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Abstract

Graphs are natural data structures adopted to represent real-
world data of complex relationships. In recent years, a surge
of interest has been received to build predictive models over
graphs, with prominent examples in chemistry, computational
biology, and social networks. The overwhelming complexity
of graph space often makes it challenging to extract inter-
pretable and discriminative structural features for classifica-
tion tasks. In this work, we propose a novel neural network
structure called Substructure Assembling Network (SAN) to
extract graph features and improve the generalization perfor-
mance of graph classification. The key innovation of our work
is a unified substructure assembling unit, which is a variant of
Recurrent Neural Network (RNN) designed to hierarchically
assemble useful pieces of graph components so as to fabri-
cate discriminative substructures. SAN adopts a sequential,
probabilistic decision process, and therefore it can tune sub-
structure features in a finer granularity. Meanwhile, the pa-
rameterized soft decisions can be continuously improved with
supervised learning through back-propagation, leading to op-
timizable search trajectories. Overall, SAN embraces both the
flexibility of combinatorial pattern search and the strong opti-
mizability of deep learning, and delivers promising results as
well as interpretable structural features in graph classification
against state-of-the-art techniques.

Introduction

Many real-world data have complex structures in which
instances are naturally represented as graphs, such as
molecules in chemical compounds or proteins, dependence
graphs in computer programs, social interactions in online
social networks. There is an increasing demand for building
predictive models over these graph datasets. For example,
inference on the characteristics of a new compound could
help in clinical trials (Cumming et al. 2013); Identification
over critical subgraphs in program flow graphs could help lo-
cate bugs in complex programs (Cheng et al. 2009); Predic-
tion on the biochemical properties of compounds library can
greatly facilitate discovery of pharmacological targets (Bur-
bidge, Trotter, and Holden 2000).

Compared with vectorial data, the discrete and semi-
structured representation of graphs makes it much more
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challenging to estimate the mapping between instances and
their learning targets. As connectivity and size of graphs
could vary significantly across instances, how to capture the
key structural information from graph-based objects remains
an open problem in the machine learning community.

Various approaches have been proposed to build predic-
tive models on graph datasets. For example, one interesting
idea is to explicitly extract local graph patterns as features,
such that each graph can be represented as a bag of features
that naturally fit in traditional predictive models (e.g., sup-
port vector machines) (Yan and Han 2002). Though conve-
nient, the number of potential graph patterns can grow expo-
nentially with graph size and node/edge attributes. Another
popular approach is to design graph kernels to measure the
similarity between graphs (Neumann et al. 2016), followed
by a kernel-based classifier. A graph kernel implicitly de-
composes a graph into local structures, such as random walk
paths or subtrees, and computes their similarity score.

One critical problem in pattern mining and graph ker-
nel methods is that their feature extraction (either explicit
or implicit) is independent from the followup classification
or model learning tasks. In the context of graphs where the
number of features extracted can be quite huge or even ap-
proach infinity (e.g., graph kernels), such unguided feature
extraction step can be particularly cumbersome in identify-
ing discriminative graph patterns that are relevant to learning
tasks. This, in turn, could severely hamper the generalization
performance no matter which classifier is adopted.

Recently, there has been a surge of interest in exploit-
ing the power of neural networks to map graph objects to
continuous feature spaces (Niepert, Ahmed, and Kutzkov
2016; Defferrard, Bresson, and Vandergheynst 2016; Duve-
naud et al. 2015; Bruna et al. 2014; Scarselli et al. 2009;
Li et al. 2016). Although these methods have gained great
success in a number of benchmark graph classification tasks,
open challenges still exist due to the overwhelming struc-
tural complexity of graphs. One limitation of the existing
methods is that it can be hard for them to tune graph fea-
tures at a fine granularity. (1) For spectral methods (Bruna
et al. 2014; Defferrard, Bresson, and Vandergheynst 2016),
a small adjustment in spectral space results in a global im-
pact to graph feature selection. (2) For the methods in graph
space (Simonovsky and Komodakis 2017; Li et al. 2016;
Duvenaud et al. 2015), they usually assume that feature se-
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lection behaves identically for neighbor nodes with the same
node/edge attributes. This assumption restricts the flexibil-
ity and potential to construct discriminative features, since
neighbor nodes with the same node/edge attributes are ei-
ther all selected or all filtered.

In this paper, we propose a novel neural network model
called Substructure Assembling Network (SAN) that hierar-
chically extracts discriminative and interpretable local graph
patterns/features to improve the generalization performance
of graph classification. The key innovation of our framework
is a unified Substructure Assembling Unit (SAU), which is a
variant of RNN that performs node-centric edge selection at
a fine granularity and assembles useful pieces of graph com-
ponents to fabricate discriminative substructure features. In
particular, SAN adopts a sequential probabilistic decision
process; therefore, it enables progressive edge selection on
nodes and generates substructure features for graphs of arbi-
trary sizes. Meanwhile, as classification error can be back-
propagated and form a feedback loop, the parameterized,
soft decision process can be continuously improved using
class labels as its guidance. Overall, SAN embraces both the
flexibility of combinatorial pattern search and the strong op-
timizability of deep learning, and delivers promising results
as well as interpretable structural features on graph classifi-
cation tasks against state-of-the-art methods.

Substructure Assembling Network

In this section, we introduce the detailed design of the Sub-
structure Assembling Network (SAN).

Graph Representation

We first formalize the graph representations considered in
this paper. Here, we are interested in general, directed graphs
where each node and edge are associated with their attributes
(either discrete or continuous). A graph G is denoted by a
triplet (V,E,R) where

• V is the set of nodes. vi ∈ V is a vector that encodes
attributes of node i;

• E is the set of edges. ei,j ∈ E is a vector that encodes
attributes of the edge from node i to j;

• R is the set of edge residues, where ri,j ∈ R is for the
edge from i to j. Edge residues take values in [0, 1] and
constrain the edge selection process in SAN so that each
edge will not be repeatedly selected.

In addition, neighbors of node i is denoted by a sequence of
nodes Ni = 〈j | ei,j ∈ E〉, where Ni(k) is the k-th neigh-
bor of node i, and |Ni| indicates the size of the neighbor-
hood. We will discuss the ordering of neighborhoods in the
next section. Since we focus on graph classification, training
data are of the form {(Gi,yi)} where yi is the label vector
for Gi in a one-hot coding scheme.

Global Overview

A global picture of SAN is presented in Figure 1. SAN is a
deep neural network that takes a graph G of arbitrary size
as input and predicts its label y. Conceptually, SAN consists

of three major components: SAU layer(s), pooling layer, and
fully connected layer.

• SAU layers are the core components for extracting dis-
criminative graph features. The basic building block is
called Substructure Assembling Unit (SAU), which is a
variant of Recurrent Neural Network (RNN) that per-
forms on each node and is shared among nodes. For
each node, SAU sequentially makes progressive decisions
on edge and neighbor node selection to form discrim-
inative local substructure. Multiple SAU layers can be
cascaded to hierarchically build large substructures from
small ones. As shown in Figure 1, the center node in the
input graph selects to absorb the two nodes to its left in
the first SAU layer and then incorporates the substructure
centered at the lower-right node in the second layer.

• The pooling layer aggregates diverse substructures (one
for each node as the center) obtained from the last SAU
layer into a fixed-length vectorial representation suitable
for subsequent classification.

• The fully connected layer is a standard multi-layer neural
network that maps input features to class labels.

In the following, we discuss details in these three layers.

SAU layers

SAUs are inspired by two observations from combinatorial
algorithms on substructure pattern mining (Yan and Han
2002): (1) any substructure can be assembled by a sequence
of edge selection decisions on individual nodes (sequential
structure selection); and (2) complex substructure features
can be constructed from simpler ones (hierarchically).

We adopt a sequential, probabilistic decision process in
the design of SAUs, so that they can explore highly com-
plex graph space, while simultaneously achieving optimiz-
able substructure selection by utilizing class labels as the
guidance. Figure 2 gives a simple illustration. Here we have
the neighborhood of a node vi (top left figure), and suppose
we want to select a one-hop substructure (top right figure)
as the feature. In combinatorial algorithms, typically, hard
decisions (H(·) in Figure 2) are made via discrete opera-
tions (e.g., heuristic search), where it is difficult to continu-
ously improve the decisions using labels from classification
tasks. In our framework, we employ a probabilistic method
to mimic the edge selection process. Instead of hard deci-
sions, soft decisions are made in terms of the conditional
probability that a neighbor component should be selected
(P(·) in Figure 2). As a result, prediction errors can be back-
propagated to individual SAUs, so as to iteratively improve
the parameterized soft decision process, and identify dis-
criminative substructures automatically.

In the following, we discuss in more detail on how SAUs
sequentially make progressive decisions for neighbor sub-
structure selection . Typically, we will stack L (L ≥ 1) SAU
layers. Each SAU layer acts as a filter on the output of the
previous SAU layer, so that larger substructures can be as-
sembled from smaller ones. Let Gl = (V (l), E,R(l)) be the
output of the l-th SAU layer, where V (l) contains feature
vectors of the assembled substructures and R(l) includes the
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Figure 1: Overview: An example of SAN with two SAU layers

Figure 2: Substructure selection in combinatorial algorithms
(hard decision) and substructure assembling networks (prob-
abilistic/soft decision).

Figure 3: The graphical representation of SAU’s computa-
tion for node i on its k-th neighbor node j. Note: The red
line indicates it passes by other lines without intersection.

updated edge residues after the l-th SAU layer. The input to
the first SAU layer is G0 = (V (0) = V,E,R(0) = R). In-
side each layer, a SAU runs concurrently on individual nodes
using a shared set of parameters. Without loss of generality,
here we focus on how the l-th SAU layer operates on the
neighborhood of node-i step by step.

Initialization. Given the input to the l-th SAU layer,
Gl−1, we consider the substructure representation centered

at node i, v(l−1)
i ∈ V (l−1), which is projected into the hid-

den space and the output space by the l-th layer SAU:

h
(l,0)
i = W

(l)
h · [v(l−1)

i ,0] + b
(l)
h , (1)

v
(l,0)
i = softmax (W(l)

o · h(l,0)
i + b(l)

o ), (2)

where W
(l)
h , b(l)

h are parameters that control the mapping
from the input space1 to the hidden space, and W

(l)
o , b(l)

o are
parameters making projections from the hidden space to the
output space. We do not employ popular activation functions
(e.g., tanh) for the hidden space, as it is used for approxi-
mating substructure assembling via addition operations in
vector space. Like word2vec (Mikolov et al. 2013), an un-
bounded vectorial space is needed. The output space uses
softmax to generate higher level features. Softmax mod-
els substructure feature distribution as well as normalizes 2

feature vectors. Compared with other candidates such as L1
and L2 normalization, softmax significantly speeds up learn-
ing progress, as it could learn sparse feature representations
quickly and distill salient features more efficiently.

Progressive edge selection. After the center node i is ini-
tialized, the l-th layer SAU then starts processing the neigh-
borhood sequence Ni. Recall that Ni(k) represents the k-th
node in the neighborhood sequence. We also use j to replace
Ni(k) when it gives more convenient sub-indexes. The se-
quential procedure is summarized in 5 steps as follows. The
corresponding computation graph is depicted in Figure 3.

• Step 1: For Ni(k) = j, we project its representation,
namely v

(l−1)
j with ei,j , into the hidden space and then

to the output space as,

t
(l)
i,j = W

(l)
h · [v(l−1)

j , ei,j ] + b
(l)
h (3)

z
(l)
i,j = softmax (W(l)

o · t(l)i,j + b(l)
o ) (4)

1The input feature space is a concatenation of v(l)
i and the con-

cerned edge feature vector, e.g. [(v(l)
i )T eT

i,j ]
T ; when starting from

the center node where no edge is considered yet, the edge part is
simply padded with zeros as in Equation (1)

2Normalization is important here. As the size of a node’s neigh-
borhood could be arbitrary, as SAU progresses, the values of hidden
states could be at very different scales for individual nodes.
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• Step 2: Project the hidden vector h
(l,k−1)
i representing

the substructure assembled after considering the (k − 1)-
th neighbor Ni(k − 1) to the output feature space,

v
(l,k−1)
i = softmax (W(l)

o · h(l,k−1)
i + b(l)

o ) (5)

Figure 4: A two-layer edge-selection network models distri-
bution of edge selection decisions, where tanh is used in the
hidden layer, and sigmoid is applied to the output layer.

• Step 3: Given v
(l,k−1)
i (substructure assembled so far)

and z
(l)
i,j (substructure at node j), compute the probabil-

ity that the substructure at node j should be incorporated,

p
(l)
i,j = r

(l−1)
i,j · S(l)(v

(l,k−1)
i , z

(l)
i,j). (6)

Here S(l)(·) is an edge-selection module computing the
probability that edge eij should be selected in the l-th
SAU layer. It is a multi-layer network that takes v(l,k−1)

i

and z
(l)
i,j as input, and outputs a numerical value in the

range of [0, 1]. The reason that we use v
(l,k−1)
i and z

(l)
i,j

rather than h
(l,k−1)
i and t

(l)
i,j as input is that, the former

pair provides a normalized higher level view of the sub-
structures. The latter pair could be in very different scales,
making it difficult for the edge-selection network to learn
selection decision distributions. Figure 4 shows a two-
layer implementation, where tanh is used in the hidden
layer and sigmoid in the output layer.

In Equation (6), the edge selection probability p
(l)
i,j is re-

scaled by r
(l−1)
i,j , the “edge residue” for ei,j . r(l−1)

i,j is
equal to one minus the cumulative probability of edge ei,j
being selected in the previous l−1 SAU layers, and is used
to inform the l-th layer on how much consideration can be
given to this edge. Edge residues provide constraints to
selection probabilities, so as to avoid duplicate edge se-
lection across different SAU layers in a soft manner. The
edge residues are initialized to all 1’s and updated in each
SAU layer based on the edge-selection decisions in that
layer, according to Equation (8) in Step 5.

• Step 4: Assemble substructure from node j by

h
(l,k)
i = h

(l,k−1)
i + p

(l)
i,j · t(l)i,j (7)

where we apply linear operations in vector space to ap-
proximate substructure assembling in graph space.

• Step 5: Update edge residues by

r
(l)
i,j = r

(l−1)
i,j − p

(l)
i,j (8)

Finally, v(l) = v(l,|Ni|) is the output for node-i after
the progressive edge selection in the l-th SAU, which then
serves as the input to the subsequent layer.

Pooling layer

The pooling layer provides a uniform view for graphs of
arbitrary sizes. Suppose that SAN employs L SAUs. The
pooling layer takes V (L) as its input, and aggregates sub-
structure features from individual nodes into a fixed-length
feature vector for an input graph as follows.

zp =
∑

v
(L)
i ∈V (L)

v
(L)
i (9)

g = softsign(Wp · zp + bp) (10)
where Wp and bp are model parameters.

In Equation (9), we use sum for aggregation. While max
aggregation could be an alternative which serves as fea-
ture indicators, sum is preferred in SAN as it performs as
both feature indicators and feature strength counters. An-
other possibility is to use weighted average for aggregation.
In our exploration, we find it brings little improvement com-
pared with sum, as the parameters in SAU layers can auto-
matically tune the strength in individual feature channels.

In Equation (10), we make another projection to standard-
ize feature representations. Similar to tanh , the output of
softsign in each dimension is in (−1, 1). softsign is pre-
ferred, as it does not saturate as easily as tanh .

Fully connected layer

Given the output g from the pooling layer, SAN employs a
fully connected layer to predict class label:

ŷ = softmax (Wf · g + bf ) (11)

where Wf , bf are model parameters, ŷ is a vector for class
prediction, and the number of dimensions for ŷ equals to the
number of classes in a classification task.

SAN Training

In this section, we highlight key points in SAN training.
Meta parameters. The dimensionalities of hidden space

and output feature space are two meta-parameters for each
SAU. Intuitively, the higher the dimensionality, the more di-
verse substructure features can be taken into account for sub-
sequent classification tasks, at the cost of higher computa-
tional complexity and risk of overfitting.

Loss function. We employ cross entropy to evaluate the
error made by a parameter setting in SAN. Suppose that an
input graph G is labeled as y and ŷ is the label prediction
generated by SAN. In this case, the loss is quantified as

L = −y · log ŷ (12)
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With this loss function, we further leverage gradient descent
based back-propagation to iteratively optimize parameters.

Neighborhood shuffling. When processing the neighbors
of a node, the order of its neighborhood sequence can have
a direct impact on the learning result. One possible solution
is to fix the order by converting l-hop structural character-
istics of each neighbor into a ranking score, when applying
the (l + 1)-th SAU. However, we find that this strategy can
easily lead to model overfitting, especially when the train-
ing data is limited. Therefore, we choose to teach the model
to handle arbitrary neighborhood orders by randomly shuf-
fling neighborhood sequences for each training epoch. This
can effectively generalize SAN for neighborhood of differ-
ent permutations, and also overcome the small dataset issue
for training deep neural networks.

Experimental Results

In this section, we present an experimental study on classifi-
cation accuracy and interpretability of SAN.

Dataset

In the evaluation, we focus on public benchmark datasets for
graph classification methods.

• MUTAG (Debnath et al. 1991) includes a set of graphs,
each of which represents nitro compounds, and their la-
bels indicate if they have mutagenic effect on bacteria;

• NCI1 and NCI109 (Wale, Watson, and Karypis 2008) are
graph representations of chemical compounds screened
for activity against non-small cell lung cancer and ovar-
ian cancer cell lines, respectively;

• ENZYMES (Borgwardt et al. 2005) contains graph repre-
sentations of tertiary structure of 6 classes of enzymes;

• D&D (Dobson and Doig 2003) includes structures of en-
zymes and non-enzymes proteins, where nodes are amino
acids, and edges indicate spatial closeness between nodes.

More details of the datasets are shown in Table 1.

MUTAG NCI1 NCI109 ENZYMES D&D
# graphs 188 4110 4127 600 1178

Avg. # nodes 17.93 29.87 29.68 32.63 284.32
# node attributes 7 37 38 3 82

Avg. # edges 19.79 32.3 32.13 62.14 715.66
# edge attributes 11 3 3 – –

# classes 2 2 2 6 2

Table 1: Statistics of the benchmark datasets. In these
datasets, node and edge attributes are categorical.

Baseline methods

In this study, we compare SAN with state-of-the-art deep
learning methods and graph kernels.

• Graph kernels. The following representative techniques
are considered: (1) deep graph kernel (DG) (Yanardag and
Vishwanathan 2015), (2) Weisfeiler-Lehman graph kernel
(WL) (Shervashidze et al. 2011), (3) graphlet count kernel
(GLC) (Shervashidze et al. 2009), (4) shortest-path kernel

(SP) (Borgwardt and Kriegel 2005), and (5) random-walk
kernel (RW) (Gärtner, Flach, and Wrobel 2003).

• Deep graph learning. We include the following
methods: (1) edge-conditioned convolutional network
(ECC) (Simonovsky and Komodakis 2017), (2) struc-
ture2vector (S2V) (Dai, Dai, and Song 2016), (3)
PSCN (Niepert, Ahmed, and Kutzkov 2016), and (4)
diffusion-convolutional neural networks (DCNN) (At-
wood and Towsley 2016).

In addition, to compare SAU with other widely adopted
recurrent unit alternatives, such as Gated Recurrent Unit
(GRU) (Chung et al. 2014) and Long-Short Term Memory
(LSTM) (Hochreiter and Schmidhuber 1997), we implement
two baselines under the SAN framework: LSTM-SAN and
GRU-SAN. In LSTM-SAN (GRU-SAN), we replace SAU
with LSTM (GRU): (1) Hidden state update operations in
LSTM (GRU) are employed to model substructure feature
assembling; (2) After substructure assembling, the last hid-
den state is projected to an output space which serves as the
input for a subsequent layer, as SAU does in Equation (5).

SAN configuration

We first briefly introduce the symbols used to present net-
work structures for SAN instances.

• sau(x, y, z) indicates an SAU layer with x dimensions in
its hidden space, y dimensions in its output space, and z
units for the hidden layer of its edge-selection network. In
the study, we observe two-layer edge-selection networks
are able to provide satisfying performance, while addi-
tional layers cannot provide any significant improvement.

• p(x) stands for a pooling layer that first performs aggrega-
tion by Equation (9) and then projects the aggregated vec-
tors into an x-dimensional output space by Equation (10);

• fc(x) denotes a fully connected layer with an x-
dimensional output space. Note that in SAN, x also de-
notes the number of classes in a classification task;

• d(p) stands for a dropout layer with keep-probability p in
training phases.

For each dataset, the specific SAN structure is varied by
its input complexity, such as the number of nodes (edges)
and the number of node (edge) attributes per graph. By
cross-validation, we take the following SAN configurations
in the evaluation.

• MUTAG. An SAN of sau(64, 32, 64) → sau(64, 32, 64)
→ p(64)→ d(0.5)→ fc(2) is taken for this dataset. Using
two layers of SAUs, we are able to extract high-quality
features and achieve decent accuracy.

• NCI1. We adopt sau(64, 32, 64) → sau(64, 32, 64) →
sau(64, 32, 64) → p(64) → d(0.5) → fc(2) for this
dataset. With the third SAU, more complex substructure
features are learned, bringing better classification perfor-
mance. Meanwhile, we observe SAUs of larger hidden
and output space (e.g., sau(128, 64, 128)) could not lead
to significant improvement.
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• NCI109. We also use sau(64, 32, 64) → sau(64, 32, 64)
→ sau(64, 32, 64) → p(64) → d(0.5) → fc(2), as NCI1
and NCI109 share similar input complexity.

• ENZYMES. sau(64, 32, 64) → sau(64, 32, 64) →
sau(64, 32, 64) → p(64) → d(0.5) → fc(6) is employed
for this dataset.

• D&D. We configure an SAN of sau(64, 32, 64) →
sau(64, 32, 64) → p(64) → d(0.5) → fc(2) for this
dataset. In the exploration, we observe little improvement
is brought by more complex SAUs or additional SAUs.
For LSTM-SAN and GRU-SAN, we replace SAU with

LSTM and GRU, respectively, using same meta parameters
for fair comparison.

We implement SAN and its variants in Tensorflow (Abadi
et al. 2016), and use Adam optimizer with its default set-
ting (Kingma and Ba 2015). Each SAU layer is pre-trained
for 2,000 epochs, followed by end-to-end fine-tuning on the
whole SAN for 10,000 epochs.

Classification accuracy evaluation

Following (Shervashidze et al. 2011), we perform 10-fold
cross validation and present the average accuracy.

As shown in Table 2, SAN achieves the best accuracy on
multiple datasets and delivers overall competitive classifica-
tion performance.
• Compared with SAN variants LSTM-SAN and GRU-

SAN, SAN outperforms them over all datasets, with up
to 16% improvement. Indeed, LSTM and GRU have
achieved great success in applications such as NLP and
speech recognition; however, they may not be good fit in
the case of substructure assembling: (a) Unlike the afore-
mentioned applications, an edge selection decision in sub-
structure assembling makes permanent impact to the later
decisions, so the gating mechanisms, such as forget gate
in LSTM, could be counter intuitive in the scenario of
substructure feature learning; (b) While more gates bring
unnecessary parameters, it becomes more difficult to train
a network with increased overfitting risk. This result also
confirms our intuition behind the design of SAU.

• Compared with state-of-the-art deep learning methods for
graph classification, SAN also achieves overall the best
performance. Unlike PSCN, SAN performs on raw graph
data without a complex node-ordering step, and outper-
forms it in all cases. Compared with ECC, SAN performs
significantly better on MUTAG, ENZYMES, and D&D,
and delivers similar performance on NCI1 and NCI109.
This suggests the progressive substructure assembling in
SAU indeed brings additional discriminative features to
classification tasks. In the case of S2V, SAN achieves bet-
ter performance on MUTAG, NCI1, and ENZYMES with
comparable performance on NCI109 and D&D. Unlike
S2V that aims to learn graph embedding, SAN explicitly
learns substructure assembling process for better classi-
fication performance, where the edge residue mechanism
in SAU makes it easier to interpret the learned features.

• SAN also demonstrates competitive classification per-
formance in comparison with the state-of-the-art kernel

methods. In particular, SAN outperforms WL in the case
of MUTAG, ENZYMES, and D&D, with comparable per-
formance on NCI1 and NCI109.

Interpretable substructure features in SAN

Figure 5: SAN discovers discriminative features for positive
and negative graphs in NCI1, where integers are node/edge
attributes from the benchmark dataset. Colors on edges in-
dicate how much they contribute for a classification task,
where red solid ones contribute the most and grey dotted
ones contribute the least.

We perform a case study on two NCI1 graphs (one posi-
tive and one negative) to show the interpretability of learned
features. By the edge residues generated from the last SAU,
we are able to derive contribution weights of edges for the
underlying classification task, where a contribution weight is
a numerical value in the range of [0, 1] and a larger contribu-
tion weight means an edge contributes more. In the example
shown in Figure 5, contribution weights fall into three bins:
(1) edges of weights in the range of (0.9, 1] are red solid
lines; (2) edges of weights in the range of (0.4, 0.6] are blue
broken lines; and (3) edges of weights in the range of (0, 0.2]
are grey dotted lines. In this case, substructures of red solid
edges serve as the most discriminative substructure features,
and provide the strongest signals for its classification. Un-
fortunately, as node/edge attributes in the benchmark dataset
are digitized into integers, we are unable to recover their
original attributes in Figure 5.

Related Work

Existing techniques for graph classification can be grouped
into two categories: kernel methods and deep learning.

Kernel methods. Graph kernels compute similarity be-
tween graphs, and then we can leverage kernel-based super-
vised techniques such as SVM (Cortes and Vapnik 1995) to
learn boundaries between different classes. Graph kernels
vary based on graph features used for measuring similar-
ity, ranging from random walks (Gärtner, Flach, and Wro-
bel 2003), shortest paths (Borgwardt and Kriegel 2005), to
graph substructures (Shervashidze et al. 2009; Yanardag and
Vishwanathan 2015). Although Graph kernels have achieved
great success, they suffer two major limitations: (1) they
usually involve high computation complexity with scalabil-
ity concern; and (2) similarity matrix computation and clas-
sification learning are two independent steps, where graph
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MUTAG NCI1 NCI109 ENZYMES D&D

D
ee

p
L

ea
rn

in
g SAN 94.30 83.84 81.78 63.17 81.37

LSTM-SAN 80.21 76.43 75.26 51.18 74.67
GRU-SAN 81.33 74.32 75.33 53.33 72.00

PSCN 92.63 78.59 – – 77.12
S2V 88.28 83.72 82.16 61.10 82.22
ECC 89.44 83.80 82.14 53.50 74.10

DCNN 66.98 62.61 62.86 18.10 –

G
ra

ph
K

er
ne

l DG 87.44 80.31 80.32 53.43 –
WL 83.78 84.55 84.49 59.05 79.78
GLC 75.61 66.00 66.59 32.70 78.59
RW 80.72 64.34 63.51 21.68 71.70
SP 87.28 73.47 73.07 41.68 78.45

Table 2: Classification accuracy comparison between SAN and baseline methods: (1) Average accuracy after 10-fold cross
validation is reported; (2) we only include the results from the variant of the best performance for each baseline method.

features are fixed beforehand and feature selection cannot
be guided by followup classification tasks.

Deep learning. Deep learning suggests the potential to
enable joint training that guides both feature and classifica-
tion learning. However, as input graphs are allowed to be of
arbitrary size and permutation invariant, it is difficult to di-
rectly apply off-the-shelf deep learning frameworks, such as
CNN, to graph classification problems.

A few studies attempt to address this challenge by graph
spectral methods (Defferrard, Bresson, and Vandergheynst
2016; Bruna et al. 2014): Although it is hard to align nodes
across graphs, it is still possible to align channels in graph
spectral domain. While such deep learning methods are ef-
fective to filter information channels in spectral domain and
learn global graph features, it is difficult to perform lo-
cal substructure feature learning, which limits their perfor-
mance in classification tasks.

To further improve classification accuracy, recent works
start investigating how to design network structures that en-
able automated substructure feature learning. Multiple stud-
ies (Simonovsky and Komodakis 2017; Li et al. 2016; Duve-
naud et al. 2015) assume feature selection processes behave
identically for neighbor nodes with the same node/edge at-
tributes and propose approaches that filter neighbor infor-
mation according to neighbor nodes’ node/edge attributes or
filter neighbor information in a uniform way, which may not
necessarily hold in practice. Meanwhile, it is also difficult
for these methods to distinguish neighbor selection in the
cases where edge labels are missing or all edges share an
identical label. Niepert et al. (Niepert, Ahmed, and Kutzkov
2016) develop a framework that first aligns nodes across in-
put graphs and then employs CNN for training and classi-
fication. The performance of this technique highly depends
on node alignment results in the first step. Unfortunately,
node alignment problem is NP-hard and difficult to guaran-
tee effective node alignment, which potentially undermines
its performance for different datasets. Unlike these works,
our technique has no need for a node alignment step and uti-
lizes RNN-like network structures to assemble substructure
features by a sequence of edge selection decisions, where

each decision is made by jointly considering edge label and
neighbor state information. Moreover, with a hierarchical
network structure, our technique is able to deliver high ac-
curacy with interpretable graph substructure features.

In addition, deep learning methods are also adopted in
node embedding learning. Given a set of nodes in a graph,
node embedding learning aims to unveal hidden representa-
tions for nodes in either a supervised (Moore and Neville
2017; Kipf and Welling 2017) or an unsupervised (Cao,
Lu, and Xu 2016; Tang et al. 2015) manner so that their
proximity is preserved. The discovered node representations
can serve as an important source of features for tasks such
as node classification (Perozzi, Al-Rfou, and Skiena 2014;
Chang et al. 2015; Grover and Leskovec 2016), link predic-
tion (Li et al. 2014; Wang, Cui, and Zhu 2016), and com-
munity detection (Tian et al. 2014; Ribeiro, Saverese, and
Figueiredo 2017). Compared with these works, our work
pursues a different goal: Given a given set of graphs, we aim
to learn proximity among graphs.

Conclusion

In this work, we propose the Substructure Assembling Net-
work to extract interpretable, discriminative structural fea-
tures for the challenging task of graph classification, which
has a wide variety of real-world applications. Our approach
inherits the advantage of both combinatorial pattern search
and deep learning. Using public benchmark datasets, we
demonstrate the great potential of SAN in extracting dis-
criminative and interpretable graph features to boost clas-
sification performance for graphs.
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