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Abstract

Predictive state representations (PSR) have emerged as a
powerful method for modelling partially observable environ-
ments. PSR learning algorithms can build models for pre-
dicting all observable variables, or predicting only some of
them conditioned on others (e.g., actions or exogenous vari-
ables). In the latter case, which we call conditional modelling,
the accuracy of different estimates of the conditional proba-
bilities for a fixed dataset can vary significantly, due to the
limited sampling of certain conditions. This can have nega-
tive consequences on the PSR parameter estimation process,
which are not taken into account by the current state-of-the-
art PSR spectral learning algorithms. In this paper, we exam-
ine closely conditional modelling within the PSR framework.
We first establish a new positive but surprisingly non-trivial
result: a conditional model can never be larger than the com-
plete model. Then, we address the core shortcoming of ex-
isting PSR spectral learning methods for conditional models
by incorporating an additional step in the process, which can
be seen as a type of matrix denoising. We further refine this
objective by adding penalty terms for violations of the sys-
tem dynamics matrix structure, which improves the PSR pre-
dictive performance. Empirical evaluations on both synthetic
and real datasets highlight the advantages of the proposed ap-
proach.

Introduction

Modelling stochastic sequential data is of significant interest
in many scientific disciplines, and many approaches have
been proposed in machine learning to deal with this prob-
lem. In this paper, we are concerned mainly with models
which are capable of making predictions about future obser-
vations, given a stream of data seen so far. This is an im-
portant problem in many domains, including reinforcement
learning (where one wants to predict future returns), medical
classification (where one may want to predict the future risk
of a patient becoming critically ill), etc.

Hidden Markov models (HMM) (Rabiner 1989) and their
extensions such as partially observable Markov decision
processes (POMDP) are popular models for this task. They
represent conditional models of observations given latent
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states of the system, also incorporating action/input vari-
ables in the case of POMDPs. Historically, expectation max-
imization (EM) has been used to learn such models, with
mixed success. In the last decade, spectral learning meth-
ods have emerged as an alternative to EM with competi-
tive performance and stronger theoretical guarantees, such
as consistency (Boots, Siddiqi, and Gordon 2011) and fi-
nite sample bounds (Hsu, Kakade, and Zhang 2012). Such
methods can in fact be applied to learn about other classes
of models with latent variables, such as weighted finite au-
tomata, HMM mixtures, latent junction trees, etc. (Parikh et
al. 2012), (Balle et al. 2014),(Subakan, Traa, and Smaragdis
2014). In this paper, we focus on using spectral learning for
an alternative representation called (linear) predictive state
representations (PSR) (Littman et al. 2002), (Singh, James,
and Rudary 2004), which is used to describe the evolution
of system observations possibly conditioned on actions of
an agent. The development of consistent learning algorithms
for PSRs has made it possible to use them for sequential data
modelling in large and realistic problems (Boots, Siddiqi,
and Gordon 2011), (Boots and Gordon 2011), (Ong, Grin-
berg, and Pineau 2013); (Grinberg, Precup, and Gendreau
2014), (Hamilton, Fard, and Pineau 2013).

While learning PSR models has been applied to both
problems without actions (HMM-like) and with actions
(POMDP-like), the latter case deserves a more careful inves-
tigation. We focus on the problem of conditional modelling
of a subset of variables within the PSR framework, while
other variables are treated as exogenous or actions. We call
such a model a conditional PSR as opposed to a complete
PSR, which models all the variables jointly. We first derive
a new result showing that the conditional PSR will never
have a larger dimension than the complete PSR, regardless
of the dependency between variables. Then, we examine the
current state-of-the-art PSR learning method and show that
its parameter estimation procedure suffers when the condi-
tioned variable (action or exogenous variable) is not sampled
uniformly at random. It is crucial to address this problem, as
in conditional models some conditions may never be achiev-
able or occur very rarely, thus crippling existing techniques.
We introduce a new, theoretically justified, optimization ob-
jective which addresses this problem. This optimization is
then incorporated as an intermediate step in existing PSR
spectral learning. We evaluate the proposed approach on a
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synthetic problem as a predictor; a simulated robot environ-
ment as a predictor, and as a model that is part of the rein-
forcement learning method; and on a real dataset collected
from a robot, as a predictor. The modified learning algorithm
exhibits better sample efficiency and the potential to produce
more compact models.

Background

We use bold lowercase letters to represent vectors, capital
letters for matrices, and curly letters for both spaces and
random variables (the difference is clear from the context),
with regular lowercase letters representing values for vari-
ables. Occasionally we use double indexing, in which case
subscript indices represent different values of the variables
and superscripts identify the time step.

Let A and B be discrete finite spaces, with A being
an input and B an observation. A model that can pre-
dict B given variable A is denoted by B|A. A model
that predicts both is denoted by A × B. Several PSR
parametrizations to model B|A have been proposed in the
literature (Littman et al. 2002), (Singh, James, and Rudary
2004), (Rosencrantz, Gordon, and Thrun 2004). We follow
(Wiewiora 2007), which defines a linear PSR as a tuple{
mε ∈ R

n,
{
Mab ∈ R

n×n
ab∈A×B

}
,m0 ∈ R

n
}

, s.t.:

∀h ∈ (A×B)∗ : P (b ∈ B|h, a ∈ A) = m(h)TMabmε (1)

where m(h) is a state of the PSR after observing history h
(m0 is the initial state), and can be computed recursively as:

m(h, ab) =
m(h)TMab

m(h)TMabmε

A PSR whose action space has a single action represents a
stochastic process without input variables.

Most of the learning algorithms for linear PSRs are based
on estimating a portion of the system dynamics matrix
(SDM) (Singh, James, and Rudary 2004), (Boots, Siddiqi,
and Gordon 2011), a matrix that contains all the informa-
tion about the observable behaviour of the environment.
Its rows correspond to histories (sequences of past actions
and observations) and columns correspond to future action-
observation sequences, called tests; the entries are probabil-
ities of observations in the corresponding history-test pair
given their sequence of actions. The spectral learning algo-
rithm for PSRs (Boots, Siddiqi, and Gordon 2011) proceeds
by computing the singular value decomposition (SVD) of a
portion of the matrix obtained by sampling from the envi-
ronment, and then computes the PSR parameters based on
the results of SVD. Let P̂H,T = USV T be an estimated
matrix for tests T and histories H, with its truncated SVD
decomposition. Let P̂H,abT be a collection of estimated ma-
trices whose columns correspond to {ab, t|t ∈ T } for all
ab ∈ A × B; and p̂H be a vector of estimated probabilities
of histories. The algorithm computes PSR parameters as:

• mT
0 is the first row of US,

• mε: solution to the equation (P̂H,T V )mε = p̂H,

• Mab: solution to the equation (P̂H,T V )Mab = P̂H,abT .

Figure 1: Fragments of the SDMs corresponding to B|A
(top) and A×B (bottom). The symbol � represent an empty
history.

As long as T and H are sufficiently large and P̂H,T ,P̂H,abT ,
p̂H are well estimated, the algorithm is guaranteed to pro-
duce an exact linear PSR representation of the environ-
ment (Boots, Siddiqi, and Gordon 2011).

Dimensions of Conditional PSR

Suppose that we only want to model some of the possible
observations, not all of them. In this case, we are interested
in building a conditional model B|A, where A could be ac-
tions, or other variables that we want to consider exogenous
(perhaps because they are difficult to model). We would ex-
pect intuitively that a conditional distribution would be eas-
ier to model than a full joint, hence the conditional PSR
should be more compact (or at least not larger) than the com-
plete PSR.

In this section we state the main theorem that backs up
this intuition. Surprisingly, proving this result is more com-
plicated than it seems at first glance. In earlier PSR papers,
the standard tool to show that one (sub-)system is at most
as big as another has been the direct comparison of their
SDMs. For example, in (Wolfe, James, and Singh 2008),
(Ong, Grinberg, and Pineau 2013), the authors directly show
that the column space of one SDM spans the column space
of another SDM. Unfortunately, this line of attack does not
work in our case. To get an intuition for why this is the
case, consider the following example, depicted in Fig. 1. Let
A = {a1, a2, a3} and B = {b1, b2, b3}. Consider a fragment
of the SDM of B|A and one from the SDM of A×B. Look-
ing at the first row of B|A, it is not clear how to write it as
a linear combination of rows from A × B, since in general
P (a2) �= P (a3). The situation is similar with respect to the
first column of B|A. As a result, there is no direct way to
show that the column/row spaces of one SDM are within the
corresponding spaces of the other.

Theorem 1. Consider an A × B-valued stochastic process
that can be represented by a k-dimensional linear PSR.
Then, the conditional linear PSRs representing B|A and
A|B models are each at most k-dimensional.

The proof is provided in the Appendix. While the above
theorem considers stochastic processes that output two vari-
ables only for simplicity, the extension to larger number of
variables is straightforward.
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Spectral Learning for Conditional PSRs

The existing literature on learning PSRs treats the modelling
of conditional and complete models very similarly (Boots,
Siddiqi, and Gordon 2011), (Boots and Gordon 2011). The
single issue that has been identified earlier for learning con-
ditional PSRs is that the original estimators of the SDM en-
tries are biased and not consistent (Bowling et al. 2006). In
that work, corrected estimators were developed, which can
also be seen as importance-weighting of the original estima-
tors (Boots, Siddiqi, and Gordon 2011). Assume for the rest
of this section, that A is the exogenous variable and we want
to learn the model B|A. In that case, an entry in the SDM
that corresponds to the sequence

〈
a1b1, a2b2, ..., ambm

〉
is

estimated from:
m∏
i=1

#a1b1...aibi

#a1b1...bi−1ai
, (2)

which is an unbiased estimator [Bowling et al., 2006] of∏m
i=1 P (bi|a1b1, ..., ai−1bi−1, ai).
However, beyond the need to correct the entry-wise esti-

mators of the SDM, there is a deeper issue with learning con-
ditional models using standard spectral learning. To see this,
consider the rank-k SDM approximation problem, which is
solved using SVD as the central step of the algorithm:

argminQ,R||P̂H,T −QR||2F (3)

where Q ∈ R
H×k, R ∈ R

k×T , ||.||F stands for Frobenius
norm. Clearly, this optimization treats every entry in P̂H,T
equally. However, a careful look at the above estimator re-
veals that not all entries are created equal. For example, if
P (a1) is small compared to P (a2), the Monte-Carlo esti-
mates of P (b1|a1) are going to be more noisy than the es-
timates of P (b1|a2). Taking this to extreme, if P (a1) = 0,
the corresponding SDM entries will be filled with a default
value of 0. Those entries will have the same effect on the ob-
jective (3) as the other entries, which is a sub-optimal strat-
egy at best.

To address this problem, instead of solving (3), we pro-
pose to solve a modified optimization problem, given by the
entry-wise weighted Frobenius norm:

argminQ,R||P̂H,T −QR||2F,W (4)

≡
∑
ij

wij([P̂H,T ]ij − [QR]ij)
2

where the weight matrix [W ]ij = wij identifies the impor-
tance of the entries. The question becomes how to set the
weights so they reflect the accuracy of the Monte-Carlo es-
timates (2). One natural choice is the reciprocal of the vari-
ance of the corresponding estimators. In fact, using a simpli-
fying assumption, these weights guarantee that the solution
to (4) is a maximum likelihood estimate.
Corollary 2 (Known result). Let Y = X + Z be an obser-
vation matrix of size m×n where X is fixed and Z is an i.i.d
noise matrix, with zij ∼ N (0, σ2

ij). Then, the maximum like-
lihood estimator for X for any hypothesis set M ⊂ R

m×n

is:
argminX∈M

∑
ij

1
σ2
ij
(yij − xij)

2.

Last but not least, it is well known that P̂H,T is a very
structured matrix, but the optimization objective (4) does not
account for that. Structural violations of this matrix increase
the chances that the learned PSR will produce invalid prob-
abilities, e.g. negative probabilities or probabilities that do
not sum to 1. This problem shows up in the original spectral
learning method as well (eq. (3) does not enforce the ma-
trix structure), however to a lesser extent compared to the
solution obtained from objective (4). Therefore, we propose
to explicitly penalize structural violations in the objective
function. Note that this approach is of independent interest
to spectral learning methods in general. In the experimen-
tal section we will highlight the benefits of those penalties.
To introduce the penalties, let hitj be the concatenation of
sequences hi and tj . The structural properties of P̂H,T are:
• All entries are in the interval [0, 1],

• If h1t1 = h2t2 then P̂H,T (h1, t1) = P̂H,T (h2, t2),

•
∑

b∈B P̂H,T (h, tab) = P̂H,T (h, t); ∀hta ∈ H×T ×A.
In our experiments, the first property was rarely violated,

so we ignored it for convenience. For the second property,
let C be a set of sublists Ci containing all the row-column
indexes of history-test tuples whose probability should be
the same in P̂H,T , i.e.

C = {Ci| 〈index[(h1, t1)], index[(h2, t2)]〉 ∈ Ci ⇔
h1t1 = h2t2; for i �= j Ci ∩ Cj = ∅}.

For the third property, note that it is actually a sum over the
columns of P̂H,T , so we need to enforce it on R no matter
what the Q values are. Let 〈Yk, jk〉lk=1 be a collection of
indexes encoding this constraint, specifically:

∀k :
∑

y∈Yk
[P̂H,T ]:,y − [P̂H,T ]:,jk = 0.

Combining the above definitions, we further augment eq. (4)
by adding the penalties as follows:

argminQ,R

∑
i,j

∥∥∥P̂H,T −QR
∥∥∥
2

F,W

+λ1

[∑
k∈|C|

∑
〈i,j〉∈Ck

(qTxi
ryi

− qTxj
ryj

)2
]

+λ2

∑l
k=1

∥∥∥∑y∈Yk
R:,y −R:,jk

∥∥∥
2

(5)

where xi, yi denote the row and column indexes of element i
in P̂H,T respectively. Note that these new terms in the objec-
tive do not change the nature or hardness of the optimization
problem.

The solution to the new optimization problem (5), which
we call low rank matrix denoising, is then used by the
spectral learning algorithm instead of the SVD decompo-
sition; the subsequent conditional PSR parameter estima-
tion process remains unchanged. Note that the choice of the
optimization problem in (5) as well as the choice of the
weights lead to the following meaningful but easily over-
looked consistency–like result.
Proposition 3. Let the sets H and T be sufficiently large1,
and assume the rank of QR is not less than the rank of the

1A typical requirement to obtain consistency results, which re-
quires the submatrix PH,T to have the same rank as the SDM.
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SDM representing B|A. Then, in the limit of infinite data,
QR = PH,T is a global optimum of the problem (5).

Proof. First, due to the assumption on the rank of QR,
QR = PH,T is achievable. Further, note that the penal-
ties for structure violations in (5) are 0, since PH,T is a
valid submatrix of the SDM. Finally, as the weights are
the reciprocal of the variance of the estimators, they re-
main constant for missing entries (missing due to the pos-
sible non-stochasticity of the policy), and grow to infinity
for the other entries. This is, however, equivalent to main-
taining bounded weights for the non-missing entries and
weights that go to zero for missing entries (by normalizing
(5)). As P̂H,T → PH,T entry-wise, for non-missing entries,
we therefore have that setting QR = PH,T makes the ob-
jective (5) → 0 in the limit.

The above result is meaningful precisely because it does
not hold for non-stochastic policies for the standard spectral
learning method. In the case of non-stochastic policies, the
missing entries in the SDM will still be treated as meaning-
ful entries (typically containing the value of 0).

To solve the problem (5) we use gradient descent
and initialize the matrices Q and R with the so-
lution obtained from the SVD, since this approach
has been proven optimal in certain matrix comple-
tion problems (Jain, Netrapalli, and Sanghavi 2013;
Gunasekar et al. 2013). The pseudo-code is shown in Alg. 1
box below.

Algorithm 1: Denoising Algorithm

Data: P̂H,T = UTSV ∈ Rm×n, step size α ,
threshold ε, reg. parameters λ1, λ2

Let f(Q,R) =
∑

i,j ||P̂H,T −QR||2F,W +

λ1(
∑

k∈|C|
∑

i,j∈Ck
(qTxi

ryi − qTxj
ryj )

2)

+λ2

∑l
k=1 ||

∑
y∈Yk

R:,y −R:,jk ||2

Result: Rank-k matrix R
Initialize: Q = UTS; R = V ;
Until: convergence
Q = Q+ α�Qf(Q,R); R = R+ α�Rf(Q,R);

Experiments

We conducted several experiments on real and simulated en-
vironments in order to evaluate our denoising algorithm, in
comparison to the standard PSR learning approach. In all
experiments we set the Frobenious norm weights to be the
number of samples used to estimate each entry as a proxy to
the inverse variance.

One State Environment

First, we consider a simple environment with one state, two
actions (a ∈ {right, left}) and two observations (o ∈

Figure 2: Synthetic problem setup: one-state environment
(top) and two-state policy(bottom)

{0, 1}). The policy is a two-state automaton with states la-
beled A and B, A being the initial state. Figure 2 depicts
the behavior of the environment and the policy. The obser-
vations obtained from the environment are probabilistic, de-
pending on the action observed, parameterized with k. The
policy states cycle (A → B, B → A) after each time step.

The results for k = 100 are depicted in Figure 3 for PSR
dimensions 1 and 2, showing one-step prediction errors and
the difference in Frobenius norm between the true and es-
timated SDM matrices, as a function of the number of tra-
jectories used for training. The curves represent means and
standard errors over 5 independent runs. The prediction er-
rors are measured through the L1-norm between the one-
step predicted and true probabilities of the test data con-
sisting of 3000 trajectories of length 2 (2 action-observation
pairs) generated under a random policy, and then averaged
out.

Due to the non-stationary and biased nature of the policy,
the SDM matrix without denoising will always remain rank-
2 matrix even in the infinite data case, despite representing
a one-state environment. The denoising algorithm suggests
that the rank-1 SDM matrix fits the problem better than rank-
2 matrix, as expected, by achieving better performance on
the SDM matrix error and comparable performance on the
prediction error. This is in addition to its superior perfor-
mance to the standard approach across both setups.

Torus Environment

The torus environment represents a simulated navigation
task with stochastic partial observability, shown schemati-
cally in Fig. 4. There are 100 states representing locations
on the torus, with observations being a color sampled from a
stochastic observation model that depends on the state. The
actions move the agent along the 4 available directions, ei-
ther 1 or 2 steps (giving 8 possible actions). However, going
up or down is only possible at certain locations (see Fig. 4a).
The robot chooses any valid action with equal probability.
While this is a synthetic environment, it captures the char-
acteristic of real environment where certain actions may not
always be available, or may be too costly to take even during
the exploration stage, thus inducing a non-uniform sampling
over the trajectories.

The results of applying the standard spectral learning and
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(a) Pred. error on test data (b) SDM matrix error

(c) Pred. error on test data (d) SDM matrix error

Figure 3: Comparison of standard vs ”with denoising” algo-
rithms: performance on learning one-state environment us-
ing rank-1 SDM (top) and rank-2 SDM (bottom) matrices.

spectral learning with denoising are shown in Figure 5, for
problem setups with 4 observations and 20 observations.
The SDM was constructed using histories up to length 3 and
tests up to length 2. The error measures used are as in the
previous task. In all cases, we used rank-15 SDM, as it pro-
duced better performance for both the standard and denois-
ing methods. The error is computed using test data similarly
to the first experiment, containing 5000 trajectories of length
4 obtained from the same exploratory policy.

Planning in Torus environment

To further show that the PSR models learned using spectral
learning with denoising are useful, we evaluate their util-
ity as a state representation for planning in the Torus en-
vironments with 8 observations and 4 actions. The rewards
[-3,-2,-1,0,1,2,3,4] are assigned to observations 1 to 8. The
objective is to maximize the total reward after taking 1000
steps. Standard spectral learning and spectral learning with
denoising were used to model the environment first, and then
Fitted-Q iteration (FQI) (Ernst, Geurts, and Wehenkel 2005)
was used to learn the optimal policy on a single trajectory
of size 1500 generated from a uniformly random policy. At
each iteration of FQI, we used Extremely randomized trees
(Geurts, Ernst, and Wehenkel 2006) to do the fitting step.
The experiment was repeated 10 times, and the average re-
ward for varying training data sizes (for model learning) are
shown in Figure 7a. The performance of our proposed ap-
proach is superior to its counterpart. We also included the
performance of the random policy as a baseline for bench-
marking purposes (a flat line around the value 900). The per-

(a) The white dots represent possible robot states, the red lines
represent possible paths the robot can traverse

(b) Traversing the torus: yellow line - robot exploration, color
patches - sampled observations

Figure 4: Details of the torus environment

formance degradation in standard spectral learning can be
attributed to lack of proper handling of ”missing” entries in
the SDM. As more data is available, more ”missing” entries
appear in the SDM matrix due to the constraint on policy ac-
tions (see Figure 7b), resulting in a less accurate model that
is less useful for planning. On the other hand, the denoising
approach handles the missing entries fairly well by design.

Robot sensing

In this final experiment, we evaluate the proposed method
on the real data obtained from the robot cyclically explor-
ing his environment using 24 sensors (Freire et al. 2009).
As the gathered data was continuous, we discretized it using
the same approach as in (Rosencrantz, Gordon, and Thrun
2004). We sampled 100 observations at random and then re-
labelled the rest with the label of nearest sampled observa-
tion in L2-norm. Performance was evaluated using 5-fold
cross validation, such that each fold represents a new tra-
jectory of the robot. A rank-40 SDM was used to compute
PSR parameters, as increasing the rank did not have any no-
table effect on either of the methods. As the true model is not
accessible, we used log-likelihood of the test data as perfor-
mance measure. Figure 6 shows the average log-likelihoods
for two methods, with the denoising algorithm clearly out-
performing the standard approach.

Discussion

We considered the problem of building conditional models
in the PSR framework when the action(s)/exogenous vari-
able(s) are sampled non-uniformly. This is a shared charac-
teristic of many real domains, whether because the exoge-
nous variable has its own complicated dynamics or because
it is risky and/or expensive to collect data following a uni-
formly random exploration policy. Coupled with the fact that
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(a) Pred. error on test data (b) SDM matrix error

(c) Pred. error on test data (d) SDM matrix error

Figure 5: The results of applying denoising algorithm on
torus environment: 4 (top) and 20 (bottom) observations.

(a) Testing error (b) Training error

Figure 6: The results of applying denoising algorithm on the
robot sensing task

(a) Planning performance (b) Number of missing entries in
the SDM

Figure 7: Evaluation of learned PSR models for the planning
task in Torus environment

Figure 8: Prediction error as a function of the training size
for the 4 observations Torus experiment with λ2 = 0. Left:
λ1 = 10, Right: λ1 = 0.005.

the amount of training data is typically limited, it is imper-
ative to use the data efficiently when building these mod-
els. We proved that the dimension of a conditional model is
never larger than the dimension of a complete PSR, regard-
less of the dependencies between the variables. Further, we
showed that the standard PSR spectral learning algorithm
is suboptimal in a non-uniform sampling scenario. We pro-
posed to modify the original algorithm to explicitly account
for non-uniform sampling in a provably reasonable way and
performed experimental evaluations. Finally, the proposed
algorithm includes the feature of building a PSR model that
maintains the SDM structure, which is of independent inter-
est. We observed that the effect of those penalties becomes
more pronounced as the complexity of the domain increases.
For example, the effect of the first penalty term on the PSR
predictive performance in the torus experiment with 4 obser-
vations is seen in Figure 8.

Although the proposed optimization objective is a better
objective to solve, how to solve it efficiently is an open ques-
tion. Previous results show that the general problem of min-
imizing the weighted Frobenius norm is hard, however ex-
ploring the specific structure of the matrix to improve the
search for the optimal solution is left for future work.

Appendix: Theorem 1 Proof

The proof is done in several steps. First, we make sure that
conditional PSR is well defined even if the corresponding
system dynamics matrix has infinite rank. Prop. 4 guarantees
that a PSR representation is well defined under such circum-
stances. Second, based on the collection of conditional PSRs
we define a new construct named tensor PSR and show that
it has all important PSR-like properties (Prop. 6). Finally, we
show that the states of conditional PSRs, complete PSR and
tensor PSR relate to each other according to Fig. 9.

Figure 9: The relationship between the states of the PSR,
Conditional PSR (CondPSR) and tensor PSR.
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Proposition 4. Any discrete-valued stochastic process with
actions can be represented by a possibly infinite dimensional
PSR with actions.

Proof. The finite dimensional case is trivial. Suppose that
the SDM corresponding to the above process (with ac-
tions) has infinite rank. To construct a well-defined PSR
parametrization for this process, we start with choosing a set
of core tests in the following iterative fashion. We loop over
tests, starting from the shortest and proceeding to longer
tests. A new test is added to the set of core tests only if
the corresponding column is linearly independent from the
columns matching the tests already in the set. Note that this
choice of core tests (also seen as a basis for the column
space) guarantees that a vector of coefficients representing
any test of finite length will have finitely many nonzero en-
tries.

Let mt be a vector of coefficients for a test t. Note that
mε =

∑
b∈B mab for any a ∈ A.2 Following (Wiewiora

2007), matrices Mab are built of column vectors of coeffi-
cients that correspond to one-step extensions of core tests.
Hence, PSR property (1) is well-defined, as all infinite sums
are in fact finite, since they have only a finite number of
nonzero elements. This yields a well-defined infinite- di-
mensional PSR parametrization that can be (conceptually)
used to calculate any future predictions of the stochastic pro-
cess.

Definition 5. Let A × B-valued stochastic process be rep-
resented by a collection of two conditional PSRs A|B and
B|A of dimensions n ∈ N ∪∞ respectively whose parame-
ters are: {

pA,mA
ε ,

{
MA

ba

}
ba∈B×A ,

{
mA

a

}
a∈A

}
,

{
mB

ε ,
{

MB
ab

}
ab∈A×B ,mB

0

}

respectively. A tensor PSR is a collection of parameters de-
fined by:
• cε ∈ R

mn = mA
ε ⊗ mB

ε

•
{

Cba ∈ R
mn×mn = MA

ba ⊗ Im
}
ba∈B×A

•
{

Cab ∈ R
mn×mn = In ⊗ MB

ab

}
ab∈A×B

•
{

ca ∈ R
mn = mA

a ⊗ mB
0

}
a∈A

Where Ik is a k × k identity matrix, and ⊗ represents rep-
resents the tensor product. Also, let c(h) be a vector that
represents a sufficient statistic of history (the state) of the
tensor PSR, given that history h was observed.
Proposition 6. Given a tensor PSR, for any h = ab1:l ∈
(A× B) we have:

P (ab1:l) = p(a1).cTa1Ca1b1Cb1a2 ...Cbl−1alCalblcε (6)

c(h)T ≡ cTa1Ca1b1Cb1a2 ...Cbl−1alCalbl

cTa1Ca1b1Cb1a2 ...Cbl−1alCalblcε
= mA(h)T ⊗ mB(h)T (7)

2This fact is easy to verify from the properties of PSR, assuming
that it is minimal-dimensional (Wiewiora 2007)

where mA(h) and mB(h) are states of conditional PSRs
A|B and B|A respectively after observing history h.

Proof.

P (ab1:l) = P (a1).P (a2|ab1:1)...P (al|ab1:l−1)

.P (b1|a1)...P (bl|ab1:l−1, al)

= pA(a1).ma1
AT MA

b1a2 ...MA
bl−1alm

A
ε

.mBT
0 MB

a1b1 ...M
B
alblm

B
ε

= pA(a1).
[
mAT

a1 ImMA
b1a2 ...ImMA

bl−1alm
A
ε

]

.
[
mBT

0 MB
a1b1In...MB

alblI
nmB

ε

]

= pA(a1).(mAT
a1 ⊗ mBT

0 ).(Im ⊗ MB
a1b1)

...(MA
bl−1al ⊗ In).(mA

ε ⊗ mB
ε )

= pA(a1).cTa1Ca1b1Cb1a2 ...Cbl−1alCalblcε

(7): The proof is similar to (6).

Proof of Theorem 1:
Let C = {cε,Cba∈B×A,Cab∈A×B, ca∈A} be a tensor

PSR constructed from a possibly infinite-dimensional con-
ditional PSRs A|B and B|A. We now show that the state of
a conditional PSR is a linear function of the state of the ten-
sor PSR, which is therefore a linear function of the state of
the PSR as well.

Let U ∈ R
m×mn = mAT

ε ⊗ Im. Then, for any history
h ∈ (A× B)∗, we have:

Uc(h) =
[
mAT

ε ⊗ Im
]
.
[
mA(h)⊗ mB(h)

]

=
[
mAT

ε mA(h)
]
⊗ mB(h) = mB(h)

where the last equality follows from the properties of the
normalizer mε. Thus, a state of conditional PSR is a linear
function of a state of tensor PSR. It is also clear from equa-
tions (1) and (2) that a prediction of any test is a linear func-
tion of a state of the tensor PSR, and in particular any core
test of the PSR. Hence a state of the PSR is a linear function
of a state of the tensor PSR as well.

Finally, let s(h) ∈ R
k be the state of the PSR of the

combined stochastic process after seeing history h. Since it
is possible to calculate any predictions using s(h) and the
PSR parameters, it is therefore possible to calculate condi-
tional predictions that are core tests of conditional PSR B|A.
Hence, we can define an operator G that takes the PSR state
and produces the state of conditional PSR B|A. Then, for
any history h ∈ (A× B)∗, we have:

Uc(h) = G[s(h)] = G[c(h)W]

where W is the matrix that represents the coefficients of the
core tests of the PSR with respect to the tensor PSR state.
Hence, G is a linear operator, implying that the state space
of conditional PSR B|A is at most k-dimensional. The same
argument holds regarding the state space of conditional PSR
A|B. �
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