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Abstract

In this work we generalize traditional node/link prediction
tasks in dynamic heterogeneous networks, to consider joint
prediction over larger k-node induced subgraphs. Our key in-
sight is to incorporate the unavoidable dependencies in the
training observations of induced subgraphs into both the in-
put features and the model architecture itself via high-order
dependencies. The strength of the representation is its invari-
ance to isomorphisms and varying local neighborhood sizes,
while still being able to take node/edge labels into account,
and facilitating inductive reasoning (i.e., generalization to un-
seen portions of the network). Empirical results show that
our proposed method significantly outperforms other state-
of-the-art methods designed for static and/or single node/link
prediction tasks. In addition, we show that our method is scal-
able and learns interpretable parameters.

Introduction

Learning predictive models of heterogeneous relational and
network data is a fundamental task in machine learning
and data mining (Getoor and Mihalkova 2011; Lao and
Cohen 2010; Lin et al. 2015; Grover and Leskovec 2016;
Nickel, Rosasco, and Poggio 2016). Much of the work in
heterogeneous networks (graphs with node and edge la-
bels) has focused on developing methods for label predic-
tion or single link prediction. There has been relatively
little development in methods that make joint predictions
over larger substructures (e.g., induced k-node subgraphs).
Recent research has shown rich higher-order organization
of such networks (Benson, Gleich, and Leskovec 2016;
Xu, Wickramarathne, and Chawla 2016) and complex sub-
graph evolution patterns within larger graphs (Paranjape,
Benson, and Leskovec 2017). Applications range from pre-
dicting group activity on social networks (e.g., online social
network ad revenues rely heavily on user activity), computa-
tional social science (e.g., predicting the dynamics of groups
and their social relationships), relational learning (e.g., find
missing and predicting future joint relationships in knowl-
edge graphs).

The main challenge in learning a model to predict the evo-
lution of labeled subgraphs is to jointly account for the in-
duced subgraph dependencies that emerge from subgraphs
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sharing edges. Unlike node and edge prediction tasks, it is
not clear how to describe an approximate model that can ac-
count for these dependencies. A variety of recent methods
have developed heuristics to encode joint label and structure
information into low dimensional node or edge embeddings,
but it is unclear how these ad-hoc methods can properly ad-
dress the induced subgraph dependencies (Lao and Cohen
2010; Nickel, Tresp, and Kriegel 2011; Dong et al. 2014;
Lin et al. 2015; Grover and Leskovec 2016; Atwood and
Towsley 2016; Nickel, Rosasco, and Poggio 2016; Rahman
and Al Hasan 2016). Our empirical results show that these
methods tend to perform poorly in induced subgraph predic-
tion tasks.

The task of predicting induced subgraph evolution re-
quires an approach that can take into account higher-order
dependencies between the induced subgraphs (due to their
shared edges and non-edges1). Our two main contributions
are:
(1) We target the evolution of larger graph structures than
nodes and edges, which, to the best of our knowledge, has
never been focused before. Traditional link prediction tasks
are simpler special cases of our task.
(2) We incorporate the unavoidable dependencies within the
training observations of induced subgraphs into both the in-
put features and the model architecture itself via high-order
dependencies. We denote our model architecture a Subgraph
Pattern Neural Network (SPNN) and show that its strength is
due to a representation that is invariant to isomorphisms and
varying local neighborhood sizes, can also take node/edge
labels into account, and which facilitates inductive reason-
ing.

SPNN is a discriminative feedforward neural network
with hidden layers that represent the dependent subgraph
patterns observed in the training data. The input features of
SPNN extend the definition of induced isomorphism den-
sity (Lovász and Szegedy 2006) to a local graph neigh-
borhood in a way that accounts for joint edges and non-
edges in the induced subgraphs. Moreover, SPNN is induc-
tive (it can be applied to unseen portions of the graph), and
is isomorphic-invariant, such the learned model is invariant
to node permutations. We also show that SPNN learns to
predict using an interpretable neural network structure.

1A non-edge marks the absence of an edge
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Heterogeneous Subgraph Prediction

In what follows we define the heterogeneous pattern predic-
tion task and present a classification approach that uses a
neural network classifier whose structure is based on con-
nected induced subgraphs. In what follows, to avoid confu-
sion with work on “learning low dimensional embeddings,”
we avoid using the correct-graph theoretic term graph em-
beddings (Borgs et al. 2008) in favor of the less standard
term induced subgraphs of a smaller graph pattern into a
larger graph.

Data Definitions. We consider a simple heteroge-
neous graph sequence (Gn)

3
n=1, where each graph

Gn = (V,En,Φn,Ψn) is simple (i.e., without loops
or multiple edges) and heterogeneous (i.e., with labeled
(typed) nodes/edges). We denote the node and edge set
of Gn by V (Gn) and E(Gn), respectively. Node and
edge labels of Gn are defined by functions Φn and Ψn,
respectively, s.t. Φn : V → 2|A|, for a set of node classes
A, and Ψn : E → 2|R|, for a set of edge types R. Clearly,
Gn can also represent directed graphs by adding direction
labels over its edges.

Definition 1 (Induced Labeled Subgraphs).
Let F and G be two arbitrary heterogeneous graphs such
that |V (F )| ≤ |V (G)|. An induced subgraph of F into G
is an adjacency preserving injective map γF : V (F ) →
V (G) s.t. for all pairs of vertices i, j ∈ V (F ), the pair
(γF (i), γF (j)) ∈ E(G) iff (i, j) ∈ E(F ), and all the cor-
responding node and edge labels of i and j match, i.e.,
Φ(i) = Φ(γF (i)), Φ(j) = Φ(γF (j)), and, if (i, j) ∈
E(F ) =⇒ Ψ((i, j)) = Ψ((γF (i), γF (j))).

In the remainder of the paper, we consider these “F ”s as
small k-node graphs and refer to them as subgraph patterns.

Definition 2 (Task Definition).
Subgraph Patterns of Interest: The k-node subgraph pat-
terns of interest are Fk = {F1, . . . , Fc}, where c ≥ 1,
|V (Fi)| = k, ∀i.
Labels: In order to simplify the classification task, we
further partition these patterns into sets with r distinct
“classes”, which we denote Yk

1 , . . . ,Yk
r (as shown in Fig-

ure 1a).
Training data: T k

1 and T k
2 are the set of all k-node induced

subgraphs of patterns Fk in G1 and G2, respectively, as de-
scribed in Definition 1. For each induced subgraph U ∈ T k

1 ,
we define its label y2(U) by looking at the pattern these
same nodes form in T k

2 , where y2(U) = r, if the nodes V (U)
form an induced subgraph with pattern F ∈ Yk

r . Note that
the patterns in Fk must encompass all possible evolution of
the induced subgraphs in T k

1 . The training data is

Dtrain = {(U, y2(U)) : U ∈ T k
1 }.

Examples (Figure 1a, best seen in color): The induced
subgraph U ∈ T 3

1 shown in the blue oval, with vertices
V (U) = {V2, T3, A2} (a venue, a topic, an author), has
pattern F = ∈ F3. The label of U is y2(U) = 1 as

the vertices V (U) form pattern F = ∈ Y3
1 in G2.

The induced subgraph U ′ ∈ T 3
1 shown in the red oval,

V (U ′) = {V1, T1, A1}, has pattern in G1 and pattern
in G2, thus, y2(U ′) = 2.

Prediction Task: Given the induced subgraphs in T k
2 , our

goal is to predict their corresponding pattern in G3. These
predicted patterns must be in Fk.

Traditional link prediction tasks (Liben-Nowell and
Kleinberg 2007) can be seen as special instances of the task
in Definition 2, where k = 2 and the target set of patterns Y2

1
consist of edges (i.e., 2-node connected induced subgraphs)
and non-edges Y2

2 . In the single link prediction case, the fo-
cus is on predicting individual links such as friendship links
in Facebook, citation links in DBLP, or links in knowledge
bases such as WordNet.

Obtaining Training Data from Large Networks. Let
T k
t , be all k-node induced subgraphs with patterns Fk over

Gt. Our training data consists of T k
1 and the future patterns

of these induced subgraphs in T k
2 , both which can be very

large even for moderately small networks. We reduce com-
putational resources needed to generate the training data
by filtering the data of T k

1 as follows.
We construct a training dataset ˜T k

1 ⊆ T k
1 such that a k-

node induced subgraph U ∈ ˜T k
1 must belong to a larger

(k + δ)-node connected induced subgraph in G1, δ ≥ 1.
This constraint facilitates the identification of more relevant
disconnected subgraphs of size k without having to fully
enumerate all the possibilities. By relevant, we mean that
those k-node disconnected subgraphs are overwhelmingly
more likely to evolve into connected patterns because the k
nodes have shortest paths of length up to (k+ δ−1) hops in
G1. Thus, the choice of δ is not arbitrary: we choose δ such
that most of training examples with the labels we are most
interested in predicting (e.g., Class 1 in Figure 1a) are still
in ˜T k

1 .
This filtering procedure also helps us quickly sample the

training data from G1 using a fast connected subgraph sam-
pling method with known sampling bias (such that the bias
can be removed) (Wang et al. 2014).

(SPNN) Subgraph-Pattern Neural Network

Subgraph-Pattern Neural Network (SPNN) is our proposed
classifier. SPNN is a 3-layer gated neural network with a
sparse structure generated from the training data in a pre-
processing step. The second neural network layer, which we
call the Pattern Layer, is interpretable as it represents the
(k+δ)-node patterns in G1 that were found while collecting
the training data, described next. The neural network also
has gates to deactivate the backpropagation of errors to the
hidden units as we will describe later.

Pattern Layer. In the example of Figure 1a, the 3-node
training example of induced subgraph U in G1, V (U) =
{A2, V2, T3} (blue oval), belongs to a connected 4-node sub-
graph ({A1, A2, V2, T3}, the dotted oval) that matches the
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Figure 1: (a) Illustration of the training in a citation network with (A)uthors, (T)opics, (V)enues. At the top is the graph evolution
G1 to G2, whose induced subgraphs are used as training data to predict the evolution of subgraphs in G2 to G3; below Y3 shows
3-node subgraph patterns partitioned into two classes. (b) Illustration of our Subgraph-Pattern Neural Network (SPNN) with
training example U .

pattern F represented in Figure 1b. More generally, the
set of all such patterns is

F�(k+δ)
t=1 (T k

t=1) = {F� : ∀F� ∈ P(k+δ)

(conn) s.t. ∃U ∈ T k
1 ,

∃R ∈ Ind(F�, G1), and R ∈ T
(k+δ)
1 (U,F�)},

(1)

where the square � indicates a connected subgraph pattern
(e.g., , . . . , ), P(k+δ)

(conn) is the set of all (k+δ)−node con-

nected graph patterns containing all possible node and edge
labels, Ind(F,G) denotes the set of induced subgraphs of F
into a graph G, and for U ∈ ˜T k

1 we define

T
(k+δ)
1 (U,F�) = {(k + δ)-node induced connected

subgraphs of F� at G1 having all nodes of U}.
(2)

For instance, T (k+δ)
1 (U,F ) with V (U) = {V2, A2, T3} in

Figure 1b. In practice, we also mark the nodes of U ∈ ˜T k
1

that appear in the (k+ δ)-node patterns with unique special
types, so we can distinguish their structural role in the larger
(k + δ)-node subgraph.

Figure 1b illustrates the SPNN architecture using the task
illustrated in Figure 1a as an example. For instance, we want
to jointly predict whether an author A will publish at a venue
V and in topic T at G2 given such author did not publish at
venue V or topic T at G1.

Pattern Layer & Gates. The hidden layer of SPNN rep-
resents F�(k+δ) := {F�1 , F�2 , . . .}, all observed (k+ δ)-
node patterns in the training data ˜T k

1 . This procedure only
eliminates patterns that are not observed in the training
data. For example, in the illustration of Figure 1a, δ = 1,
there would be no 4-node patterns of a fully connected graph
in F�(3+1) as there are no fully connected 4-node graphs in
G1.

For the training example U ∈ ˜T k
t , it may be the case

that pattern F� ∈ F�(k+δ)
t has no induced subgraph on Gt

that contains the example U , i.e., T (k+δ)
t (U,F�) = ∅. If

this happens, we should not backpropagate the error of the
hidden unit associated with F�. For instance, for δ = 1
in the illustration of Figure 1a, the training data induced
subgraph U ∈ ˜T 3

t with vertices V (U) = {A1, T1, V1}
will only backpropagate the error to the hidden units match-
ing the patterns of induced subgraphs {A1, T1, V1, V2} and
{A1, T1, V1, A2}. We use a gate function

Δ(U,F�, Gt) = 1{T (k+δ)
t (U,F�) �= ∅}, (3)

with T
(k+δ)
t as defined in Eq.(2). The gate Δ(U,F�, Gt)

ensures we are only training the neural network unit of F�

when the induced subgraph example U applies to that unit.
Our pattern layer has an interpretable definition: each pat-

tern neuron represents a larger subgraph pattern containing
the target subgraph. If a specific neuron has a significant im-
pact activating the output, we know that its corresponding
pattern is important in the predictions.

Input Features. In what follows we define the features
given to the input layers of SPNN. Our features need the
definition of a local induced isomorphism density around
the induced subgraph of pattern F� on Gt, with F� ∈
F�(k+δ)

t .

Definition 3 (Local induced isomorphism density). Let R
be a induced subgraph of G and let F be a subgraph pat-
tern s.t. |V (G)| > |V (F )| ≥ |V (R)|. The local induced
isomorphism density, tlocal, rooted at R with subgraph pat-
tern F is the proportion of induced subgraphs of F at
G in a ball of radius d from the nodes of V (R). More
precisely, tlocal(R,F,G, d) ∝ |LocInd(R,F,G, d)| , where
LocInd(R,F,G, d) = {R′ ∈ Ind(F,G) : |V (R′)∪V (R)|−
|V (R′) ∩ V (R)| ≤ d}.
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The quantity tlocal is the proportion of induced subgraphs
of pattern F at G constrained to the set of vertices that are
up to d hops away from the set of nodes V (R). If G has a
small diameter, d should be small.

We now use tlocal to define the input features for an ex-
ample U ∈ ˜T k

t . For each F� ∈ F�(k+δ)
t , there will be a

vector φ(U,F�, Gt) of dimension mF� (to be defined be-
low), where

(φ(U,F�, Gt))i := ΓHi(U,F
�, Gt)

=
∑

R∈T
(k+δ)
t (U,F�)

tlocal(R,Hi, Gt, d), Hi ∈ P(k+δ)

(conn),
(4)

where, as before, P(k+δ)
(conn) is the set of all possible (k + δ)-

node connected patterns. Each input feature ΓH is a pooled
value of tlocal that counts the density of induced subgraphs
of a (k + δ)-node pattern H around a ball of radius d from
the vertices V (R), where R is a (k + δ)-node connected
induced subgraph that contains the example U . Thus, ΓH

sums the densities of induced subgraphs that can have up to
d + δ nodes different from U . We only include ΓH in the
vector φ(U,F�, Gt) if ∃U ∈ ˜T k

t s.t. ΓH(U,F�, Gt) > 0.
As mF� is the number of non-zero values of Γ, then mF� ≤
|P(k+δ)

(conn)|.

To illustrate the Γ metric, consider pattern F il-
lustrated in Figure 1b and the training example U
as the induced subgraph {A2, V2, T3} in G1 in Fig-
ure 1a. U is contained in the connected 4-node subgraph

with V (R) = {A2, V2, T3, A1}. The pattern H has

Γ
H

(U,F ,Gt) = 1/4 as there is only one induced sub-

graph {(T2, V2), (V2, A1), (A1, T1), (T1, V2)} with pattern

H out of the 4 induced 4-node subgraphs that are within a
radius of d = 1 of the nodes V (R).

The SPNN Classifier. We now put all the different com-
ponents together for a r-class classification task. Consider
the class yt+1(U) as a one-of-K encoding vector. For a k-
node induced subgraph U of Gt, the probability nodes V (U)
form an induced subgraph in Gt+1 with a pattern of class i,
for 1 ≤ i ≤ r, is

p(yt+1(U);W(1),W(2),b(1),b(2))i

= softmax((W(1)ht(U ;W(2),b(2)) + b(1))i) ,

where b(1) ∈ R
d is the bias of the output layer andW(1) ∈

R
d×|F�(k+δ)

t | are the linear weights of the pattern layer. The
input to the pattern layer is

ht(U ;W(2),b(2)) = (Δ(U,F�
1 , Gt) · σ(b(2)

1

+ (W
(2)
1 )Tφ(U,F�

1 , Gt)),Δ(U,F�
2 , Gt) · σ(b(2)

2

+ (W
(2)
2 )Tφ(U,F�

2 , Gt)), . . .) ,

where for each unit associated with F�
j , j = 1, 2, . . .,

we have b(2)j ∈ R as the bias and W(2)
j as the classifier

weights, and σ is an activation function (our empirical re-
sults use tanh), the feature vector φ(U,F�

j , Gt) is as defined

in Eq.(4), and Δ is the 0–1 gate function defined in Eq. (3).
Our optimization objective is maximizing the log-likelihood

argmax
W(1),W(2),b(1),b(2)

∑

U∈ ˜T k
t

(yt+1(U))T log p(yt+1(U);

W(1),W(2),b(1),b(2)).

(5)

The parameters W(1), W(2), b(1), and b(2) are learned
from Eq.(5) via stochastic gradient descent with early stop-
ping. In what follows we show SPNN learns the same pa-
rameters irrespective of graph isomorphisms (see Supple-
mental Material for proof).

Theorem 1. SPNN is isomorphic invariant. That is,
given two graph sequences G1, G2 and G′

1, G
′
2, where

Gn is isomorphic to G′
n, then the learned parameters

Ŵ(1),Ŵ(2),b(1),b(2) are exactly the same for the graph
sequences (G1, G2) and (G′

1, G
′
2) (assuming the same ran-

dom seed).

Relationship with Convolutional Neural Networks

Images are lattices, trivial topologies, while general graphs
are complex. Fundamentally, a CNN computes the output of
various filters over local neighborhoods. In SPNN, the filter
is the pattern, which maps the local neighborhood (within
d + δ hops away from the target subgraph) into a single
value. The distinct patterns act on overlapping regions of
the neighborhood, but the amount of overlap is nontrivial
for non-lattices. At CNNs, pooling at the upper layers often
act as a rotation-invariance heuristic. SPNN upper layers are
isomorphic-invariant by construction and SPNN performs
pooling at the inputs. Moreover, similar to CNNs, SPNN can
be augmented by multiple layers of fully connected units be-
tween the pattern layer and the predicted target.

Related Work

In what follows we classify the existing literature based on
the main obstacles in designing supervised learning methods
for dynamic subgraph heterogeneous tasks: (a) The vary-
ing sizes of the different node neighborhoods, (b) account-
ing for distinct nodes and edge labels in the neighborhood;
(c) isomorphic-invariance of graph representations (permu-
tations of nodes in the adjacency matrix should not affect
the representation); (d) the graph evolution; (e) learns from
a single graph and includes the dependence structure of in-
duced subgraphs that share edges and non-edges.

There are no existing approaches that can address all the
above challenges. Existing approaches can be classified in
the following categories:
(1) Compute canonical representations of the whole graph
(e.g., kernel or embeddings). These methods require
multiple examples of a whole graph (rather than induced
subgraphs). Examples include GraphNN (Dai, Dai, and
Song 2016), diffusion-convolution neural networks (At-
wood and Towsley 2016), and graph kernels, such as Orsini
et al.(Orsini, Frasconi, and De Raedt 2015) and Yanardag
and Vishwanathan (Yanardag and Vishwanathan 2015a;
2015b), which compare small graphs based on the existence
or count of small substructures such as shortest paths,
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graphlets, etc.. These whole-graph methods, however, are
designed to classify small independent graphs, and fail
to account for the sample dependencies between multiple
induced subgraphs that share edges and non-edges. These
whole-graph classification methods, collectively, address
challenges (a), (b), (c), and (d), but fail to account for (e).

(2) Compute canonical representations of small induced
subgraphs of the original graph, (e.g., PATCHY (Niepert,
Mohamed, and Konstantin 2016)) offers a convolutional
neural network graph kernel that only addresses challenges
(b) and (c), but does not address (d) and (e), and needs to
pad features with zeros or arbitrarily cut neighbors from the
feature vector, thus, not truly addressing (a).

(3) Compute isomorphism-invariant metrics over the graph,
such as most graph kernels methods, various diffusions
(e.g., node2vec (Grover and Leskovec 2016), PCRW (Lao
and Cohen 2010), PC (Sun et al. 2011a), deepwalk (Perozzi,
Al-Rfou, and Skiena 2014), LINE (Tang et al. 2015),
DSSM (Heck and Huang 2014), and deep convolutional
networks for graph-structured data (Bruna et al. 2013;
Henaff, Bruna, and LeCun 2015)), which address problems
(a) and (c) but not (b), (d) (specially because of edge
labels), and (e).

(4) Perform a tensor factorization, (e.g., RESCAL (Nickel,
Tresp, and Kriegel 2011) and extensions (Nickel et al. 2015;
Nickel, Rosasco, and Poggio 2016)), which addresses
problems (a) and (b) but not (c), (d), and (e). These methods
are tailored specifically for the task of link prediction in
heterogeneous graphs and are widely used.

To the best of our knowledge, SPNN is the only super-
vised learning method designed to predict subgraph evolu-
tion. Moreover, it addresses all the above challenges: (a)
the SPNN representation uses subgraph patterns and their
local densities, which are features that do not vary in size
irrespective of the subgraph neighborhood; (b) SPNN not
only accounts for labels but also accounts for how these la-
bels are located within the network structure; (c) the learned
SPNN model is invariant to isomorphisms (Thm. 1); and
(d) SPNN is designed to learn the evolution of subgraph
patterns; (e) the SPNN neural network structure assumes
a Markov blanket that accounts for dependencies between
subgraphs through their shared edges in a high-order net-
work. While this procedure still does not guarantee we can
break the graph into i.i.d. induced subgraphs, our empirical
results show that it significantly outperforms models whose
Markov blankets do not contain such high-order structures.

Other classical link prediction methods that can also
be adapted to subgraph link prediction tasks. These meth-
ods (Dong et al. 2014; Lichtenwalter, Lussier, and Chawla
2010) use a wide variety of edge features, including pair-
wise features such as Adamic-Adar score, or path counts,
such as from PCRW.

Separately, collective inference procedures (Richardson
and Domingos 2006; Neville and Jensen 2007; Manfredotti
2009; Getoor and Mihalkova 2011), although traditionally
evaluated at the node and edge level, can also include SPNN

as a baseline predictor to be readily applied to dynamic sub-
graph tasks.

Results

In this section we test the efficacy of SPNN, comparing it to
other existing methods in the literature. We adapt these com-
peting methods to the induced dynamic subgraph prediction
task, as they are not designed for such tasks.

Our evaluation shows SPNN outperforms nine state-of-
the-art methods in three real-world dynamic tasks. We show
that the learned SPNN model weights can be used to draw
insights into the predictions. We also evaluate SPNN across
a variety of other synthetic dynamic tasks using static graphs
(Facebook and WordNet), all reported in the appendix.

In the appendix, we also show that the architecture of
SPNN also outperforms fully connected neural network lay-
ers for small training samples (both using the unique induced
subgraph input features designed for SPNN, which explic-
itly model the subgraph dependencies). SPNN and fully con-
nected layers with the same input vectors as SPNN have the
same performance over larger training datasets.

Empirical Results

Datasets. We use two representative heterogeneous graph
datasets with temporal information. DBLP (Sun et al.
2011b) contains scientific papers in four related areas (AI,
DB, DM, IR) with 14,376 papers, 14,475 authors, 8,920 top-
ics, and 20 venues. We organize the dataset into authors,
venues, and topics. Published papers represent links, for
instance, two authors have a link at Gn if they have co-
authored a paper at time step n.
Friendster is a social network where user can post messages
on each other’s homepages. This dataset contains 14 mil-
lions of nodes and 75 million messages. Directed edges in
this dynamic graph mark users writing on each other’s mes-
sage walls. The heterogeneous graph includes hometown,
current locations, college, interests, and messages sent be-
tween users.

Subgraph Pattern Prediction Tasks.

a) DBLP task is to predict the evolution of 3-node subgraphs
(k = 3): whether an author will publish in a venue and a
topic that the author did not publish in the previous times-
tamp. This is a binary class problem, with pattern sets
Y3
1and Y3

2 shown in Figure 1a. We use pattern sizes of
k + δ = 4. Our method generates 2700 features with 9
neurons in pattern layer as shown in Figure 4.

b) Friendster Activity task predicts the increase in activity
in weighted 4-node subgraphs: whether the total number
of messages sent between four users, which are connected
in the current time interval (G2), increases in the next time
interval (G3). This is a binary classification task. The class
set Y3

1 contains all subgraphs in the training data where
the total number of messages between nodes increases be-
tween consecutive snapshots. The class set Y3

2 contains all
other possible subgraphs that appear in the training data.
Our method generates 1230 features with 30 neurons in
the pattern layer.
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Figure 2: ROC curves (True Pos × False Pos): DBLP and Friendster tasks.
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Figure 3: Learning curves (AUC×Training Size) w/shaded 95% confidence intervals.
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Figure 4: (DBLP task) Pattern layer F�
1 , . . . , F�

8 , representing all connected subgraphs of P(4)
(conn) that appear in the training

data. Bars show the difference between learned weights of Class 1 (whether both dashed links appear at time t + 1) and Class
2 (everything else) for pattern F�

j . Pattern F�
4 , when the author has published in a topic related to the venue, strongly predicts

the appearance of both links. Pattern F�
2 , when a co-author has published at the venue and topic of interest but not the author,

strongly predicts the absence of the joint links.

Independently Trained (Single Link Predictions) Jointly Trained Multi-Link Task
EdgeInfo PCRW PC N2V Rescal HolE EdgeInfo PCRW PC N2V Rescal HolE Patchy GraphNN SPNN

DBLP 0.811
±0.012

0.786
±0.007

0.783
±0.012

0.567
±0.008

0.611
±0.025

0.681
±0.024

0.830
±0.007

0.782
±0.007

0.788
±0.014

0.582
±0.007

0.611
±0.025

0.690
±0.024

0.627
±0.003

0.571
±0.021

0.846
±0.011

Friendster
(Activity)

0.530
±0.088

0.516
±0.007

0.509
±0.006

0.512
±0.011

0.521
±0.031

0.513
±0.006

0.502
±0.007

0.516
±0.012

0.515
±0.012

0.524
±0.018

0.502
±0.012

0.506
±0.013

0.519
±0.010

0.521
±0.023

0.690
±0.008

Friendster
(Structure)

0.568
±0.011

0.501
±0.002

0.501
±0.002

0.501
±0.003

0.558
±0.009

0.501
±0.002

0.501
±0.004

0.502
±0.002

0.552
±0.019

0.540
±0.017

0.521
±0.017

0.530
± 0.021

0.547
± 0.025

0.523
±0.019

0.607
±0.017

Table 1: Max Area Under Curve (AUC) scores of SPNN against baselines.

c) Friendster Structure task predicts the evolution of 4-
node subgraphs: whether four friends who were weakly
connected by three edges in the previous timestamp (G2)
will not send any messages in the next time stamp (i.e., be

disconnected in G3). This is a binary classification task.
The class set Y3

1 contains the empty subgraph. The class
set Y3

2 contains all subgraphs with at least one edge. Fea-
tures are same as those in Friendster Activity.

3783



To learn a predictive model of subgraph evolution, we di-
vide the data into three temporal graphs G1, G2, G3. The
training set T 3

1 comprises 3-node or 4-node subgraphs from
G1 with class labels y determined from G2, and the test set
T 3
2 comprises subgraphs from G2 with class labels from G3.

Since DBLP is a dynamic network with timestamps, we con-
struct G1 from the data in 2003–2004, G2 from 2005–2006,
and G3 from 2007–2008. For Friendster, we construct G1

from data in Jan 2007–April 2007. G2 from May 2007–Aug
2007, and G3 from Sep 2007–Dec 2007. We selected year
2007 because it is the most active time period for Friendster.

Baselines. We compare our approach to the nine methods
discussed in Related Work. Five methods use isomorphic-
invariant measures over the graph: (i) AA: Adamic–Adar
score only (Adamic and Adar 2003); (ii) EdgeInfo: Uses all
edge features listed in (Lichtenwalter, Lussier, and Chawla
2010); (iii) PC: Path counts (a.k.a. metapaths) (Sun et al.
2011a); (iv) PCRW: Path constrained random walk (Lao
and Cohen 2010); (v) Node2Vec: Node embedding (Grover
and Leskovec 2016). Two methods perform tensor factor-
izations: (vi) Rescal: Rescal embedding (Nickel, Tresp, and
Kriegel 2011); (vii) HolE: Holographic embedding (Nickel,
Rosasco, and Poggio 2016). One method computes canoni-
cal representations of small induced subgraphs of the origi-
nal graph; (viii) Patchy: Patchy CNN graph kernel (Niepert,
Mohamed, and Konstantin 2016); (ix) GraphNN: Embed-
ding Mean-Field Inference (Dai, Dai, and Song 2016).

The above baselines, except Patchy and GraphNN, are
originally intended to predict single missing links rather than
make joint link predictions. We consider two different vari-
ants of the methods to apply the baselines to our joint link
prediction tasks. The Independent approach trains separate
classifiers, one for each link independently, and then com-
bines the independent predictions into a joint prediction.
The Joint approach concatenates the features of the multi-
ple links into a single subgraph feature, then uses a classifier
over the subgraph feature to make joint link predictions.

Moreover, these baselines, which are not developed for
subgraph evolution tasks, generally achieve very poor pre-
dictive performance in a real temporal task that uses graphs
G1 and G2 to predict G3. Consider, for instance, the two dis-
tinct embeddings that Node2Vec, Rescal, and HolE assign
to same nodes in G1 and G2 due to changes in the graph
topology between G1 and G2. In order to use Node2Vec,
Rescal, and HolE to predict links in dynamic graphs, we
first learn node embeddings over G1 and train a Multilayer
Perceptron to predict links in G2. Using this trained clas-
sifier, we again use the node embeddings of G1 to predict
the new links in G3, and this improves their classification
performance.

Implementation. We implement SPNN in Theano. The
loss function is the negative log likelihood plus L1
and L2 regularization penalties over the parameters, both
with regularization penalty 0.001. We train SPNN us-
ing stochastic gradient descent over a maximum of
30000 epochs and learning rate 0.01. 20% of the train-

ing examples are separated as validation for early stop-
ping. All the data has the same amount of posi-
tive and negative examples. Source code is available at
https://github.com/PurdueMINDS/SPNN.

Comparison to Baselines. Figure 2a-c shows the ROC
curves of SPNN and baselines to predict balanced classes.
We use 1000 induced subgraphs for training and 2000 in-
duced subgraphs for testing (in all DBLP, Friendster Ac-
tivity and Friendster Structure tasks). Since the testing sets
have the same number of positive and negative examples,
AUC scores are meaninful metrics to compare the models.
SPNN outperforms all baselines in all tasks. Figure 3 shows
the learning curves where training set sizes vary from 100
to 2000 subgraphs. Note that SPNN consistently achieves
the best AUC scores. We summarize our results in Table 1,
where we see that SPNN has significantly better AUC scores
than the baselines over all tasks and datasets.

Table 1 also compares the performance of the Indepen-
dent and Joint prediction approaches. Most methods show
similar performance in both their Independent and Joint
variants. This is likely due to the fact that the pair-wise sim-
ilarity methods model link formation independently. Thus,
the joint representation makes no difference in the two ap-
proaches. For low-rank decomposition methods (such as
Rescal and HolE), we speculate that this is because edges
are conditionally independent given the model, and, thus,
they are unable to learn good low-dimensional embeddings
for subgraph tasks where missing edges are dependent given
the model.

DBLP Friendster Friendster
Activity Structure

Rescal 47.3min 28h32min 28h33min
HolE 43.5min 26h21min 26h22min
node2vec 2.9min 3h51min 3h51min
SPNN 3.6min 9min 9min

Table 2: Time to sample 1000 examples+training time.

Finally, Table 2 shows the wall-clock execution times of
SPNN against the baselines HolE, Rescal, and Node2Vec.
The server is an Intel E5 2.60GHz CPU with 512 GB of
memory. Note that HolE and Rescal must compute an em-
bedding for the entire graph, regardless of the number of
subgraph examples. SPNN is orders of magnitude faster
than HolE and Rescal and one order of magnitude faster
than Node2Vec in the three tasks. Training SPNN takes
around 90 seconds to sample and construct features for four-
node subgraphs in DBLP, and 9 minutes for five-node sub-
graphs in Friendster. The significant difference in execu-
tion time is rooted in how long it takes to collect the in-
duced subgraphs to train our model. For the relatively small
two-year-sliced of DBLP, we enumerate all possible sub-
graphs and sample 1000 from them. For Friendster Activ-
ity and Friendster Structure tasks, we use the connected
induced subgraph sampling method of Wang et al. (Wang
et al. 2014) with an added bias to sample induced sub-
graphs of interest. In the worst case, learning SPNN takes
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O(h|Y||A|k|R|k2

) time per iteration per training example,
where h = | ∪n Pk+δ

n (T (sample)
n )| is the number of subgraph

patterns in the pattern layer, |Y| is the number of distinct pat-
terns in subgraph classes, |A| is the number of node classes,
and |R| is the number of edge classes.

Interpreting SPNN results. Unlike most link prediction
methods, SPNN’s parameters are interpretable so that we
can easily make sense of the predictions. Figure 4 shows the
weight difference W (2)

1 (j)−W (2)
2 (j) in SPNN’s pattern layer

between Class 1 and Class 2 for patterns F�
j in the DBLP

task. Large positive values indicate subgraph patterns that
encourage the appearance of both dotted links while large
negative values indicate patterns that discourage the appear-
ance of both dotted links. Figure 4 caption details the exam-
ples of patterns F�

4 and F�
2 .

Conclusions

Our work is a first step in the development of more inter-
pretable models, features, and classifiers that can encode
the complex correlations between graph structure and la-
bels. SPNN predicts induced subgraph evolution in hetero-
geneous graphs and generalizes a variety of existing tasks.
Our results show SPNN to consistently achieve better per-
formance than competing approaches. In future work we
will develop a collective classification method to create
a joint classifier (e.g., (Richardson and Domingos 2006;
Neville and Jensen 2007)) for SPNN, as our approach can
be used as a local conditional model for joint prediction.
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Supplementary Material

Proof of Theorem 1. In this proof we show that SPNN’s in-
put features, the training data, and the convolutional archi-
tecture all have a canonical representation invariant to iso-
morphisms. To this end, we show that: (a) the features of
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Figure 5: Sequence Graph Learning curves (AUC×Training
Size) compared to logistic regression and MLP (w/shaded
95% conf. intv.).

each training example U ∈ T̃ k
t have a canonical represen-

tation invariant to isomorphisms; (b) the training data T̃ k
t

used in our stochastic gradient descent algorithm also has a
canonical representation; and finally, (c) the neural network
structure also has a canonical representation invariant to iso-
morphisms.

(a) The features of each training example U ∈ T̃ k
t are the

vectors φ(U,F�, Gt) introduced in Eq.(4) for different pat-
terns F� ∈ P(k+δ)

(conn) that appear in the training data. All we
need to show is that vector φ has a canonical order invariant
to graph isomorphisms. Observing Eq.(4), the i-th element
of φ, (φ(U,F�, Gt))i, has a canonical order as we can im-
pose a canonical order on P(k+δ)

(conn) (e.g., lexicographic on
the edges (Huan, Wang, and Prins 2003)). The value inside
(φ(U,F�, Gt))i is also clearly invariant to isomorphisms as
it is the isomorphism density.

(b) The training data T̃ k
t are subgraphs of Gt and, thus,

also have a canonical representation via lexicographical or-
dering (Huan, Wang, and Prins 2003).

(c) As P(k+δ)
(conn) has a canonical order, so does the hidden

layer of SPNN. Moreover, the Γ’s are similarly ordered.
The induced subgraphs of the training examples of the

two isomorphic graphs G1 and G′
1 have the same class la-

bels, as the class labels are by definition isomorphic invari-
ant. As there are canonical orderings of the data, features,
class labels, and model structure that are invariant to iso-
morphic transformations of the graphs, and the stochastic
gradient descent has the same random seed for all graphs, we
conclude that SPNN must learn the same parameters.

Link prediction on synthetic datasets Besides the
datasets with sequential information like DBLP and Friend-
ster, we also test our proposed method on other famous het-
erogeneous datasets.

Facebook is a sample of the Facebook users from one
university. The dataset contains 75,000 nodes and 8 million
links. The heterogeneous graph includes friendship connec-
tions, user groups, political and religious views. WordNet
is a knowledge graph that groups words into synonyms and
provides lexical relationships between words. The WN18
dataset is a subset of WordNet, containing 40,943 entities,
18 relation types, and 151,442 triplets.
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Figure 6: ROC curves (True Pos × False Pos): Facebook and
WordNet tasks in manually generated dynamic graphs
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Independently Trained (Single Link Predictions) Jointly Trained Multi-Link Task
EdgeInfo PCRW PC N2V Rescal HolE EdgeInfo PCRW PC N2V Rescal Hole Patchy SPNN

Facebook Dynamic 0.748
(±0.014)

0.738
(±0.009)

0.725
(±0.011)

0.526
(±0.011)

0.523
(±0.017)

0.750
(±0.007)

0.747
(±0.003)

0.723
(±0.009)

0.725
(±0.012)

0.527
(±0.011)

0.632
(±0.007)

0.746
(±0.006)

0.510
(±0.006)

0.774
(±0.015)

WordNet Dynamic 0.606
(±0.028)

0.553
(±0.003)

0.551
(±0.004)

0.528
(±0.018)

0.586
(±0.009)

0.618
(±0.009)

0.639
(±0.023)

0.551
(±0.003)

0.553
(±0.003)

0.524
(±0.018)

0.586
(±0.009)

0.611
(±0.009)

0.574
(±0.038)

0.786
(±0.006)

Facebook Static 0.578
(±0.014)

0.543
(±0.020)

0.568
(±0.011)

0.781
(±0.021)

0.665
(±0.017)

0.674
(±0.016)

0.703
(±0.011)

0.592
(±0.028)

0.521
(±0.018)

0.781
(±0.011)

0.664
(±0.021)

0.672
(±0.017)

0.522
(±0.006)

0.866
(±0.0014)

WordNet Static 0.936
(±0.006)

0.695
(±0.007)

0.798
(±0.005)

0.997
(±0.002)

0.997
(±0.001)

0.996
(±0.001)

0.861
(±0.007)

0.816
(±0.003)

0.803
(±0.003)

0.996
(±0.001)

0.992
(±0.001)

0.996
(±0.001)

0.990
(±0.001)

0.998
(±0.001)

Table 3: Max Area Under Curve (AUC) scores of SPNN against baselines.

DBLP Facebook WordNet
Rescal 47.3min 55h43.2min 2h58.1min
HolE 43.5min 58h32.4min 2h53.3min
node2vec 2.9min 74.0min 10.0min
SPNN 3.6min 3.0min 14.3min

Table 4: Time to sample 1000 examples + learning time.

As discussed in Results Section, in order to learn a pre-
dictive model of subgraph evolution, we divide the data into
three temporal graphs G1, G2, G3. The Facebook and Word-
Net graphs are not dynamic, so we set G3 to be the full net-
work, and then randomly remove the links from 10% of the
subgraphs in Figure 7 (1)-(2) to construct G2. Another 10%
are removed from G2 to construct G1.

Figure 6a-b shows the ROC curves of SPNN and the base-
lines with 1000 training induced subgraphs and 2000 test in-
duced subgraphs for Facebook and WordNet. SPNN outper-
forms all baselines in all tasks. Figure 8 shows the learning
curves where training set sizes vary from 100 to 2000 sub-
graphs. Note that SPNN consistently achieves the best AUC
scores. We summarize our results in first two rows of Ta-
ble 3, where we see that SPNN has significantly better AUC
scores than the baselines over all tasks and datasets.

P PV

P

FB
Two Persons 

become friends, 
one forms Political View

WordNet
Three words have_hyponym and 

_derivationally_related
_from relationship

_hyponym

(1) (2)

friends hold _derivationally
_related_form

Figure 7: Facebook and WordNet Prediction tasks

Understanding Performance Gains. To measure both
the effect of (a) our induced isomorphism density features
and (b) our sparse neural network architecture we compare
SPNN against a logistic regression with the same input fea-
tures as SPNN. The L2 regularized logistic regression veri-
fies two things: (a) whether the deep architecture of SPNN
is useful for our prediction task and (b) whether the induced
isomorphism density features are more informative for our
tasks than the Node2Vec, PCRW, Path Counts, and Edge fea-
tures. The learning curves in Figure 5 show both (i) the ben-
efit of one extra layer in the neural network and (ii) the gain
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Figure 8: Learning curves (AUC×Training Size) w/shaded
95% confidence intervals for dynamic Facebook and Word-
Net.
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Figure 9: Learning curves (AUC×Training Size) of SPNN
against competing methods in Static Graph (w/shaded 95%
conf. intv.).

in our features by contrasting the logistic regression against
the learning curves of Figure 8.

The multi-layer perceptron (MLP) and SPNN differ in
that MLP’s input layer and hidden layer are fully connected.
The MLP will help us test whether SPNN’s sparse architec-
ture is a good regularizer. The learning curves in Figure 5
show that SPNN outperforms MLP in majority cases with
rare cases which have similar but not worse performance.
This shows that the SPNN sparse architecture is indeed a
good regularizer for the joint link prediction problem.

Subgraph prediction in static graphs. The experiments
in Results Section has showed that our proposed method out-
performs the state of the art in subgraph prediction on dy-
namic graphs. Our method can also predict missing links in
static graphs such as Facebook and WordNet datasets with-
out timestamps. 50% of the edges which belong to the two
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Figure 10: Learning curves comparing SPNN to logistic re-
gression and MLP in Static Graph.

specified edge types in subgraph tasks shown in Figure 7
are removed randomly. To obtain positive examples, we
sample or enumerate 4-node induced subgraphs T �(4)

1 (3)
which contains the removed subgraph. Randomly sample
same amount of 4-node subgraphs which do not contain the
removed structure as negative examples. Last two rows of
Table 3 shows the performance against competing methods
to predict subgraphs in static graphs. Figure 9 shows the
learning curves. Both of these figures show that our pro-
posed SPNN consistently achieves the best performance,
compared to all other methods. Figure 10 shows that our
proposed SPNN sparse architecture is indeed a good regu-
larizer for the joint link prediction problem in static graphs.
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