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Abstract

A key challenge in many reinforcement learning problems is
delayed rewards, which can significantly slow down learning.
Although reward shaping has previously been introduced to
accelerate learning by bootstrapping an agent with additional
information, this can lead to problems with convergence. We
present a novel Bayesian reward shaping framework that aug-
ments the reward distribution with prior beliefs that decay
with experience. Formally, we prove that under suitable con-
ditions a Markov decision process augmented with our frame-
work is consistent with the optimal policy of the original
MDP when using the Q-learning algorithm. However, in gen-
eral our method integrates seamlessly with any reinforcement
learning algorithm that learns a value or action-value function
through experience. Experiments are run on a gridworld and
a more complex backgammon domain that show that we can
learn tasks significantly faster when we specify intuitive pri-
ors on the reward distribution.

1 Introduction

Delayed and sparse rewards present a key challenge in many
reinforcement learning (RL) problems, as this can signifi-
cantly slow down learning through long, uninformed explo-
ration trajectories. For example, when learning to play chess,
typically the only reward signal that the agent receives is at
the end of an episode, which occurs after many timesteps.
A naı̈ve approach to overcome this problem is to provide
additional reward signals to the agent for achieving certain
subgoals. For example, the environment may provide a re-
ward to the agent for taking the opponent’s queen. However,
this is generally undesirable because (a) it forces the agent
to play according to a specific strategy rather than letting it
learn novel strategies, and (b) this may not be optimal.

Various techniques have been proposed to overcome this
problem. In Hierarchical Reinforcement Learning we de-
compose a task into subtasks and learn to solve each subtask
individually (Dietterich 1998; Sutton, Precup, and Singh
1999). Specifically, the MAXQ framework uses pseudo-
rewards to learn the optimal policy for a subtask, which is
analogous to providing more frequent rewards to the agent.
Other techniques proposed include biasing the initial values
of the action-value function using prior knowledge (Hailu
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and Sommer 1999; Matignon, Laurent, and le Fort-Piat
2006), using progress estimators to supply the agent with
partial, goal-specific advice (Mataric 1994; Matignon, Lau-
rent, and le Fort-Piat 2006), or using action priors so that the
agent can positively bias action selection in the initial stages
of learning (Rosman and Ramamoorthy 2012).

Most closely related to the work in this paper is reward
shaping, where an additional reward from a reward shaping
function is added at each step of learning. In the most gen-
eral case, this reward shaping function can depend on the
full transition information: the current state the agent is in,
the action taken by the agent and the resulting next state. Re-
ward shaping has proven to be a powerful method for speed-
ing up many RL tasks. However, one of the issues discov-
ered is that the agent may learn to enter cycles to optimize
the shaping reward and forget about the true underlying RL
problem (Randløv and Alstrøm 1998) and so may learn an
optimal policy that is not consistent with the optimal policy
learned without reward shaping. To address this, potential-
based reward shaping (PBRS) was introduced, where the re-
ward shaping function is restricted to a difference of poten-
tial functions, where the potential function is defined over
states (Ng, Harada, and Russell 1999).

While PBRS has the advantage of ensuring consistency
to the optimal policy, the restriction on the form of the
reward shaping signal limits its expressiveness. This lim-
itation has been alleviated to an extent with a framework
called potential-based advice (PBA) which allows the po-
tential function to also include actions (Wiewiora, Cottrel,
and Elkan 2003), although the form of the shaping reward
is still restricted with PBA since the shaping reward is still
a difference of potential functions. It would be ideal if we
could use the full transition information directly to define
shaping rewards while still having consistency, as the ad-
ditional expressive power can speed up convergence to the
optimal policy.

More recently, it has been shown that PBA can be com-
bined with dynamic potential-based reward shaping (Devlin
and Kudenko 2012) to express shaping rewards that can use
the full transition information, although this requires the in-
troduction of a second action-value function that learns the
required potential function concurrently with the main RL
task (Harutyunyan et al. 2015).

In this paper we present a novel approach to reward shap-
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ing using a Bayesian framework, which we call belief reward
shaping (BRS). BRS allows us to use the full transition infor-
mation to provide shaping rewards directly, without having
to learn it through interactions with the environment.

The major departure between BRS and standard RL is that
we argue that rewards should not come only from an envi-
ronment but should also incorporate prior beliefs. Some au-
thors have addressed the need to define different types of re-
wards when solving an RL problem. For example, RL tasks
where an agent received both intrinsic and extrinsic rewards
have been introduced (Singh, Barto, and Chentanez 2004).
Furthermore, in this view, the reward that an agent receives
is considered to come from an internal critic that provides
a primary reward to an agent, which may not come solely
from the external environment sensation.

We update this view slightly in this paper to account for
beliefs. Specifically, in our view the critic still receives a sen-
sation from the environment. Now though, the sensation up-
dates the critic’s belief system and only thereafter the critic
provides a reward (which we call a belief reward) to the
agent that is an integration of the critic’s prior beliefs and
the current sensation. Whereas in traditional reward shaping
methods the shaping reward is augmented to the environ-
ment reward distribution through the addition of a shaping
function, in our framework we augment the shaping reward
through a prior distribution on the environment reward dis-
tribution itself. These prior beliefs can be provided to the
critic as a form of intuition or advice for the new task. Fig-
ure 1 illustrates our view.

Figure 1: Agent / environment relationship with BRS.

2 Preliminaries

2.1 Standard Reinforcement Learning
Framework

We restrict our attention to RL problems that can be rep-
resented as a discrete-time, finite-state and finite-action
Markov decision process (MDP) whose reward distributions
have finite variance. Such an MDP is defined by a tuple

M = (S,A, P,R, γ), where S is a finite set of states, and A
is a finite set of all actions, while As is the actions available
in state s. P : S × A × S → [0, 1] are the transition prob-
abilities for transitioning to state s′ conditional on the agent
being in state s and taking action a. R : S × A× S → R is
the (stationary) reward distribution that governs the reward
signal when in state s, taking action a and moving to state
s′. In most RL problems R is a deterministic function. How-
ever, for our formalisation we use the more general case and
treat it as a distribution. In section 3 we show that we can
treat deterministic reward functions as a special case using
degenerate distributions. γ ∈ [0, 1] is a discount rate.

A policy is defined by π : S × A → [0, 1] and represents
the probability of taking action a conditional on being in
state s. The goal of an RL agent is to find an optimal policy,
π∗, that maximises the expected future discounted rewards.
Given a fixed policy, π, we can define the action-value func-
tion for n ≥ 0 as

Qπ(s, a) = Eπ

[ ∞∑
k=0

γkRn+k+1|Sn = s,An = a

]
,

where n is an index over time steps. This represents the
expected discounted future rewards of following the pol-
icy π given that the agent is currently in state s and takes
action a. The optimal action-value function is defined by
Q∗(s, a) = supπ Qπ(s, a) for all s ∈ S and a ∈ As.
Given Q∗ we can derive the action to take in state s un-
der π∗ by choosing argmaxa∈AsQ∗(s, a). Note that in the
undiscounted case (γ = 1) we assume that S contains a
self-transitioning absorbing state that emits a reward of zero
and further that for any policy and any starting state we will
reach this absorbing state with probability 1.

In most practical RL applications, R and P are not known.
This has led to a collection of algorithms that learn the op-
timal action-value function of an MDP from experience. As
we further elaborate in section 3 BRS can integrate with any
such algorithm by replacing the observed environment re-
ward with a belief reward that, under suitable conditions,
converges to the environment reward in the limit.

2.2 Reinforcement Learning with Reward
Shaping

With reward shaping, the agent is provided with additional
shaping rewards that come from a deterministic function,
F : S × A × S → R. However, there is no guarantee that
an MDP with arbitrary reward shaping will have an optimal
policy that is consistent with the original MDP. Potential-
based reward shaping (PBRS) addresses this problem by
restricting the shaping reward function to F (s, a, s′) =
γΦ(s′) − Φ(s) where Φ is an arbitrary function called a
potential function (Ng, Harada, and Russell 1999). Using
PBRS is a necessary and sufficient condition for the original
MDP and the MDP with reward shaping to have consistent
optimal policies.

One of the limitations of PBRS is that the potential func-
tion depends only on the state. However, PBRS has been ex-
tended by potential-based advice (PBA) to include actions in
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the potential function (Wiewiora, Cottrel, and Elkan 2003).
In this framework we still have consistency, however there
is an additional dependency of the potential function on the
policy being followed that needs to be incorporated. With
PBA we have look-ahead advice defined as F (s, a, s′, a′) =
γΦ(s′, a′) − Φ(s, a) where we now choose the action, a,
under a policy π as supa∈As

(Qπ(s, a) + Φ(s, a)).

3 Belief Reward Shaping

3.1 Framework

Our departure point from standard RL is that we allow for
prior beliefs to be augmented onto R. We hereafter refer to
the standard RL reward as the “environment reward” and the
reward that the critic gives the agent as the “belief reward”.

We define a transition by the tuple (s, a, s′) where s is
the source state, a is the action taken when in s, and s′ is
the destination state, and denote by T the set of all possi-
ble transitions in the MDP. We denote by Dτ

n the history of
environment rewards received by the critic for the transition
τ ∈ T up to and including time n. For each τ the (unknown)
environment reward distribution is given by pτ (r). We make
the following assumptions in our framework:

• For each τ the critic hypothesises some models of the
environment reward distribution, F τ = {p̂τ (r|h) : h ∈
Hτ}, where Hτ denotes the hypothesis space for transi-
tion τ . The ˆ notation indicates that p̂τ is an hypothesis
for the true environment reward distribution.

• For each τ and at every n ≥ 0 the critic knows its prior be-
liefs represented as a distribution overHτ , qτ (h|Dτ

n−1).

• The environment reward received by the critic at time n
after τ is identically and independently distributed (iid)
from the previous environment rewards received in τ ,
Dτ

n−1.

The intuition behind our framework follows Bayesian rea-
soning. Each p̂τ (.|h) ∈ F τ is a possible reward distribution
that may be representative of the true environment reward
distribution. The critic’s belief over possible reward distribu-
tions is captured by a prior distribution qτ (h|Dτ

n−1) which
depends on the environment rewards the critic has observed
so far. Before we start learning the RL task, qτ represents
the critic’s beliefs without having seen any environment re-
wards, therefore at this point the distribution is influenced
only by prior knowledge.

This knowledge may bias certain transitions and hence
shape the behaviour of the agent. During learning each time
the agent visits transition τ , data is collected from the en-
vironment and the critic refines its beliefs over the possible
reward distributions and gets closer to the environment re-
ward distribution.

We now formalise this intuition mathematically. At time
n, the agent passes through a transition τ , and the critic re-
ceives some environment reward rn. The critic updates its
beliefs using Bayes’ rule, posterior ∝ likelihood× prior,
as

qτ (h|Dτ
n) ∝ p̂τ (rn|h)qτ (h|Dτ

n−1). (1)

The maximum a posteriori (MAP) estimate, hτ
MAP =

argmaxh∈Hτ qτ (h|Dτ
n) is derived. Lastly, the critic gener-

ates an unbiased estimate, μ̂B
n , of Ep̂τ (r|hτ

MAP )[R], the ex-
pected value of p̂τ (r|hτ

MAP ), and provides this belief reward
to the agent.

In practice, if p̂τ (r|hτ
MAP ) is known in closed form we

can compute the mean of the distribution directly, otherwise
we may sample observations from the distribution and use
the sample mean as an unbiased estimate of the true mean.

By convention we define qτ (h|Dτ
−1) = qτ (h), that is the

prior distribution with no evidence. We note that because of
the data invariance property of Bayes’ rule, together with our
iid assumption, the procedure described only requires us to
keep track of qτ (h|Dτ

n−1) for all τ ∈ T at time n and not
the full histories, Dτ

n−1.
To illustrate how BRS can augment existing RL algo-

rithms, the well-known Q-learning algorithm for episodic
tasks with BRS is shown in algorithm 1 (we introduce
α(s, a) in step 11 which is a step-size parameter that influ-
ences the rate of learning).

The framework proposed in this section extends naturally
to the case where functional approximations are used to rep-
resent the action-value function. For example, in algorithm 1
we would use the same procedure except for step 11, where
we would update the parameters of the function using μ̂B

n ,
whereas in standard RL we would have used rn.

Algorithm 1: Q-learning algorithm augmented with
BRS for episodic tasks.

1 Initialise Q(s, a) for all s ∈ S and a ∈ As and define
Q(s, a) = 0 if s is terminal

2 For each τ ∈ T select F τ = {p̂τ (r|h) : h ∈ Hτ} and
qτ (h)

3 foreach episode do
4 Initialise s
5 while s is not terminal do
6 Choose a from As using policy from Q
7 Take action a. Observe next state s′ and

environment reward r
8 Update qτ (h|Dτ ) using equation 1
9 Compute hτ

MAP from qτ (h|Dτ )

10 Generate an unbiased estimate, μ̂B , of
Ep̂τ (r|hτ

MAP )[R]

11 Q(s, a)← Q(s, a) + α(s, a)[μ̂B +
γ supb∈As′ Q(s′, b)−Q(s, a)]

12 s← s′

13 end

14 end

In many RL problems the environment rewards are known
to be deterministic. We can adopt this into the BRS frame-
work by using degenerate distributions. Suppose the en-
vironment reward for τ is a constant μ. Define pτ (r) =
N (μ, σ2) where σ > 0. We impose a conjugate normal prior
on μ, qτ (μ) = N (μ0,

σ2

λ ) where λ > 0. Applying Bayes’
rule to compute qτ (μ|r1 = μ, r2 = μ, ..., rn = μ) and let-
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ting σ → 0 converges to a degenerate distribution with point
mass at

λ

λ+ n
μ0 +

n

λ+ n
μ. (2)

The parameter λ is the pseudo-count for the prior mean
and controls the rate at which the critic shifts from the prior
mean to the true environment reward.

In the deterministic reward setting one may consider an
analogous procedure using traditional reward shaping meth-
ods, whereby we define some reward shaping function F
and multiply it by a decay parameter so as to ensure that
the product converges to 0 in the limit. BRS is more general
however as it extends naturally to cases where the environ-
ment reward is a distribution and it may be advantageous to
set prior beliefs on the various parameters of the distribution.

3.2 Theoretical Results

In this section we prove that under suitable conditions Q-
learning augmented with BRS has an optimal policy that is
consistent with the original MDP.
Theorem 1. Let M = (S,A, P,R, γ) be an MDP and T the
set of all possible transitions, (s, a, s′), in M . Suppose that
for each τ ∈ T we have a set of hypothesised models for
the environment reward distribution, F τ = {p̂τ (r|h) : h ∈
Hτ}, where Hτ denotes the hypothesis space for transition
τ and further we have a prior distribution over the hypoth-
esis space, qτ (h). Suppose further that pτ (r) ∈ F τ where
pτ (r) is the true environment reward distribution. Then the
Q-learning algorithm augmented with BRS described in fig-
ure 1 is consistent with the optimal policy of M provided
that:
• The technical conditions required for Q-learning con-

vergence to the optimal action-value function hold
in M . Most notably,

∑∞
n=0 αn(s, a) = ∞ and∑∞

n=0 αn(s, a)
2 < ∞ for all (s, a) ∈ S × A. For full

details of conditions see (Jaakkola, Jordan, and Singh
1994).

• For each τ ∈ T the environment rewards received by the
critic are iid.

• The technical conditions required for the MAP estimate of
the posterior distribution to be consistent with the correct
hypotheses hold for each τ ∈ T. Most notably that the
likelihood is a continuous function of the hypothesis space
and that the correct hypothesis is not on the boundary
of the hypothesis space. For full details of conditions see
(Gelman et al. 1995).

Proof. We have assumed that pτ (r) ∈ F τ and that the tech-
nical conditions required for the MAP estimate of the pos-
terior distribution to be consistent with the correct hypoth-
esis hold for all τ ∈ T. Therefore, by Bayesian asymp-
totic consistency, limn→∞ p̂τ (r|hτ

n,MAP ) = pτ (r) for all
r in the support of the distribution pτ (r). Equivalently for
ε > 0, there exists some integer N such that for all n > N ,
|p̂τ (r|hτ

n,MAP ) − pτ (r)| < ε for all r in the support of
the distribution pτ (r). The conditions for Q-learning con-
vergence are assumed to hold in M . Therefore

∞∑
n=0

αn(s, a) =∞ and
∞∑

n=0

αn(s, a)
2 <∞ (3)

for all (s, a) ∈ S ×A. Equation 3 implies that αn(s, a) is
finite for all (s, a) ∈ S × A and all n ≥ 0. We can rewrite
equation 3 as

N∑
n=0

αn(s, a) +
∞∑

n=N+1

αn(s, a) =∞ and

N∑
n=0

αn(s, a)
2 +

∞∑
n=N+1

αn(s, a)
2 <∞ (4)

for all (s, a) ∈ S × A. The left summations in
equation 4 are finite because they are finite summa-
tions of finite terms. Therefore

∑∞
n=N+1 αn(s, a) =

∞ and
∑∞

n=N+1 αn(s, a)
2 <∞ for all (s, a) ∈ S×A.

So we have that at N + 1 the conditions required for Q-
learning convergence hold while at the same time, the dif-
ference between the environment reward distribution and the
critic’s hypothesised distribution when using the MAP esti-
mate are arbitrarily small.

It is straightforward to show that consistency still holds
when only a subset of the transitions are augmented with
BRS. Specifically, the only modification required is to define
the scope of transitions to be T′ ⊆ T and apply standard Q-
learning for all other transitions. This is useful because it
may be cumbersome to define prior beliefs on all transitions
and we can focus on specific transitions that we believe are
important for our learning task.

A natural question to ask is what happens if the assump-
tion that the environment reward distribution is in the critic’s
hypothesised set of models is false. Unfortunately, in such
cases we lose the consistency guarantees of Q-learning with
BRS. Nevertheless, we do have a guarantee that the MAP
estimate will converge so as to make the hypothesised dis-
tribution as close as possible to the true distribution in terms
of Kullback-Leibler divergence. For further details on this
asymptotic guarantee see (Gelman et al. 1995).

3.3 Belief Clusters

In many real-world applications the state-space is very large.
This makes it impractical to define a prior for each transition.
However, we can work around this by defining a set of tran-
sitions that share some common structure. This is a form of
state abstraction within the BRS framework.

Formally, we define a belief cluster as any subset, T′ ⊆ T,
where the intersection of the hypothesised models induced
by T′ is not empty. That is FT′

= ∩τ∈T′F τ 
= φ. The
critic may now define a prior on all the models in FT′

,
qT

′
(h|DT′

n ), where the hypothesis space is now ∩τ∈T′Hτ

and DT′
n = ∪τ∈T′Dτ

n is the history of environment rewards
received by the critic for any transition τ ∈ T′. The critic
may now update its beliefs using Bayes’ rule,
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qT
′
(h|DT′

n ) ∝ p̂T
′
(rn|h)qT′

(h|DT′
n−1). (5)

It is straightfoward to update theorem 1 and show that if
for any τ1, τ2 ∈ T′ we have pτ1(r) ∈ FT′

and pτ1(r) =
pτ2(r) and further, each τ ∈ T belongs to exactly one be-
lief cluster then the Q-learning algorithm augmented with
belief clusters still has the consistency property. In words,
these conditions ensure that all transitions in the belief clus-
ter share the same true environment reward distribution and
furthermore that the true environment reward distribution
exists in the hypothesis space induced by the belief cluster.
If we have that a transition belongs to more than one belief
cluster, then we can enhance our framework slightly by al-
lowing the critic to generate multiple belief rewards in each
transition, one for each belief cluster that contains the tran-
sition, and take the average of these as the final reward given
to the agent. Note that theorem 1, where we treat each tran-
sition separately, is a special case of belief clusters where we
assign each transition to its own belief cluster.

4 Experiments

4.1 Cliff-Jump Gridworld

The purpose of this experiment is to show that we can ob-
tain better performance with BRS over competing methods
because we can use the full transition information directly
to provide shaping rewards to the agent. The experiment is
conducted on a 10× 10 gridworld. The agent’s task is to get
from a fixed start coordinate, (1,1), to a fixed end coordinate,
(10,10). In order to achieve this, it needs to jump over a cliff
edge so it can get to the side where the end coordinate is lo-
cated. A jump only succeeds with some probability, pjump.
This domain is inspired from various video games where a
player needs to make a difficult jump which they may fail
many times, but that is necessary to complete the level.

The state-space is (x, y), where x and y represents the
agent’s current x- and y-coordinates respectively (x, y ∈
{1, 2, ..., 10}). The agent can take the actions up, down, left
and right which move the agent in those directions. In addi-
tion, there is a jump action. If the jump action is taken when
the agent is on the edge of a cliff then the agent is transported
to the other side with probability pjump, otherwise the agent
“falls off” the cliff and is transported back to the start coordi-
nate. If the jump action is taken in any other state, the agent
remains in the current state. Furthermore, if the agent takes
an up or down action that moves it off the cliff then it is also
transported back to the start coordinate. Finally, any action
that should take the agent off the gridwold leaves the state
unchanged. The gridworld is illustrated in figure 2 where
the start coordinate is denoted by S, the end coordinate by
E, and the cleft that the agent must jump over is denoted by
C (i.e. the cliff edges are at y = 2 and y = 4).

The environment rewards are −1 for every step that is
non-terminal and 100 for the terminal state. For learning
to solve this RL problem we use an ε-greedy policy that
explores random actions with some probability ε and acts
greedily otherwise. We use γ = 1, a constant learning-rate
α = 0.05 and ε = 0.1. We set pjump = 0.2 and apply an
early termination criterion of 100 steps per episode.

Figure 2: First domain: cliff-jump gridworld.

We use equation 2 to model the environment rewards
as they are deterministic. Let d(s, c) represent the distance
from state s to coordinate c = (x, y) for some arbitrary dis-
tance metric. Specifically, in our experiments we use the
Manhattan distance. Intuitively, we want our agent to get
to the cliff edge as quickly as possible, take the jump and
then get to the end coordinate as quickly as possible. De-
fine s.x and s.y to be the x- and y- coordinates in s respec-
tively, c1 = (1, 2) (the bottom cliff edge coordinate) and
c2 = (10, 10) (the end coordinate). Then to encode this ad-
vice we first define the following belief clusters:

• B1 = {(s, a, s′) ∈ T : s.y ≤ 2, d(s′, c1) < d(s, c1)}
• B2 = {(s, a, s′) ∈ T : s.y ≤ 2, d(s′, c1) ≥ d(s, c1)}
• B3 = {(s, a, s′) ∈ T : d(s, c1) = 0, a = jump}
• B4 = {(s, a, s′) ∈ T : s.y > 2, d(s′, c2) < d(s, c2)}
• B5 = {(s, a, s′) ∈ T : s.y > 2, d(s′, c2) ≥ d(s, c2)}

We will set priors on B1 and B2 to encourage the agent
to get to the edge as quickly as possible, on B3 to encourage
the agent to take a jump at the edge and on B4 and B5 to
encourage the agent to get to the end coordinate as quickly
as possible once it has reached the other side of the cliff.
We set a positive prior mean for belief clusters B1, B3 and
B4 as we want to encourage these transitions and negative
prior mean for B2 and B5 as we want to discourage these
transitions.

We compare our results to PBRS and PBA frameworks.
While early work on these methods used negative potential
functions for distance-based shaping rewards, recent work
has shown that positive potentials may improve performance
(Grzes and Kudenko 2009). We conducted experiments with
both negative and positive potentials and found positive po-
tentials had better performance in our domain, hence we re-
port these results in the paper.

We note that for our comparisons we have not biased any
of the frameworks as they have access to the same level of
information and exploit that information to the best of their
capabilities. In total we run the following algorithms on this
domain:

• QL: standard Q-learning.
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• BRS(μ0,λ): Q-learning with BRS using belief clusters
B1, B2, B3, B4 and B5. We set the sign of μ0 positive
for belief clusters B1, B3 and B4 and negative for B2 and
B5 while the same λ is used for all belief clusters.

• PBRS(μ0,μ1): Q-learning with PBRS, Φ(s) =
μ0(maxs′∈S d(s′, c1) − d(s, c1))1s.y≤2 +
μ1(maxs′∈S d(s′, c2)− d(s, c2))1s.y>2.

• PBA(μ0,μ1,μ2): Q-learning with PBA, Φ(s, a) =
μ0(maxs′∈S d(s′, c1) − d(s, c1))1s.y≤2 +
μ1(maxs′∈S d(s′, c2) − d(s, c2))1s.y>2 +
μ21d(s,c1)=0, a=jump.

Each algorithm is tested on a grid of parameter val-
ues. BRS(μ0,λ) is run for μ0 ∈ {0.5, 1, 5, 10, 100} and
λ ∈ {100, 500, 1000, 5000, 10000}. PBRS(μ0,μ1) and
PBA(μ0,μ1,μ2) are run where each parameter takes values
in {0.5, 1, 5, 10, 100}. We run each algorithm / parameter
value over 1000 episodes and average over 50 independent
runs. Plots are then averaged over 10 consecutive points with
error bars included.

Figure 3: Cliff-jump optimal performance for each algo-
rithm.

We see from figure 3 that using reward shaping sig-
nificantly outperforms standard Q-learning for optimal pa-
rameter values (Q-learning converges in approximately 700
episodes as shown in figure 5). BRS outperforms other re-
ward shaping methods. In fact, it converges to the optimal
policy almost immediately whereas PBRS and PBA con-
verge in approximately 50 episodes. This performance gain
when using BRS is unsurprising given that we can be spe-
cific with our reward structures and provide shaping rewards
using the full transition information directly. The fact that we
can do this while still having convergence guarantees that we
don’t have with general reward shaping is quite appealing.

Now consider figure 4. When using BRS with determinis-
tic rewards, we have two parameters – μ0, which is the prior
mean and λ which is the pseudo-count of the prior mean.
In practice, λ controls the rate at which we shift our beliefs
from the prior mean to the true environment reward, and the
lower λ the faster we shift from the prior mean. In most cases
μ0 is more intuitive to set than λ. In figure 4 we show how
BRS performs when we set an intuitive prior μ0 = 1 for the
different values of λ. We see that even when we set λ = 102,
small, we get improvements over standard Q-learning. This
is because the agent has the benefit of learning from opti-
mal actions early in the learning process, albeit for a short

Figure 4: Cliff-jump sensitivity to λ.

time. When λ = 103 we have similar convergence to the
optimal parameter settings although we have a period of di-
vergence between 150 and 200 episodes. The reason for this
is that at the start of learning, the agent’s trajectories are con-
trolled most strongly by the priors we set and when this re-
duces the agent starts exploring based on the environment
dynamics. In this domain, the agent initially is encouraged
by the positive prior μ0 to jump at the cliff edge but once the
environment dynamics start to dominate the agent starts in-
curring negative rewards for jumping, as the jump fails with
high probability, and this leads to exploration of unexplored
states. Since these states are not on the trajectory of the opti-
mal policy the agent returns over time to the optimal policy.
Overall we see that using BRS with small λ may still pro-
vide significant performance improvements and that BRS is
robust to λ in this domain when we set a reasonable value
for the prior mean.

Figure 5: Cliff-jump examples of poor performance perfor-
mance.

In figure 5 we examine results for parameter settings that
result in poor performance. Consider first BRS(100,10000)
where we set μ0 = 100 high and λ = 104 high. In this case
BRS converges to the optimal policy almost immediately but
then starts to diverge at around 500 episodes. The reason for
this divergence is that the agent enters a cycle whereby it
moves in and out of c1 repeatedly. This is because the prior
mean is set so high and the rate at which we shift to the en-
vironment reward so slow that the agent learns to prefer ob-
taining the shaping rewards over solving the underlying RL
task. This issue with cycles is similar to that described in the
introduction when using general reward shaping, however
we note that with BRS we have convergence in the limit.
Next consider PBRS(1,100). At 1000 episodes we see the
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agent is still behaving as poorly as when it started. We con-
clude from this that poorly specified shaping rewards result
in slower convergence to the optimal policy regardless of the
algorithm chosen. Furthermore one may argue that in both
the cases of BRS(100,10000) and PBRS(1,100) it is not im-
mediately obvious that the chosen parameter values would
produce poor performance. Therefore, care must be taken
when choosing shaping rewards in RL tasks to ensure they
improve performance.

Figure 6: Cliff-jump examples with incomplete information.

In figure 6 we analyse how BRS performs with incom-
plete information by running experiments where we do not
use the full set of belief clusters. In all these experiments
we use μ0 = 1 and λ = 104. We see that in most cases,
we obtain improved performance even in the setting of in-
complete information. For example, when only using belief
cluster B3 where our priors incentivise the agent to jump
at the cleft, we get significant improvements over standard
Q-learning. Interestingly, when using only belief clusters B1

and B2 we get worse performance over standard Q-learning.
Recall that the priors on these clusters incentivises the agent
to get to the cleft edge as quickly as possible however since
there is no immediate incentive to reach the goal the agent
learns to optimize the shaping reward by walking in and out
of coordinate c1.

4.2 Backgammon

We now illustrate the benefits of BRS on a more complex
backgammon domain. In this section we do not report re-
sults for PBRS as it would be difficult to draw any objective
conclusion on which method performs better due to the do-
main’s complexity and hence the number of ways we might
construct our shaping rewards.

The backgammon domain has previously been solved us-
ing TD(λ) neural networks (Tesauro 2004). The first it-
eration of the TD-Gammon algorithm (TDG0.0) achieved
strong intermediate level of play and further refinements to
the algorithm achieved master-level play. In this paper we
focus on the first iteration due to its ease of implementation
and replication – the solution design is clearly described in
the literature (Tesauro 1995; Sutton and Barto 1998). We use
an identical setup to TDG0.0 for our experiments. Note that
in this domain using techniques that bias the initial value
function are difficult to implement because the value func-
tion is now parameterized, however, reward shaping is well-
suited to such tasks.

We first train a baseline neural network (BL) over 50,000
games. We then train a new neural network repeatedly over
500 games and let it play 10 batches of 50 games against BL.
We do this 100 times so that at the end of the process both
neural networks have been trained on the same number of
games. We repeat this procedure for 3 different neural net-
works: one standard network (SNN), one network that uses
a simple set of prior beliefs (SPNN) and one network that
uses a complex set of prior beliefs (CPNN). In brief, with
SPNN we set priors on states that are “improvements” over
the starting game state in the sense that we reward having no
blot exposure, more than 4 points, more than 1 inner point
and a maximum prime of more than 1 – these rewards are
only given when degree of contact is not 0. In our setup, the
states for each of these concepts are grouped into a separate
belief cluster and we use |μ0| = 0.5 and λ = 3000 for all
belief clusters – the sign of μ0 depends on whether we want
to incentivise or disincentivise the states in that cluster.

With CPNN we scale the reward based on the position
(i.e. higher prior mean for having 5 inner points than 2 inner
points) and we restrict rewards to situations when the posi-
tion is beneficial (i.e. having a 6-point prime is most bene-
ficial when there is an opponent checker trapped behind the
prime). We note that these strategies are quite crude and in
many cases not optimal – for example there are situations
when it is preferable to take risks and increase blot expo-
sure. However, these states can be thought of as beginner
level strategies that will beat a random player but are out-
performed by a good player. To illustrate this, we also train
two additional neural networks, SCNN and CCNN, that use
the same structure as SPNN and CPNN respectively but that
provide a constant environment reward that is equal to the
prior mean.

Figure 7: Backgammon with simple prior beliefs.

Figures 7 and 8 show how each of these networks per-
forms against BL by averaging the number of points won
across the batches played at each stage of learning. The stan-
dard deviations are also shown in this figure.

We see from the results that SPNN performs better at the
initial stages of learning than the standard network, SNN.
At 10,000 games this network is performing as well as SNN
is after 17,000 games and gets to a similar level of play
as BL by the end of training. Meanwhile SCNN (simple
constant rewards) initially performs better than SPNN but
is never able to win more than 35% of the points against
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Figure 8: Backgammon with complex prior beliefs.

BL. When using CPNN, we get significantly improved per-
formance. At 10,000 games this network wins almost 45%
of the points against BL, which took SNN 24,000 training
games to achieve and wins 60% of the points by the end of
training. CCNN performs better than SCNN did in the pre-
vious experiment, but is never able to win 50% of the points
or more against BL.

While we have not proved any consistency theorems for
TD(λ) neural networks it is reasonable to expect that SPNN
and CPNN converge to identical policies as SNN because
after enough training iterations the belief rewards obtained
will be arbitrarily close to the environment rewards. They
converge much faster to the optimal policy because of the
shaping rewards provided by BRS. Meanwhile SCNN and
CCNN will perform worse than SNN as they indefinitely
reward strategies that are not always optimal.

5 Concluding Remarks

This paper has introduced a new reward shaping framework
based on Bayesian methods that specifies prior beliefs on
the environment reward distribution and generates belief re-
wards that integrate prior beliefs with environment rewards.
We also provided theoretical guarantees of our method’s
consistency when augmenting Q-learning. Our experiments
illustrate that using BRS we can specify rich reward struc-
tures that can improve performance over competing methods
and that BRS can be integrated with general RL algorithms
to improve performance in more complex domains.
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