simultaneously in any of these
competitors, as discussed below, and summarized in Table 1.

Probabilistic graphical models (PGMs) can be used to
estimate the probability distribution p(Y|X) for any set of
variables Y and X. A PGM represents a joint distribution
over all the variables. From this joint distribution, any condi-
tional or marginal distribution can be derived, and hence any
expected value, most probable value, etc. can be computed.
While PGMs are arguably the theoretically best-founded ap-
proach, they are computationally expensive.

Learning a PGM is relatively easy if the structure of the
PGM is given and only parameters need to be learned, but
learning the structure itself is challenging. It often involves a
search through possible structures, where for each candidate
structure the parameters need to be learned and its fit to the
data evaluated.

Additionally, inference with a PGM is NP-hard: its com-
plexity is exponential in the tree-width of the graph. For this
reason, approximate inference is often used; but even ap-
proximate inference is NP-hard, if guarantees about the ac-
curacy of the inference are desired (Neapolitan 2004).

Most PGMs do not naturally handle continuous variables;
such variables are usually discretized for that reason.

Among PGMs, probabilistic dependency networks
(Heckerman et al. 2000) are closest to MERCS, in the
sense that they also employ decision trees. However,
inference with them is still probabilistic, and suffers from
the computational complexity that this entails.

We should note that, while probabilistic inference is
inherently hard, in many cases it is in some sense overkill:
if the aim is simply to predict a variable with high accuracy,
without requiring the exact probability that this prediction is
correct, probabilistic inference is not needed. This motivates
research into non-probabilistic versatile models: wherever
PGMs are used, MERCS can offer a scalable alternative,
minus probabilistic information.

Nearest neighbor methods (NN) can, in principle, be
used to fill in any missing value in exactly the same way
they are used to predict class labels. In this case the model
M is the input dataset D itself. However, there are at least
two issues in the multi-directional setting. First, NN meth-
ods typically require feature weighting to attain good perfor-
mance in high-dimensional spaces. Unfortunately, it is not
clear how a set of weights could be found that works well
regardless of what variable is to be predicted. Second, pre-
diction can be slow because it requires a search through the
data D at prediction time. A straightforward solution to this
is indexing, but it is again not obvious how this translates to
a multi-directional setting, i.e.: indexing the data in such a
way that the k nearest neighbors in any subspace X of the
original space can be found efficiently.

In conclusion, the desired multi-directionality introduces
highly non-trivial bottlenecks in the nearest neighbors
paradigm, which are, to our knowledge, as yet unsolved.

Artificial neural networks (ANN) can be constructed
that have as many outputs as there are inputs, and that try
to learn the identify function. These are known as auto-
encoders. Such networks are often used for pattern comple-
tion. The classical disadvantages of neural networks also ap-
ply here, i.e.: notoriously long training times, the need for
enormous training sets, high demands on computing power
and most importantly a lack of interpretability.

MERCS

MERCS stands for Multi-directional Ensembles of
Regression and Classification treeS. Compared to tradi-
tional ensembles of decision trees, the key difference is in
the term “multi-directional”.

Let us denote a single decision tree with input attributes
X and output attributes Y as T (X,Y). Though standard
decision trees are often assumed to have a single target
attribute, variants with multiple targets have also been
developed (Blockeel, De Raedt, and Ramon 2000). The
term “decision tree” here refers to trees that can have
multiple targets.

4277



Learning decision trees is typically almost linear in
dataset size1. Furthermore, numerical and nominal at-
tributes are naturally dealt with, and decision trees are
readily interpretable.

Aggregating multiple trees in ensembles is known to
yield significant improvements in predictive performance
(Breiman 2001). Moreover, the attractive properties of sin-
gle trees are preserved (Criminisi and Shotton 2013), though
interpretability is somewhat lessened. A traditional ensem-
ble can be written as,

E(X,Y) = {Ti(X,Y)|X,Y ∈ P(A) \ ∅∧ (1)
X ∩Y = ∅}

To obtain a versatile model (def. 1), one more generaliza-
tion step is required. The sets of attributes, X,Y in Eq. 1
are still fixed, all trees use the same X and Y. It is a rather
straightforward affair to postulate a more general ensemble
that allows for multi-directionality. Consider the ensemble
M(A) in which attribute sets Xi and Yi are allowed to dif-
fer from tree to tree,

M(A) = {Ti(X
i,Yi)|Xi,Yi ∈ P(A) \ ∅∧ (2)

Xi ∩Yi = ∅}
By no longer limiting the component trees of an ensem-

ble to one specific prediction task, we get a multi-directional
model, one that allows predictions in multiple directions.
The elephant in the room here is the number of possible pre-
diction tasks,

NPreds = 3m − 2m+1 + 1 (3)

which increases exponentially with the total number of
attributes m in the attribute set A. Constructing an ensemble
that includes for each possible prediction task X → Y
one or more trees Ti(X,Y) is infeasible for all but the
most trivial cases. We need to construct ensembles that will
not contain a tree for each possible task. This leads to the
following two overarching research themes:

T1: How do we select which trees Ti(X
i,Yi) should

constitute the ensemble? This mostly boils down to the
question: how do we select Xi and Yi (the construction of
the tree itself uses a standard algorithm).

Several research questions arise: do we predict every at-
tribute individually, or do we predict sets of attributes to-
gether? The latter could be more efficient, but what is the
trade-off between efficiency and performance? Is there a
way to decide which attributes to be predicted jointly, or
does a random selection work as well? These questions will
be tackled by the selection algorithms.

T2: How do we predict with such an ensemble? When
the ensemble does not contain any trees that can be used
directly for predicting Y from X (i.e., there are no trees
Ti(X

i,Yi) such that Xi ⊆ X and Y ⊆ Yi), how can we

1Typically O(mn log n) for a dataset with n tuples and m at-
tributes.

combine the trees in the ensemble to obtain a prediction?
This issue will be tackled by the prediction algorithms.
Their purpose is to ensure the proper multi-directionality
at inference time, generalizing aggregating techniques of
traditional unidirectional ensembles.

The following two sections discuss the selection and pre-
diction algorithms proposed in this paper.

Selection Algorithms

Given a dataset D with attributes A = {A1, A2, . . . , Am},
the most naive way to build a versatile tree-based model is
to include a separate decision tree for every possible combi-
nation of the input and target variables in the ensemble. As
argued before, this does not scale (Eq. 3).

A better strategy is to learn for each separate target Ai a
single-target tree T (A \ {Ai}, {Ai}). This yields m trees.
Given a target set Y, each Ai ∈ Y is then predicted using a
separate tree in the ensemble. When a tree requires attribute
values that are not available (i.e., one of the tests in T is not
in X), it is treated as a missing value; this can be done using
standard techniques for handling missing values. In this
way, each variable is predicted using a single tree, which
may or may not rely on many missing values. By learning
an ensemble of k trees, rather than a single tree, for each
target, a multi-directional ensemble of km trees is obtained.

For large m and typical k (e.g., k = 30), the approach
above still yields a large model. The use of multi-target
trees can reduce its size. If the m attributes are partitioned
into m/p disjoint subsets of p targets, and an ensemble of
k multi-target trees is learned for each subset, the resulting
model contains km

p trees, rather than km.

Additionally, such a partitioning could be made q times.
For each individual target, the number of trees predicting it
is then kq. Using different partitions introduces additional
variety among the learned trees: when Ai is predicted
by multiple trees, the trees differ not only due to data
resampling (as in bagging) and attribute subsampling (as in
random forests), but also due to variation in Ai’s co-targets.
Thus, increasing q introduces more variety than increasing
k.

The selection strategy used in this paper is the following:
construct q random partitions of A; for each partition Pi =
{Yi,1,Yi,2, . . . ,Yi,mp

}, learn for each Yi,j k trees T (A \
Yi,j ,Yi,j). Thus, the total number of trees included in the
model is m

p kq. While m is given, the quantity kq
p can be

influenced and affects scalability. Given some value for kq
p ,

the question is what values for k, p and q are optimal.

Prediction Algorithms

Multi-directionality implies sacrificing our ability to tailor
the ensemble towards specific prediction tasks. Con-
sidering the sheer amount of those (Eq. 3), maybe not
even a single component tree is a perfect match with the

4278



required task, fX→Y. As a result, performing inference
with multi-directional ensembles becomes more intricate
than its unidirectional counterpart, mainly because the
straightforward aggregation procedures of the latter2 no
longer apply.

Difficulties arise when fX→Y “matches poorly” with the
predictive functions fXi→Yi explicitly expressed by the
component trees, T (Xi,Yi). This discrepancy can occur
in both target (Y) and descriptive (X) attributes, which we
will discuss separately.3

First, assume that all the matching issues stem ex-
clusively from the target attributes. Here, if suffices to
aggregate the predictions of all relevant models (i.e.
{T (Xi,Yi)|Yi ∩ Y �= ∅}). Second, assume that not a
single model in the ensemble has all its descriptive attributes
Xi available. The prediction algorithm revolves mainly
around handling these missing descriptive attributes Xi,
and does so by means of two strategies.

The first strategy, missing value imputation, directly
addresses this issue in the component models. The second,
model activation, determines the most appropriate models.
Both approaches can -up until a certain point- be used
simultaneously, but as one shifts the emphasis from one
method to another, the behavior of the resulting algorithm
changes qualitatively. It is this change of emphasis that
underlies the two prediction strategies implemented in the
MERCS system.

S1: Missing value Imputation (MI). This straight-
forward prediction strategy first imputes all missing de-
scriptive attributes of all relevant component models (i.e.
{T (Xi,Yi)|Yi ∩Y �= ∅}). Afterwards, the algorithm con-
tinues by aggregating all their predictions, treating all mod-
els equally.

S2: Model Activation (MA). Whereas the MI-prediction
strategy uses every relevant model, MA-prediction is more
restrictive. First, it determines the most appropriate models
for the task at hand, and only when necessary resorts to im-
putation of missing descriptive attributes. The appropriate-
ness criterion is defined as the ratio of available vs. missing
descriptive attributes of the component models:

Capp =
|Xi ∩X|
|Xi| (4)

This algorithm thus favors knowledge present in the en-
semble over ad hoc fixes (i.e. imputation) in the component
models directly. Additionally, the threshold T (Alg. 1) that
Capp has to exceed to determine appropriateness can vary,
as opposed to the MI-prediction algorithm which always

2E.g. a weighted majority vote in classification or an averaging
procedure in regression.

3This is merely an assumption for the sake of simplicity. Since
these are disjoint sets, both cases can be discussed separately with-
out loss of generality.

uses every relevant model.

Both prediction strategies can be captured in algorithm
1. The switch between both strategies is controlled by the
canModelAct method: herein lies the judgment of the in-
clusion of a certain component model. The more restrictive
this method is, the more we prioritize the selection of ap-
propriate models to rectifying deficiencies in the component
models (i.e. MA-prediction). Conversely, if this method se-
lects every model that is relevant (i.e. {T (Xi,Yi)|Yi∩Y �=
∅}), the algorithm implements the MI-prediction strategy.

Algorithm 1 Prediction algorithm
Input: descAtts, targAtts = X,Y

allModels = M
input = x
T, α = Threshold, Stepsize

Output: result = y
1: activeModels ← ∅
2: result ← ∅
3: while activeModels = ∅ do
4: for all m ∈ allModels do
5: if canModelAct(m, descAtts, targAtts, T) then
6: activeModels ← m
7: end if
8: end for
9: T ← T − α

10: end while
11: for all ma ∈ activeModels do
12: if hasMissingDesc(ma, descAtts) then
13: imputeMissingDesc(ma,x, descAtts)
14: end if
15: end for
16: for all y ∈ targAtts do
17: p=predict(y,x, activeModels)
18: result ← p
19: end for

Experiments

This section is divided in three parts. First, we study
the selection strategies. Second, we investigate the ef-
fects of the different prediction strategies and third, we
compare MERCS to an external baseline, in this case PGMs.

As argued in the related work section, we consider PGMs
as the most natural competitor to the MERCS system. We
rely on the SMILE library4 to learn the structure and param-
eters of these networks, as well as for performing inference
afterwards. This SMILE library underlies the commercial
BayesFusion system, and is considered a popular5 and
powerful tool for Bayesian networks, motivating its role as
a meaningful external baseline.

4Cf. download.bayesfusion.com.
5For an extensive list of other publications where this system is

used, cf. bayesfusion.com/publications.

4279



Dataset # instances n # attributes m

msnbc 291326 17
adult 30718 9
plants 17412 68
nltcs 16181 16
netflix 15000 100
audio 15000 100
nursery 12960 9
accidents 12758 110
pumsb star 12262 163
jester 9000 100
dna 1600 180
voting 1214 1358

Table 2: Summary of datasets used in this study.

Next to typical evaluation criteria such as speed and
predictive performance, we will also gauge MERCS’
versatility. To do so, we evaluate MERCS on a variety of
prediction tasks (fXj→Yj ), to which from this point on, we
will refer to as queries.

Evidently, this makes the query-generating mechanism an
important part of our experiments. We generate queries with
a varying number of known attributes, as follows. Initially,
Xj contains all attributes except Yj. We then consecutively
drop 9% of the attributes at random, leading to an Xj

that contains 100%, 91%, . . . , 9% of the attributes (i.e.,
11 different versions). Note that these queries correspond
to prediction tasks with increasing amounts of missing
values. We only consider single-target queries (|Yj| = 1),
and repeat this procedure on every dataset for 50 starting
queries. Eventually, this yields 550 queries per dataset.6
With these queries we assess both speed and macro F1-score
(averaged over all queries), as well as gain some insight
regarding the actual versatility of our model.

The datasets used in the following experiments are sum-
marized in Table 2. All datasets previously occurred in
studies on density estimation7 (also inherently a multi-
directional setting), except for nursery and adult,
which were lifted from the UCI8 repository.

Selection: Internal Evaluation

In this part of the experiments, we varied the parameter p of
the selection strategy in order to investigate how the usage
of multi-target trees affects model performance, as well as
its impact upon induction and inference times. Specifically,
for each dataset in Table 2, a MERCS model composed
of single target trees (p = 1) is learned. These are then
compared to their counterparts composed of multi-target
decision trees (p ∈ {2, 4, 6, 8, 10}).

6In adult & nursery, only 400 queries are generated. This
is due to the limited number of attributes in those datasets.

7github.com/UCLA-StarAI/Density-Estimation
-Datasets

8archive.ics.uci.edu/ml

Figure 1: Average model induction time. By relying on
multi-target trees (p > 1), one can significantly reduce the
induction time.

As can be seen from Fig. 1, the multi-target setting makes
it possible to significantly reduce model learning time. The
gain is especially high for the datasets with a large number
of attributes and/or instances (e.g., voting and msnbc).
At the same time, predictive performance of an ensemble
of multi-target trees model often stays approximately at the
same level as in the single-target setting (Fig. 2).

This observation offers an interesting direction for future
work. It has been shown (Kocev et al. 2013) that a multi-
target tree can be more accurate than a set of single-target
trees, since it exploits the information related attributes carry
about each other. In the current version of MERCS, target
attributes are still grouped randomly. However, if attributes
interdependencies are taken into account while constructing
multi-target trees, there may be a chance to increase the pre-
dictive performance of the resulting ensemble while reduc-
ing the learning time. To that end, a more sophisticated se-
lection strategy is needed.

Prediction: Internal Evaluation

The MA-prediction strategy assumes that using only the
most appropriate trees in the ensemble might be preferable
to relying exclusively on imputation. But our default
selection strategy is such that each attribute appears in every
component tree, either as target or as descriptive attribute.
Therefore we do not expect significant advantages from
using the MA-prediction strategy; all models will be more
or less equally appropriate anyway.

To experimentally discern the differences between
our two approaches to prediction, we introduce an extra
variation of the selection strategy, i.e. random selection. Its
behavior is exactly what the name suggests: it builds random

4280



Figure 2: Average macro F1-score per query. Increasing the
number of targets typically has a limited impact on the pre-
dictive performance.

decision trees, while ensuring that all attributes do appear
as targets in the process. The critical point is that now,
component trees do not have all the non-target attributes as
descriptive attributes. This means more variation in Capp,
which should lead to MI-prediction and MA-prediction
behaving differently.

Figure 3 confirms this hypothesis; the MA-prediction
strategy is preferable when the MERCS ensemble consists
of trees generated by the random selection strategy. MA-
prediction is thus beneficial for those cases when e.g. time
or memory constraints preclude a MERCS model composed
of decision trees containing all attributes, otherwise MI-
prediction appears equally good.

External Comparison

In the end, what matters most is how MERCS’ performance
compares to other approaches.9 In this study, we opted for
PGMs to serve as an external baseline. Just as in the internal
evaluations, we will focus on the induction and inference
times on the one hand, and predictive performance, mea-
sured in macro F1-score on the other hand. The results are
summarized in figures 4, 5 and 6.

In terms of speed, the most striking result is undoubtedly
to be found in the inference times (Fig. 4). Here, MERCS
outperforms the PGMs in the BayesFusion implemen-
tation. This is to some extent unsurprising: inference with
PGMs is well-known to be hard. Nevertheless, the sheer
scale of the improvement, often approaching 3 orders of

9In doing so, both for BayesFusion and MERCS we
rely on default settings as much as possible. Concretely, for
BayesFusion this means greedy thick thinning for structure
learning and the clustering algorithm for inference. For MERCS,
we rely on the default SciKit-Learn implementation of decision
trees.

Figure 3: Average macro F1-score per query compared
between prediction strategies. If the model was built us-
ing the random selection strategy (indicated in blue), MA-
prediction is typically the better choice.

Figure 4: Average inference time per query for PGMs and
MERCS. MERCS outperforms PGMs by several orders of
magnitude in 8 cases.

magnitude, is notable. De facto this means that in cases
where using PGMs is impossible due to time constraints,
MERCS may offer a viable alternative.

In induction times, both systems are much more at par
(Fig. 5), except when many attributes (e.g. the voting
dataset) come into play: there, MERCS is clearly faster.
Moreover, the induction times of the MERCS system can
further be reduced by using multi-target trees.

Finally, when it comes to predictive performance (mea-
sured in macro F1-score), results are ambiguous (Fig. 6).
MERCS loses from the BayesFusion system in 7 cases
and outperforms its competitor in 5. We note that PGMs are

4281



Figure 5: Average induction times for PGMs and MERCS.
Both approaches appear equivalent, however there is an in-
dication that MERCS scales better when many attributes are
involved, e.g. the voting dataset.

(arguably) theoretically the best-founded approach and con-
sistently outperforming such a theoretically optimal com-
petitor is not a realistic expectation.

Conclusions

In this paper we introduced MERCS, a novel class of
tree-based models that allow for multi-directional reason-
ing. The main strength of MERCS approach is its ability
to unify a set of attractive characteristics (i.e. scalability,
interpretability, data summarization and easy handling of
both nominal and numerical data) that are not encountered
simultaneously in its competitors.

Experimental findings show MERCS’ high potential.
Combining unidirectional ensembles of decision trees by
means of the selection strategy, one can learn a multi-
directional model of data at least as fast as a PGM.
Employing multi-target trees, especially in large problems,
can significantly speed up the learning stage, while having
a limited impact on the quality of the obtained predictions.
In terms of predictive accuracy, neither MERCS nor PGMs
managed to manifest itself as clearly superior. However,
both methods differ strongly with respect to the speed
with which predictions are made: MERCS is often several
orders of magnitude faster at inference time (Fig. 4). This
entails that MERCS is still applicable when PGM-based
approaches are impossible to use in practice.

Our experimental results are particularly promising in
light of the fact that, for practical reasons, we made our
comparison in the application domain where PGMs are
expected to excel (i.e.: moderately-sized datasets with only
nominal attributes), and we compared a relatively basic
implementation of MERCS to a state-of-the-art implemen-
tation of PGMs.

Figure 6: Average macro F1-score per query for PGMs and
MERCS. Result are ambiguous, showing neither of both ap-
proaches to be clearly superior.

There are many ways in which MERCS can be improved
or extended. The current implementation is based on SciKit-
Learn. A special-purpose implementation of MERCS might
be faster, and would make the efficiency comparison with
BayesFusion (which is already in MERCS’ favor) more fair.
Other possible improvements include better selection or pre-
diction algorithms, and an incremental version of MERCS
(allowing for any-time prediction).

Acknowledgments

Research supported by ERC (ERC-ADG-2015, project
694980, SYNTH), Research Foundation - Flanders (project
G079416N, MERCS), and KU Leuven (GOA/13/010).

References

Aggarwal, C. C. 2015. Outlier analysis. In Data mining,
237–263. Springer.
Blockeel, H.; De Raedt, L.; and Ramon, J. 2000. Top-down
induction of clustering trees. arXiv preprint cs/0011032.
Breiman, L. 2001. Random forests. Machine learning
45(1):5–32.
Criminisi, A., and Shotton, J., eds. 2013. Decision Forests
for Computer Vision and Medical Image Analysis. London:
Springer London. DOI: 10.1007/978-1-4471-4929-3.
Domingos, P. M., and Hulten, G. 2000. Mining high-speed
data streams. In Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data
mining, Boston, MA, USA, August 20-23, 2000, 71–80.
Drori, I.; Cohen-Or, D.; and Yeshurun, H. 2003. Fragment-
based image completion. In ACM Transactions on graphics
(TOG), volume 22, 303–312. ACM.
Heckerman, D.; Chickering, D. M.; Meek, C.; Rounthwaite,
R.; and Kadie, C. 2000. Dependency networks for infer-

4282



ence, collaborative filtering, and data visualization. Journal
of Machine Learning Research 1(Oct):49–75.
Kocev, D.; Vens, C.; Struyf, J.; and Deroski, S. 2013. Tree
ensembles for predicting structured outputs. Pattern Recog-
nition 46(3):817–833.
Madjarov, G.; Kocev, D.; Gjorgjevikj, D.; and Džeroski, S.
2012. An extensive experimental comparison of methods
for multi-label learning. Pattern Recognition 45(9):3084 –
3104.
Neapolitan, R. E. 2004. Learning bayesian networks, vol-
ume 38. Pearson Prentice Hall Upper Saddle River, NJ.

4283


