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Abstract

Maximum margin clustering (MMC), which borrows the
large margin heuristic from support vector machine (SVM),
has achieved more accurate results than traditional clustering
methods. The intuition is that, for a good clustering, when
labels are assigned to different clusters, SVM can achieve a
large minimum margin on this data. Recent studies, however,
disclosed that maximizing the minimum margin does not nec-
essarily lead to better performance, and instead, it is crucial
to optimize the margin distribution. In this paper, we pro-
pose a novel approach ODMC (Optimal margin Distribution
Machine for Clustering), which tries to cluster the data and
achieve optimal margin distribution simultaneously. Specif-
ically, we characterize the margin distribution by the first-
and second-order statistics, i.e., the margin mean and vari-
ance, and extend a stochastic mirror descent method to solve
the resultant minimax problem. Moreover, we prove theoreti-
cally that ODMC has the same convergence rate with state-of-
the-art cutting plane based algorithms but involves much less
computation cost per iteration, so our method is much more
scalable than existing approaches. Extensive experiments on
UCI data sets show that ODMC is significantly better than
compared methods, which verifies the superiority of optimal
margin distribution learning.

Introduction

Clustering is an important research area in machine learning,
data mining and pattern recognition that aims at grouping
data points which are similar. It arises in a wide range of
domains including information retrieval, computer version,
bioinformatics, etc., and various clustering algorithms have
been proposed over past decades (Jain and Dubes 1988; Xu
and Wunsch 2005; Jain 2010).

A recently proposed method for clustering, referred to as
maximum margin clustering (MMC), is based on the large
margin heuristic of support vector machine (SVM) (Cortes
and Vapnik 1995; Vapnik 1995). The intuition is that, for a
good clustering, when labels are assigned to different clus-
ters, SVM can achieve a large minimum margin on this
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data. Since the resultant minimax problem involves label-
ing each instance from the set {+1,−1}, it’s no longer a
convex optimization problem but a mixed-integer program-
ming which is much more difficult to handle. From then
on, a lot of efforts have been devoted to solve this prob-
lem, which can be roughly classified into two groups. The
first group applies various convex relaxation techniques. Xu
et al. (2005) first relaxed it as a convex semi-definite pro-
gramming (SDP), in which a positive semi-definite ma-
trix with linear constraints is used to approximate the ma-
trix of label outer product. Soon after, Valizadegan and
Jin (2006) introduced a new formulation, whose number
of variables is significantly reduced, although it’s still a
SDP problem. Finally, Li et al. (2009; 2013) proposed a
tighter minimax relaxation than SDP formulation, which
can be solved by iteratively generating the most violated la-
bels and then combining them via multiple kernel learning.
The second group directly optimizes the original problem
via variants of non-convex optimization. Examples include
alternative optimization (Zhang, Tsang, and Kwok 2007;
2009), in which clustering is preformed by sequentially find-
ing labels and optimizing a support vector regression (SVR),
and constrained convex-concave procedure (CCCP) (Zhao,
Wang, and Zhang 2008; Wang, Zhao, and Zhang 2010), in
which the non-convex objective function or constraints are
expressed as the a difference between two convex functions,
and the latter is further replaced by a linear approximation
so that the whole is convex. Moreover, several researchers
also tried to extend MMC to more general learning settings.
For example, Zhou et al. (2013) assumed that the data has
latent variables and developed the LMMC framework. Niu
et al. (2013) showed an alternative principle to MMC, called
maximum volume clustering (MVC), is more theoretically
advantageous. The incremental version of MMC is also pro-
posed (Vijaya Saradhi and Charly Abraham 2016).

Aforementioned MMC algorithms are all based on the
large margin principle, i.e., trying to maximize the mini-
mum margin of training instances. However, recent stud-
ies on margin theory (Gao and Zhou 2013) disclosed that
maximizing the minimum margin does not necessarily lead
to better performance, and instead, it is crucial to optimize
the margin distribution. Inspired by this recognition, Zhang
and Zhou (2014; 2016; 2017) proposed optimal margin dis-
tribution machine (ODM) which can achieve better gen-
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eralization performance than large margin based methods.
Later, Zhou and Zhou (2016) extends the idea to an approach
which is able to exploit unlabeled data and handle unequal
misclassification cost. The success of optimal margin distri-
bution learning suggests that there may still exist large space
to further enhance for MMC.

In this paper, we propose a novel approach ODMC (Op-
timal margin Distribution Machine for Clustering), which
tries to cluster the data and achieve optimal margin distribu-
tion simultaneously. Specifically, we characterize the margin
distribution by the first- and second-order statistics, i.e., the
margin mean and variance, and then apply the minimax con-
vex relaxation proposed in (Li et al. 2009), which is proven
to be tighter than SDP relaxations, to get a convex reformu-
lation. For the optimization of the resultant minimax prob-
lem, we propose a stochastic mirror descent method which
can converge quickly in practice. Moreover, we prove the-
oretically that ODMC has the same convergence rate with
state-of-the-art cutting plane based algorithms but involves
much less computation cost per iteration, so our method is
much more scalable than existing approaches. Extensive ex-
periments on UCI data sets show that ODMC is significantly
better than compared methods, which verifies the superiority
of optimal margin distribution learning.

The rest of this paper is organized as follows. We first
introduce some preliminaries and then present the ODMC
method. Next we show the experimental studies. Finally we
conclude this paper with future work.

Preliminaries

We start with a simpler scenario of supervised learning. De-
note X as the instance space and Y = {+1,−1} as the label
set. Let D be an unknown (underlying) distribution over X×
Y . A training set S = {(x1, y1), (x2, y2), . . . , (xm, ym)} ∈
(X × Y)m is drawn identically and independently (i.i.d.)
according to D. Let φ : X �→ H be a feature mapping as-
sociated to some positive definite kernel κ. The hypothesis
is defined based on the linear model h(x) = w�φ(x) and
the predicted label of instance x is the sign of h(x), then the
decision function naturally leads to the definition of margin
for a labeled instance, i.e., γ(x, y) = yw�φ(x) (Cristianini
and Shawe-Taylor 2000). Thus h misclassifies (x, y) if and
only if it produces a negative margin. Given a hypothesis set
H of functions mapping X to Y and the labeled training set
S , our goal is to learn a function h ∈ H such that the gen-
eralization error R(h) = E(x,y)∼D[1sign(h(x)) �=y] is small,
where 1(·) is the indicator function that returns 1 when the
argument holds, and 0 otherwise.

Optimal margin distribution machine

It is well known that SVM employs the large margin princi-
ple to select h and tries to maximize the minimum margin of
training data, i.e., the smallest distance from the instances to
the decision boundary. As a result, the solution of SVM just
consists of a small amount of data, that is support vectors
(SV), and the rest (non-SVs) are totally ignored, which may
be misleading in some situations (Zhou 2014).

A more robust strategy is to consider the whole data, i.e.,

optimizing the margin distribution. To characterize the dis-
tribution, the two most straightforward statistics are the first-
and second-order statistics, that is, the margin mean and
variance. Moreover, a recent study (Gao and Zhou 2013) on
margin theory proved that maximizing the margin mean and
minimizing the margin variance simultaneously can yield a
tighter generalization bound, so we arrive at the following
formulation,

min
w,γ̄,ξi,εi

1

2
‖w‖2

H
− ηγ̄ +

λ

m

m∑
i=1

(ξ2i + ε2i ),

s.t. γ(xi, yi) ≥ γ̄ − ξi,

γ(xi, yi) ≤ γ̄ + εi, ∀i,
where γ̄ is the margin mean, η and λ are trading-off param-
eters, ξi and εi are the deviation of γ(xi, yi) to the margin
mean. It’s evident that

∑m
i=1(ξ

2
i + ε2i )/m is exactly the mar-

gin variance.
First, by scaling w which doesn’t affect the final classifi-

cation results, the margin mean can be fixed as 1, then the de-
viation of γ(xi, yi) to the margin mean is |yiw�φ(xi)− 1|.
Secondly, the hyperplane yiw

�φ(xi) = 1 divides the fea-
ture space into two parts and for each instance, no matter
which part it lies in, it will suffer a loss which is quadratic
with the deviation. So it is more reasonable to set differ-
ent weights for the two kinds of deviations because the in-
stances lie in {x | yw�φ(x) < 1} are much easier to be
misclassified than the other. Thirdly, according to represen-
ter theorem (Schölkopf and Smola 2001), the optimal so-
lution is spanned only by SVs. To achieve a sparse solu-
tion, we introduce a θ-insensitive loss like SVR, i.e., the in-
stances whose deviation is smaller than θ are tolerated and
only those whose deviation is larger than θ will suffer a loss.
Finally, we obtain the formulation of ODM,

min
w,ξi,εi

1

2
‖w‖2

H
+

λ

m

m∑
i=1

ξ2i + νε2i
(1− θ)2

,

s.t. yiw
�φ(xi) ≥ 1− θ − ξi,

yiw
�φ(xi) ≤ 1 + θ + εi, ∀i.

(1)

where ν is a parameter for trading-off different kinds of de-
viations, θ is a parameter for controlling the sparsity of the
solution, and (1− θ)2 in the denominator is to scale the sec-
ond term to be a surrogate loss for 0-1 loss.

Optimal margin distribution clustering

In clustering setting, labels are no longer available, and so
also need to be optimized. Let ŷ = [ŷ1, . . . , ŷm] ∈ {±1}m
denotes a vector of the unknown labels. The basic idea of
ODMC is to minimize the objective function in Eq. (1) w.r.t.
both the labeling ŷ and decision function parameter w, ξi,
εi. Hence, Eq. (1) is extended to

min
ŷ∈B

min
w,ξi,εi

1

2
‖w‖2

H
+

λ

m

m∑
i=1

ξ2i + νε2i
(1− θ)2

,

s.t. ŷiw
�φ(xi) ≥ 1− θ − ξi,

ŷiw
�φ(xi) ≤ 1 + θ + εi, ∀i,

(2)
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where B is a set of candidate label assignments obtained
from some domain knowledge. For example, when the pos-
itive and negative instances are known to be approximately
balanced, we can set B = {ŷ | −β ≤ e�ŷ ≤ β} where
β is a small constant controlling the class imbalance. When
a set of “must-link” constraints M which requires two in-
stances should be associated with the same cluster, or a set
of “cannot-link” constraints C which requires two instances
should be associated with different clusters, are provided,
we can set B = {ŷ | ŷi = ŷj , ŷj 
= ŷk, ∀(xi,xj) ∈
M, ∀(xj ,xk) ∈ C}.

To avoid the curse of dimensionality, the inner minimiza-
tion problem of Eq. (2) is usually cast in the dual form. De-
note X as the data matrix whose i-th column is φ(xi), i.e.,
X = [φ(x1), . . . , φ(xm)], and introduce the dual variables
α � 0, the Lagrangian of Eq. (2) leads to

min
ŷ∈B

max
α�0

−1

2
α�

[
K � ŷŷ� −K � ŷŷ�

−K � ŷŷ� K � ŷŷ�

]
α

− m(1− θ)2

4λ
α�

[
I 0
0 1

ν I

]
α−

[
(θ − 1)e
(θ + 1)e

]�
α,

(3)

where K = X�X is the kernel matrix, � denotes the
element-wise product, and e stands for the all-one vec-
tor. Note that the objective function is a negative definite
quadratic form whose stationary point can’t locate at the in-
finity, so we can replace the constraint {α | α � 0} by a
bounded box A = {α | 0  α  τe}, where the aux-
iliary parameter τ is introduced for the sake of mathemati-
cal soundness. For a sufficiently large τ , the new problem is
equal to the original problem.

To overcome the difficulty of this mixed-integer program-
ming, many relaxations have been proposed, among which
the minimax convex relaxation proposed in (Li et al. 2009;
2013) is proven to be the tightest. So in this paper, we also
employ this method to deal with the mixed-integer problem,
i.e., interchanging the order of maxα∈A and minŷ∈B, then
we can obtain

max
α∈A

min
ŷ∈B

G(α, ŷ),

where G(α, ŷ) is the objective function of Eq. (3), and this
can be further transformed into

max
α∈A

min
δ

(−δ) s.t. G(α, ŷk) ≥ δ, ∀ŷk ∈ B. (4)

For the inner optimization in Eq. (4), introduce the dual vari-
ables μ� = [μ1, . . . , μ|B|] � 0, the Lagrangian leads to

max
μ�0

min
δ

{−δ −
∑

k:ŷk∈B
μk(G(α, ŷk)− δ)},

By setting the partial derivative of δ to zero, we can obtain∑
k:ŷk∈B μk = 1 and the dual turns into

max
μ∈M

{−
∑

k:ŷk∈B
μkG(α, ŷk)}, (5)

where M = {μ ∈ R
|B|
+ | e�μ = 1} is the simplex in R

|B|.
By substituting Eq. (5) into Eq. (4) and denoting ϕ(μ,α) =∑

k:ŷk∈B μkG(α, ŷk), Eq. (4) can be rewritten as

max
α∈A

min
μ∈M

ϕ(μ,α).

Note that ϕ(μ,α) is a convex combination of negative def-
inite quadratic forms, so it’s convex in μ and concave in
α. According to Sion’s minimax theorem (Sion 1958), there
exists a saddle point (μ̂, α̂) ∈ M×A such that

min
μ∈M

max
α∈A

ϕ(μ,α) ≤ max
α∈A

ϕ(μ̂,α) = ϕ(μ̂, α̂)

= min
μ∈M

ϕ(μ, α̂) ≤ max
α∈A

min
μ∈M

ϕ(μ,α),
(6)

By combining with the following minimax inequality (Kim
and Boyd 2008),

max
α∈A

min
μ∈M

ϕ(μ,α) ≤ min
μ∈M

max
α∈A

ϕ(μ,α),

we can realize that all the equalities hold in Eq. (6) and arrive
at the final formulation of ODMC:

min
μ∈M

max
α∈A

ϕ(μ,α). (7)

Optimization

In this section, we commence with a simple introduction to
minimax problem, followed by a stochastic mirror descent
method to find the saddle point. Finally we give a conver-
gence rate analysis.

Minimax problem

Since ϕ(·,α) is convex and ϕ(μ, ·) is concave, according to
the convex inequality, for any pair (μ̄, ᾱ) ∈ M×A we have

ϕ(μ̄, ᾱ)− ϕ(μ, ᾱ) ≤ ∂μϕ(μ̄, ᾱ)�(μ̄− μ), ∀μ ∈ M,

ϕ(μ̄,α)− ϕ(μ̄, ᾱ) ≤ −∂αϕ(μ̄, ᾱ)�(ᾱ−α), ∀α ∈ A.

By adding the above two inequalities together we have

ϕ(μ̄,α)− ϕ(μ, ᾱ) ≤ g(w̄)�(w̄ −w), ∀μ,α, (8)

where w = (μ,α), w̄ = (μ̄, ᾱ) ∈ M × A and g(w̄) =
(∂μϕ(w̄),−∂αϕ(w̄)). Note that Eq. (8) holds for any μ and
α, in particular we have

max
α∈A

ϕ(μ̄,α)− min
μ∈M

ϕ(μ, ᾱ) ≤ g(w̄)�(w̄ −w). (9)

The left hand side is referred to as the “duality gap”, which
can be decomposed into two parts, i.e.,

max
α∈A

ϕ(μ̄,α)− min
μ∈M

ϕ(μ, ᾱ)

= max
α∈A

ϕ(μ̄,α)− ϕ(μ̂, α̂) + ϕ(μ̂, α̂)− min
μ∈M

ϕ(μ, ᾱ)

= max
α∈A

ϕ(μ̄,α)− min
μ∈M

max
α∈A

ϕ(μ,α)︸ ︷︷ ︸
primal gap

+max
α∈A

min
μ∈M

ϕ(μ,α)− min
μ∈M

ϕ(μ, ᾱ)︸ ︷︷ ︸
dual gap

.

As can be seen, the primal gap and the dual gap are both non-
negative and the more closer to the saddle point, the smaller
both gaps. So duality gap can be viewed as a measure to
evaluate the closeness of current point (μ̄, ᾱ) to the saddle
point (μ̂, α̂).
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Stochastic mirror descent

For ODMC, the feasible set of μ and α are simplex and
bounded box, respectively, so the most suitable mirror maps
for the two domains are ΦM(μ) =

∑
k μk logμk and

ΦA(α) = ‖α‖22/2. Introduce the joint map Φ(w) =
aΦM(μ) + bΦA(α), where a and b are parameters to be
specified later. It can be shown that ∇ΦM(μ) = logμ+ e,
∇ΦA(α) = α and ∇Φ(w) = (a logμ+ ae, bα).

At the t-th iteration, we first map wt = (μt,αt) into the
dual space ∇Φ(wt) = (a logμt + ae, bαt), followed by
one step of stochastic gradient descent in the dual space,

∇Φ(w̄t+1) = ∇Φ(wt)− ηg̃(wt)

= (a logμt + ae− η∂μϕ̃(μt,αt), bαt + η∂αϕ̃(μt,αt))

where ∂μϕ̃, ∂αϕ̃ and g̃ are the noisy unbiased estimation of
∂μϕ, ∂αϕ and g, respectively, and η is the step size. Next,
we map ∇Φ(w̄t+1) back to the primal space, i.e., to find
w̄t+1 = (ut+1,vt+1) such that

a logut+1 + ae = a logμt + ae− η∂μϕ̃(μt,αt),

bvt+1 = bαt + η∂αϕ̃(μt,αt)),

which implies that ut+1 = μt exp(−η∂μϕ̃(μt,αt)/a)
and vt+1 = αt + η∂αϕ̃(μt,αt)/b. Finally, we project
(ut+1,vt+1) back to M×A based on Kullback-Leibler di-
vergence and Euclidean distance, respectively, i.e., we solve
the following two optimization problems:

μ = argmin
μ∈M

μ� log
μ

ut+1
, α = argmin

α∈A
‖α− vt+1‖22,

Fortunately, both problems have a closed-form solution. The
latter is to project vt+1 onto the bounded box, so we have
αt+1 = max{min{vt+1, τe},0}. For the former, the La-
grangian function leads to μ� log(μ/ut+1) + ζ(e�μ− 1),
where ζ is the dual variable. By setting the partial deriva-
tive of μ to zero, i.e., log(μ/ut+1) + e + ζe = 0, we
have μt+1 = ut+1 exp(−1 − ζ). Since μt+1 belongs to
a simplex, hence 1 = e�μt+1 = e�ut+1 exp(−1 − ζ) =
‖ut+1‖1 exp(−1 − ζ), which implies that exp(−1 − ζ) =
1/‖ut+1‖1, thus we have μt+1 = ut+1/‖ut+1‖1. Figure 1
illustrates one iteration of this procedure.

The remaining question is how to find the stochastic gra-
dient ∂μϕ̃(μt,αt) and ∂αϕ̃(μt,αt). Note that ϕ(μ,α) =∑

k:ŷk∈B μkG(α, ŷk), so we have

∂μϕ(μt,αt) = [G(αt, ŷ1), . . . , G(αt, ŷ|B|)],

∂αϕ(μt,αt) = [∂αG(αt, ŷ1), . . . , ∂αG(αt, ŷ|B|)]μt.

By uniformly choosing an index it from {1, 2, . . . , |B|}, we
can obtain ∂μϕ̃(μt,αt, it) = [0, . . . , |B|G(αt, ŷit) . . . , 0].
On the other hand, by randomly sampling an index jt ac-
cording to the distribution μt on {1, 2, . . . , |B|}, we can ob-
tain ∂αϕ̃(μt,αt, jt) = ∂αG(αt, ŷjt). It can be shown that

E[∂μϕ̃(μt,αt, it) | μt,αt] = ∂μϕ(μt,αt),

E[∂αϕ̃(μt,αt, jt) | μt,αt] = ∂αϕ(μt,αt),

and g̃(wt) = (∂μϕ̃(μt,αt, it),−∂αϕ̃(μt,αt, jt)) is an un-
biased estimation of g(wt).

Algorithm 1 summarizes the pseudo-code of ODMC.

primal spacedual space

M×A
wt

∇Φ∇Φ(wt)

∇Φ(w̄t+1)

−ηg̃(wt)

w̄t+1(∇Φ)−1

wt+1

projection

Figure 1: Illustration of one iteration of stochastic mirror de-
scent.

Algorithm 1 Stochastic mirror descent for ODMC
1: Input: data set X , maximum iteration number T , ODM

parameters λ, ν, θ, upper bound τ , stopping criteria ι.
2: Initialize μ0 ← [1/|B|, . . . , 1/|B|], α0 ← 0, t ← 0.
3: while t < T do
4: Uniformly select it from {1, 2, . . . , |B|}.
5: ∂μϕ̃(μt,αt, it) ← [0, . . . , |B|G(αt, ŷit) . . . , 0].
6: Select jt from {1, 2, . . . , |B|} according to μt.
7: ∂αϕ̃(μt,αt, jt) ← ∂αG(αt, ŷjt).
8: ut+1 ← μt exp(−η∂μϕ̃(μt,αt, it)/a).
9: vt+1 ← αt + η∂αϕ̃(μt,αt, jt)/b.

10: μt+1 ← ut+1/‖ut+1‖1.
11: αt+1 ← max{min{vt+1, τe},0}.
12: t ← t+ 1.
13: if duality gap is smaller than ι then
14: Break.
15: end if
16: end while
17: Output: μ, α.

Recovering the cluster assignment

Once the saddle point (μ̂, α̂) is found, we can obtain the
cluster assignment according to sign(

∑
k:ŷk∈B μ�

kŷk).

Convergence rate

For the cutting-plane based algorithms, it has been proven
that the time complexity is O(1/ε2) (Zhao, Wang, and
Zhang 2008), i.e., to get a solution with ε accuracy, the al-
gorithm needs run O(1/ε2) iterations. In this section, we
show that ODMC has the same convergence rate, but note
that in each iteration, cutting-plane based algorithms need
to find the most violated label and then train a SVM model,
whereas, ODMC just preforms a random sampling and a
step of stochastic gradient descent, followed by a projec-
tion with closed-form solutions, so our method is much more
scalable.
Theorem 1. Assume |G(α, ŷk)| and ‖∂αG(α, ŷk)‖2 are
upper bounded by L1 and L2 respectively for any ŷk ∈ B
and α ∈ A. Let a = |B|L1/

√
log |B|, b = √

2L2/
√
mτ and
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η =
√

2/T , the expectation of duality gap at the average
point (

∑T
t=1 μt/T,

∑T
t=1 αt/T ) satisfies

E

[
max
α∈A

ϕ

(
1

T

T∑
t=1

μt,α

)
− min

μ∈M
ϕ

(
μ,

1

T

T∑
t=1

αt

)]
≤ (|B|L1

√
2 log |B|+ L2τ

√
m)/

√
T .

Proof. Similar to the analysis of vanilla gradient descent,
we can prove the duality gap at the average point is upper
bounded by the sum of inner product between the gradient
g̃(wt) and the gap wt −w,

E

[
max
α∈A

ϕ

(
1

T

T∑
t=1

μt,α

)
− min

μ∈M
ϕ

(
μ,

1

T

T∑
t=1

αt

)]

≤ E

[
max
α∈A

1

T

T∑
t=1

ϕ(μt,α)− min
μ∈M

1

T

T∑
t=1

ϕ(μ,αt)

]

≤ E

[
1

T

T∑
t=1

(
max
α∈A

ϕ(μt,α)− min
μ∈M

ϕ(μ,αt)

)]

≤ 1

T

T∑
t=1

E[g(wt)
�(wt −w)]

=
1

T

T∑
t=1

E[E[g̃(wt)
�(wt −w) | wt]]

=
1

T

T∑
t=1

E[g̃(wt)
�(wt −w)],

where the first inequality holds since ϕ(μ,α) is convex in
μ and concave in α, the second inequality is owing to the
sub-additivity of max, the third inequality is Eq. (9), and the
final equality is according to the law of total expectation.

Next we bound each term in the summation separately.
With the update rule of stochastic mirror descent, we have

g̃(wt)
�(wt −w)

=
1

η
(∇Φ(wt)−∇Φ(w̄t+1))

�(wt −w)

=
1

η
(ΔΦ(w,wt) + ΔΦ(wt, w̄t+1)−ΔΦ(w, w̄t+1))

≤ 1

η
(ΔΦ(w,wt) + ΔΦ(wt, w̄t+1)−ΔΦ(w,wt+1)

−ΔΦ(wt+1, w̄t+1)),

where ΔΦ(w,wt) = Φ(w)−Φ(wt)−∇Φ(wt)
�(w−wt)

is the Bregman divergence. Since wt+1 is the projection of
w̄t+1 onto the convex set M×A, the final inequality holds
true for any w ∈ M × A according to the generalized tri-
angle inequality. Note that the first and third term will lead
to a telescopic sum when summing over t = 0 to t = T , it
remains to bound the other two terms,

ΔΦ(wt, w̄t+1)−ΔΦ(wt+1, w̄t+1)

= Φ(wt)− Φ(wt+1)−∇Φ(w̄t+1)
�(wt −wt+1)

≤ ηg̃(wt)
�(wt −wt+1)− 1

2
‖wt −wt+1‖.2

≤ η‖g̃(wt)‖∗‖wt −wt+1‖.− 1

2
‖wt −wt+1‖.2

= −1

2
(‖wt −wt+1‖.− η‖g̃(wt)‖∗)2 + 1

2
(η‖g̃(wt)‖∗)2

≤ η2‖g̃(wt)‖2∗
2

where ‖w‖.2 = a‖μ‖21 + b‖α‖22 and ‖ · ‖2∗ = ‖μ‖2∞/a +
‖α‖22/b is the dual norm. The first inequality holds since
Φ(·) is 1-strongly convex function w.r.t. the norm ‖ · ‖., and
the second inequality is according to Hölder’s inequality.

Note that |G(α, ŷk)| ≤ L1 and ‖∂αG(α, ŷk)‖2 ≤ L2,
hence we have

‖g̃(wt)‖2∗ =
1

a
‖∂μϕ̃(wt, it)‖2∞ +

1

b
‖∂αϕ̃(wt, jt)‖22

≤ 1

a
|B|2L2

1 +
1

b
L2
2 = |B|L1

√
log |B|+ L2τ

√
m/2.

Further note that

ΔΦ(w,w1) = Φ(w)− Φ(w1)−∇Φ(w1)
�(w −w1)

= aμ log(μ/μ1) + b‖μ− μ1‖22/2 ≤ a log |B|+ bmτ2/2

= |B|L1

√
log |B|+ L2τ

√
m/2.

Combine together and we have,

1

T

T∑
t=1

E[g̃(wt)
�(wt −w)]

≤ 1

T

T∑
t=1

η‖g̃(wt)‖2∗
2

+
ΔΦ(w,w1)−ΔΦ(w,wT+1)

ηT

= (|B|L1

√
log |B|+ L2τ

√
m/2)

(
η

2
+

1

ηT

)
.

By substituting η =
√

2/T we can conclude the proof.

This theorem shows that the duality gap decays as the rate
O(1/

√
T ). By setting O(1/

√
T ) = ε we can obtain the time

complexity T = O(1/ε2), which is the same with cutting-
plane based methods.

Empirical Study

In this section, we empirically evaluate the proposed method
on 24 UCI data sets. Table 1 summarizes the statistics of
these data sets. As can be seen, the number of instance is
ranged from 62 to 3175, and the dimensionality is ranged
from 2 to 4702, covering a broad range of properties.

Evaluation criteria

We set the number of clusters equal to the true number of
classes for all the methods. To evaluate their performance,
we compare the generated clusters with the true classes by
computing the following two performance measures.
Clustering Accuracy (Acc) (Xu et al. 2005). First remove

the labels for all instances, and then predict the clusters
via performing clustering methods, finally measure the
classification accuracy according to true label.
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Rand Index (RI) (Rand 1971). Let C be the set of cluster-
ing results, and denotes L as the set of true classes. Rand
index represents the frequency of occurrence of agree-
ments over all the instance pairs, i.e., the probability that
C and L will agree on a randomly chosen instance pair.

Compared methods

ODMC is compared with k-means (KM) method, normal-
ized cut (NC) method (Shi and Malik 2000), GMMC (Val-
izadegan and Jin 2006), IterSVR (Zhang, Tsang, and Kwok
2007), CPMMC (Zhao, Wang, and Zhang 2008) and LG-
MMC (Li et al. 2009). MMC (Xu et al. 2005) is not chosen
as a baseline since it can’t return results in a reasonable time
for most data sets.

For GMMC, IterSVR, CPMMC, LG-MMC, ODMC, the
parameters C or λ is selected from {1, 10, 100, 1000}. For
ODMC, ν and θ are selected from [0.2, 0.4, 0.6, 0.8]. For all
data sets, both the linear and Gaussian kernels are used. In
particular, the width σ of Gaussian kernel is picked from
{0.25√γ, 0.5

√
γ,

√
γ, 2

√
γ, 4

√
γ}, where γ is the average

distance between instances. The parameter of normalized
cut is chosen from the same range of σ. The balance con-
straint is set in the same manner as in (Zhang, Tsang, and
Kwok 2007), i.e., 0.03m for balanced data set and 0.3m
for imbalanced data set. All the experiments are repeated 10
times and the average performance is reported with the best
parameter setting.

Table 1: Characteristics of experimental data sets.

ID Data set #Instance #Feature

1 echocardiogram 62 8
2 dbworld 64 4,702
3 hepatitis 80 19
4 colic 188 13
5 house 232 16
6 heart-h 261 10
7 heart 270 9
8 heart-statlog 270 13
9 breast 277 9
10 cylinder-bands 277 39
11 heart-c 296 13
12 haberman 306 14
13 ionosphere 351 33
14 vehicle 435 16
15 credit-a 653 15
16 diabetes 768 8
17 fourclass 862 2
18 tic-tac-toe 958 9
19 credit-g 1,000 20
20 german 1,000 59
21 optdigits 1,143 42
22 svmguide3 1,284 22
23 sick 2,643 28
24 splice 3,175 60

Performance

Table 2 summarizes the results on 24 UCI data sets. GMMC
did not return results on some data sets due to the high com-
putation cost. As can be seen, for both measures, ODMC
achieves the best performance on 17 data sets and shows
significant improvement over existing MMC approaches on
most data sets.

Time cost

We compare the average single iteration time cost of our
method with IterSVR, CPMMC and LG-MMC on some rep-
resentative data sets. All the experiments are performed with
MATLAB 2017b on a machine with 8×2.60 GHz CPUs and
32GB main memory. As shown in Figure 2, our method
achieves the lowest time cost for most data sets and is only
slightly worse than compared methods on data set credit-
g. Note that the sub-problem of IterSVR and LG-MMC are
solved by LIBSVM (Chang and Lin 2011), which is a fast
implementation of both SVR and SVM, this shows that our
method is also computationally efficient.

credit-g german optdigits svmguide3 sick splice
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Figure 2: Average single iteration time cost of IterSVR, CP-
MMC, LG-MMC, ODMC.

Conclusions

Maximum margin clustering (MMC), which employs the
large margin heuristic from support vector machine, have
achieved more accurate results than traditional clustering
methods. Recent studies disclosed that instead of minimum
margin, it is more crucial to optimize the margin distribution
for SVM-style learning algorithms. Inspired by this recog-
nition, we propose a novel approach ODMC for clustering
by optimizing the margin distribution. To solve the resul-
tant minimax problem, we extend a stochastic mirror descent
method which is much more scalable than existing cutting-
plane based approaches. Experimental results in various data
sets show that our method achieves promising clustering per-
formance, which further verifies the superiority of optimal
margin distribution learning. In the future, we will apply im-
portance sampling (Schmidt et al. 2015) to further acceler-
ate our method and extend it to other learning settings, i.e.,
semi-supervised learning.
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Table 2: Clustering Accuracy (Acc) and Rand Index (RI) comparisons on 24 UCI data sets. The best performance on each
data set is bolded. •/◦ indicates ODMC is significantly better/worse than compared methods (paired t-tests at 95% significance
level). The win/tie/loss counts for ODMC are summarized in the last two rows. GMMC did not return results on some data sets
in two days.

Data set Measure KM NC GMMC IterSVR CPMMC LG-MMC ODMC

echocardiogram Acc 0.696• 0.677• 0.694• 0.537• 0.710• 0.774• 0.792
RI 0.572• 0.556• 0.568• 0.498• 0.581• 0.645• 0.661

dbworld Acc 0.599• 0.625• 0.578• 0.840 0.547• 0.859 0.857
RI 0.534• 0.524• 0.504• 0.743• 0.497• 0.754 0.748

hepatitis Acc 0.693• 0.525• 0.575• 0.638• 0.838 0.838 0.841
RI 0.576• 0.495• 0.505• 0.534• 0.724 0.724 0.731

colic Acc 0.749• 0.622• 0.537• 0.740• 0.622• 0.840• 0.862
RI 0.622• 0.527• 0.500• 0.613• 0.527• 0.730• 0.752

house Acc 0.893 0.534• 0.737• 0.901 0.534• 0.905 0.902
RI 0.808• 0.500• 0.611• 0.821 0.500• 0.828 0.825

heart-h Acc 0.742• 0.536• 0.617• 0.780 0.625• 0.789 0.795
RI 0.636• 0.501• 0.525• 0.662 0.529• 0.666 0.669

heart Acc 0.670• 0.567• 0.563• 0.684• 0.556• 0.744• 0.772
RI 0.572• 0.507• 0.506• 0.589• 0.504• 0.618• 0.637

heart-statlog Acc 0.765• 0.504• 0.741• 0.761• 0.556• 0.796• 0.811
RI 0.649• 0.498• 0.614• 0.645• 0.504• 0.674 0.681

breast Acc 0.629• 0.592• 0.538• 0.575• 0.708• 0.726 0.726
RI 0.550• 0.515• 0.501• 0.518• 0.585• 0.600 0.600

cylinder-bands Acc 0.634• 0.534• 0.574• 0.626• 0.643• 0.657• 0.675
RI 0.534• 0.501• 0.509• 0.530• 0.539• 0.548• 0.571

heart-c Acc 0.662• 0.551• 0.588• 0.780 0.541• 0.777 0.775
RI 0.559• 0.503• 0.514• 0.657 0.502• 0.652 0.652

haberman Acc 0.604• 0.735 0.582• 0.520• 0.735 0.739 0.736
RI 0.530• 0.609 0.512• 0.500• 0.609 0.613 0.611

ionosphere Acc 0.708• 0.541• 0.721• 0.691• 0.641• 0.738• 0.754
RI 0.586• 0.502• 0.596• 0.572• 0.538• 0.612• 0.636

vehicle Acc 0.659• 0.510• 0.554• 0.693• 0.501• 0.715• 0.742
RI 0.556• 0.499• 0.505• 0.581• 0.499• 0.591• 0.624

credit-a Acc 0.730• 0.576• 0.522• 0.771 0.547• 0.772 0.770
RI 0.636• 0.511• 0.500• 0.669 0.504• 0.647• 0.662

diabetes Acc 0.667• 0.637• 0.663• 0.629• 0.651• 0.733• 0.745
RI 0.555• 0.537• 0.552• 0.533• 0.545• 0.608• 0.625

fourclass Acc 0.659• 0.624• 0.515• 0.640• 0.644• 0.763• 0.788
RI 0.552• 0.530• 0.500• 0.546• 0.541• 0.638• 0.666

tic-tac-toe Acc 0.547• 0.551• 0.511• 0.548• 0.653 0.653 0.658
RI 0.504• 0.505• 0.500• 0.505• 0.547 0.547 0.551

credit-g Acc 0.539• 0.683• N/A 0.534• 0.700 0.704 0.710
RI 0.507• 0.567• N/A 0.509• 0.580 0.583 0.585

german Acc 0.569• 0.700 N/A 0.546• 0.700 0.700 0.700
RI 0.510• 0.580 N/A 0.505• 0.580 0.580 0.580

optdigits Acc 0.962• 0.501• N/A 0.995◦ 0.500• 0.978 0.980
RI 0.952 0.500• N/A 0.989◦ 0.500• 0.957 0.958

svmguide3 Acc 0.593• 0.657• N/A 0.572• 0.738 0.739 0.741
RI 0.518• 0.549• N/A 0.511• 0.613 0.614 0.618

sick Acc 0.731• 0.518• N/A 0.515• 0.920 0.920 0.920
RI 0.628• 0.500• N/A 0.501• 0.852 0.852 0.852

splice Acc 0.665 0.519• N/A 0.630• 0.519• 0.641 0.655
RI 0.554 0.501• N/A 0.534• 0.501• 0.539 0.550

ODMC: w/t/l Acc 22/2/0 22/2/0 18/0/0 18/5/1 17/7/0 9/15/0
RI 22/2/0 22/2/0 18/0/0 19/4/1 17/7/0 9/15/0
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