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Abstract

Event scales are commonly used by practitioners to gauge
subjective feelings on the magnitude and significance of so-
cial events. For example, the Centers for Disease Control and
Prevention (CDC) utilizes a 10-level scale to distinguish the
severity of flu outbreaks and governments typically catego-
rize violent outbreaks based on their intensity as reflected in
multiple aspects. Effective forecasting of future event scales
can be used qualitatively to determine reasonable resource al-
locations and facilitate accurate proactive actions by practi-
tioners. Existing spatial event forecasting methods typically
focus on the occurrence of events rather than their ordinal
event scales as this is very challenging in several respects, in-
cluding 1) the ordinal nature of the event scale, 2) the spatial
heterogeneity of event scaling in different geo-locations, 3)
the incompleteness of scale label data for some spatial loca-
tions, and 4) the spatial correlation of event scale patterns. In
order to address all these challenges concurrently, a MultI-
Task Ordinal Regression (MITOR) framework is proposed
to effectively forecast the scale of future events. Our model
enforces similar feature sparsity patterns for different tasks
while preserving the heterogeneity in their scale patterns. In
addition, based on the first law of geography, we proposed to
enforce spatially-closed tasks to share similar scale patterns
with theoretical guarantees. Optimizing the proposed model
amounts to a new non-convex and non-smooth problem with
an isotonicity constraint, which is then solved by our new al-
gorithm based on ADMM and dynamic programming. Ex-
tensive experiments on ten real-world datasets demonstrate
the effectiveness and efficiency of the proposed model.

Introduction

Societal events that are spatially based, such as disease out-
breaks and organized crime, have a significant impact on
society. The ability to successfully forecast future spatial
events of this nature would thus be extremely beneficial for
decision makers seeking to avoid, control, or alleviate the as-
sociated social upheaval and risks. Spatial social event fore-
casting is a fast-growing research area that typically fore-
casts the occurrence of future spatial events, namely whether
or not the spatial events will happen. However, in many ap-
plications simply forecasting the occurrence of an event is
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Figure 1: ILI data for one week of the 2016-17 influenza
season (CDC)

not enough. Knowledge regarding the scale or level of a fu-
ture event is vital if decision makers are to achieve optimal
resource allocation. For example, as shown in Figure 1, the
Centers for Disease Control and Prevention (CDC) rank the
severity of ongoing disease outbreaks using five scale points.
The successful prediction of the scale of future disease out-
breaks enables practitioners to allocate appropriate levels of
resources for vaccination and isolation. For organized crime
event forecasting, the significance of the future crime events
is a valuable reference for government agencies seeking to
set realistic alert levels and allocate sufficient resources for
local and national law enforcement. However, as yet little re-
search has focused specifically on spatial social event scale
forecasting.

Traditional event forecasting methods typically predict a
binary output (i.e., the event either occurs or it doesn’t), and
hence cannot be directly applied to forecast event scales,
which are ordinal variables. Spatial event scale forecasting
is a new problem that poses several unique and interesting
challenges that are yet to be addressed. 1) Spatial hetero-
geneity of event scales: Different locations have different
characteristics, such as population, weather and administra-
tive structures. These factors often lead to population dis-
crepancies in the social media users at different locations.
For example, for influenza outbreak forecasting, the same
number of mentions of the keyword ‘flu’ in tweets can lead
to quite different actual scales in California and Nebraska;
since California has a far larger population than Nebraska,
the same number of mentions of ‘flu’ in tweets will signify
a far lower influenza activity level in California than in Ne-
braska. 2) Incomplete labels in spatial event scales: For
any given location, there will often be some missing scale
levels within the training data as some event scales were
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not represented within the period of time chosen as training
data. For example, for influenza outbreak forecasting, in Ne-
braska there were no level 3 or level 5 events during the year
of 2011, which means that any model trained based on this
data will lose the power to forecast these scales in the future.
3) Spatial correlation of event scale patterns: Spatial loca-
tions are not independent of one another, but instead are cor-
related following spatial topology and this therefore needs to
be considered. According to the well-recognized ”first law
of geography” (Cressie 2015), the event scale pattern should
be more similar in nearby locations than those faraway. For
example, in influenza epidemic outbreaks, nearby states typ-
ically have similar activity level, as shown in Figure 1.

In this paper, we propose a new MultI-Task Ordinal Re-
gression (MITOR) framework for spatial event scale fore-
casting that concurrently addresses all the above challenges.
The main contributions of our study are summarized as fol-
lows:

1. Developing the MITOR framework for event scale
forecasting. We formulate event scale forecasting for
multiple locations as a multitask ordinal regression prob-
lem. We enforces similar feature sparsity patterns for dif-
ferent locations while preserving heterogeneity in their
scale patterns.

2. Proposing a model that enforces structured scale pat-
terns. Based on the first law of geography, we propose
to enforce similar event scale patterns among spatially-
closer tasks. This is achieved by a newly proposed regu-
larization term that is proved to be equivalent to the di-
vergence of the scale distribution patterns among nearby
locations.

3. Developing an efficient algorithm for solving a new
non-convex problem. To solve the proposed model’s ob-
jective function that is non-convex and non-smooth prob-
lem with an isotonicity constraint, we propose a new al-
gorithm based on the Alternating Direction Method of
Multipliers (ADMM) and dynamic programming that is
capable of solving the proposed model efficiently and is
guaranteed to converge to a local optimal solution.

4. Conducting comprehensive experiments to validate
the effectiveness and efficiency. Extensive experiments
on 10 datasets from civil unrest and influenza outbreaks
domains demonstrate that the proposed models outper-
form other comparison methods. In addition, sensitivity
analysis and qualitative analysis are provided to demon-
strate the effectiveness of our regularization term.

Related Work

Spitial event forecasting. Most research that has been re-
ported focuses on temporal events and ignores the under-
lying geographical information related to the forecasting of
elections (O’Connor et al. 2010), stock market movements
(Argyriou, Evgeniou, and Pontil 2007), disease outbreaks
(Achrekar et al. 2011), and box office ticket sales (Arias,
Arratia, and Xuriguera 2013). There are a few existing ap-
proaches that provide true spatiotemporal resolution for pre-
dicted events. For example, (Gerber 2014) utilized a logistic
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Figure 2: Flowchart of the proposed MITOR model

regression model for spatiotemporal events forecasting us-
ing topic-related tweet volumes as features. (Ramakrishnan
et al. 2014) built separate LASSO models for different loca-
tions to predict the occurrence of civil unrest events. (Zhao
et al. 2015a) designed a new predictive model based on a
topic model that jointly characterizes the temporal evolution
in terms of both the semantics and geographical burstiness.
However, all of them focus on the occurrence only, but not
able to handle the scales of future events.

Multi-task learning. Multi-task learning (MTL) refers
to models that learn multiple related tasks simultaneously
to improve their generalization performance (Arias, Arra-
tia, and Xuriguera 2013; Thrun and OSullivan 1998). Many
MTL approaches have been proposed (Tutz 2003). For ex-
ample (Evgeniou and Pontil 2004) proposed a regularized
MTL framework that constrained all task models to be close
to each other. The task relatedness can also be modeled by
constraining multiple tasks to share a common underlying
structure, e.g., a common set of features (Argyriou, Evge-
niou, and Pontil 2007), or a common subspace (Ando and
Zhang 2005). (Zhao et al. 2015b) demonstrated the utility of
applying a Multi-Task Learning framework for spatiotempo-
ral event forecasting.

Ordinal regression. Ordinal regression is a point-wise
approach to classifying data where the labels exhibit a natu-
ral order. Threshold-based methods assume that the unob-
served continuous variables underlie the ordinal response
(Gutiérrez et al. 2016; Verwaeren, Waegeman, and De Baets
2012). As a member of cumulative link models (CLMs)
(Agresti and Kateri 2011), the proportional odds model
(POM) is specifically designed for threshold-based ordinal
regression (McCullagh 1980). Non-proportional alternatives
like generalized ordered logit model simply assume a dif-
ferent weight for each class (Williams and others 2006).
Another alternative applies the proportional odds assump-
tion only to a subset of variables, known as the partial pro-
portional odds model (Peterson and Harrell Jr 1990). (Tutz
2003) presented a general framework that extends general-
ized additive models to incorporate non-parametric parts.
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Problem Setup and Preliminary Setups

Problem Setup

Suppose there are S spatial locations (e.g., cities, states) in a
country of interest. Given a time interval t (e.g., hour, day),
the spatio-temporal social media data for location s ∈ S and
time t can be formulated as Xs,t ∈ R

n×1, which denotes a
feature vector whose i-th element is term frequency - inverse
document frequency (TF-IDF).

The event scale at location s and time t is defined as an
ordinal response Ys,t ∈ {C1, C2, ..., Ck}, where C1, C2, ..., Ck
are ordinal class labels and k is the total number of ordinal
event scales. A natural label ordering is included, denoted
as C1 ≺ C2 ≺ ... ≺ Ck, where ≺ is the ascending order
relation.

Given the tweet data Xs,t in a specific location s and a
time interval t, the goal is to predict the scale of a future
event denoted by Yl,τ for the same location s and a future
time interval τ , where τ = t+ p and p > 0 is the lead time.
In this paper, we set the time intervals t as per day and the
lead time p is set to one day ahead. Formally, this problem
is equivalent to learning a mapping from social media data
to future event scale predictions f : Xs,t → Ys,τ .

Preliminaries

Because the response variable Ys,t is an ordinal variable, the
assumption of an order between event scales makes it inap-
propriate to apply conventional methods such as multi-class
classification and regression directly. Specifically, conven-
tional regression models like linear regression require con-
tinuous values and thus cannot handle the categorical vari-
able Ys,t in our problem. Classification models, although
they focus on categorical variables, only address nominal
variables and ignore the ordinal information in our problem.

To predict the ordinal variable Ys,t, ordinal regression
models such as the proportional odds model (POM) (Mc-
Cullagh 1980) are commonly used to effectively leverage
and address the ordinal nature of the problem. Compared
to multi-class logistic regression, POM adds the constraint
that the hyper-planes that separate different classes are par-
allel for all classes, that is, the weight co-efficient vector w
is common across classes. The model also assumes that a
latent variable underlies the ordinal response, which will be
estimated by threshold vector θ in the model in order to sep-
arate different class labels.

In the logistic ordinal regression we model the cumula-
tive probability as the logistic function. Thus, we can for-
mulate the objective function of our problem as a negative
log-likelihood:

argmin
W,Θ

−
∑S,T

s,t=1
log(σ(wTXs,t+θYs,t)−σ(wTXs,t+θYs,t−1))

s.t.θ1 ≤ θ2 ≤ θ3 ≤ ... ≤ θk−1 (1)

Where w ∈ R
n×1, and θ ∈ R

(k−1)×1 are the two param-
eter sets to be estimated in the model, with θ0=−∞ and
θk=∞ to represent extremal classes, Xs,t denotes t-th sam-
ple of the s-th location, Ys,t denotes its corresponding scale.
The function σ(x) is the logistic sigmoid function denoted

as σ(x) = 1/(1 + e−x). Notice that our problem and pro-
posed models are generic and can also accommodate other
ordinal regression models. In this paper, we focus on POM.

The model proposed in Equation (1) suffers from two
challenges: 1) all the locations share a single weight co-
efficient vector w and threshold vector θ, therefore cannot
handle any spatial heterogeneity in the event scale for differ-
ent locations; and 2) Equation (1) assumes all the locations
are independent even though some spatial correlations exist
among locations regarding the event scale pattern, as shown
in Figure 1. In order to jointly handle these challenges, in
the next section, we present our MITOR framework.

Models
In this section, we propose a new model, MITOR-I, that
enforces similar feature sparsity patterns for different tasks
while preserving heterogeneity in their scale patterns. We
then move on to propose MITOR-II, which introduces a
novel regularization term that utilizing geo-information to
restrict adjacent locations by sharing their event scale labels,
building on MITOR-I.

MITOR-I

To handle the spatial heterogeneity of event scale criteria
for different locations, we need to build an exclusive model
for each individual locations, all of which have their own
thresholds. Although these thresholds are different, differ-
ent locations share similar feature weight coefficients pat-
terns because people generally share a common language
and speak in a similar way, so the keywords for a topic of in-
terest will be similar across different locations, for example,
“influenza” and “cough”,would both refer to the topic ‘flu’.
Therefore, we propose to leverage multitask learning in or-
dinal regression to enforce different tasks that share a similar
weight coefficients pattern but reserve their own thresholds.
We define a feature weight coefficient matrix W ∈ R

n×S

and a threshold matrix Θ ∈ R
S×k, where each column of

W , denoted as W·,s, is the feature weight coefficient vec-
tor for task s, while each row of Θ, denoted as Θs,·, is the
threshold vector for task s. Learning multiple related tasks
simultaneously effectively increases the sample size for each
task, since when we learn a model for a specific task, we use
information from all other tasks.

The similar pattern of W across different tasks is achieved
by enforcing a similar sparsity pattern among tasks. Specif-
ically, we can add �2,1 norm regularization over the W ma-
trix, which sums the �2 norms for each feature, and each �2
norm is enforced for all the tasks for each feature. Thus, the
i-th feature, which corresponds to the i-th element in each
model, is likely to be selected or not by all models simulta-
neously.

Mathematically, we propose the first MultI-Task Ordinal
Regression model (MITOR-I) as follows:

argminW,Θ L(W,Θ) + α||W ||2,1
s.t. Θs,1 ≤ Θs,2 ≤ Θs,3 ≤ ... ≤ Θs,k−1, s ∈ {1, 2, ...,S}

Where we define L(W,Θ) as follows for simplicity and for
later use:
−∑S,T

s,t=1 log
(
σ
(
WT
·,sXs,t +Θs,Ys,t

)− σ
(
WT
·,sXs,t +Θs,Ys,t−1

))
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||W ||2,1 is the group sparsity term for matrix W which en-
courages all tasks to select a common set of features; it can
be computed as the sum of �2-norm for each row in W . The
regularization hyper-parameter α controls the sparsity.

MITOR-II

In a multi-task learning setting for ordinal regression, each
task has only a limited number of samples and thus not ev-
ery task has a complete set of labels in the training set. For
example, in Figure 2 the top right box contains an example
of a set of training data labels (event scales). Only task 3 has
a complete set of event scales: all the other tasks are miss-
ing one or more labels. The threshold associated with the
missing labels cannot be learned during the training phase
and hence the model is not capable of predicting the miss-
ing labels. Note that this issue becomes more severe as the
number of class labels increases. For example, in the U.S. in-
fluenza outbreak dataset, among all the CDC data from 2011
to 2014, for each year only around 50% of the states include
all the scale points.

Different tasks each have their own missing labels, so
we propose to allow correlated tasks to adaptively comple-
ment each other’s missing labels. This means that we need
to determine the correlation among tasks. Based on the first
law of geography “everything is related to everything else,
but near things are more related than distant things”(Cressie
2015), we know nearby locations will tend to be more simi-
lar to each other. For example, in a disease outbreak, nearby
states typically have similar levels of flu activity, as shown
in Figure 1. For a time interval t, given two locations i and j
that are close in geo-spatial distance, the probability of that
the event scale at location i being equal or under event scale
Cq , which is denoted as P (Yi,t � Cq|Xi,t), is similar to that
of location j, leading to the following equation:

P (Yi,t � Cq|Xi,t)

P (Yi,t � Cq|Xi,t)
≈ P (Yj,t � Cq|Xj,t)

P (Yj,t � Cq|Xj,t)

The odds of being equal or under scale Cq is defined as
the fraction of the probability of being equal or under scale
Cq over the probability of being above scale Cq . Mathemati-
cally, the odds can be expressed as:

odds(Yi,t � Cq|Xi,t)) =
P (Yi,t � Cq|Xi,t)

P (Yi,t � Cq|Xi,t)
(2)

Therefore, the ratio of the odds of being equal or under
two adjacent scales q and q + 1 of two tasks close in geo-
spatial distance should also be similar. Mathematically, this
can be expressed as:

odds(Yi,t � Cq+1|Xi,t)

odds(Yi,t � Cq|Xi,t))
≈ odds(Yj,t � Cq+1|Xj,t)

odds(Yj,t � Cq|Xj,t))
(3)

The similarity pattern in Equation (2) can thus be equiva-
lently denoted by thresholds, as shown in Lemma 1.
Lemma 1. Equation (3) is theoretically equivalent to the
following:

Θi,Cq+1 −Θi,Cq ≈ Θj,Cq+1 −Θj,Cq (4)

where i and j are two tasks that are close in geo-spatial
distance and Cq and Cq+1 are two adjacent event scales.

Proof. We can derive the lemma from the following equa-
tions:

ln

(
P (Yi,t � Cq|Xi,t)

P (Yi,t � Cq|Xi,t)

)
= WT

·,iXi,t +Θi,Cq (5)

Equation (5) is the definition of POM. From this, we can
derive an equivalent expression with Cq+1 and subtract one
from the other to omit the input vector Xi,t on the right, as
shown in the following equation:

ln
(

P (Yi,t�Cq+1|Xi,t)
P (Yi,t�Cq+1|Xi,t)

)
− ln

(
P (Yi,t�Cq|Xi,t)
P (Yi,t�Cq|Xi,t)

)
= Θi,Cq+1 −Θi,Cq

Combining above equation with Equation (2), where the
term odds is defined, we obtain the ratio of odds with Θ as:

odds(Yi,t � Cq+1|Xi,t)

odds(Yi,t � Cq|Xi,t))
= eΘi,Cq+1

−Θi,Cq (6)

Thus, combining Equation (3) and Equation (6), we reach
the conclusion that given two tasks i and j that are close
in geo-spatial distance, the difference between threshold
Θi,Cq+1

− Θi,Cq and Θj,Cq+1
− Θj,Cq should be similar, as

shown in Equation (4).

Therefore, we propose a new model to encourage the dif-
ference between threshold parameter Θi,Cq+1 − Θi,Cq to be
similar among adjacent tasks. This is done by introducing a
new regularization term for Θ which makes use of the spa-
tial information of the tasks, given by the adjacent matrix of
tasks. Mathematically, the new model is as follows:

argminW,Θ L(W,Θ) + α‖W‖2,1+
β

2

S∑
i=1

k−1∑
j=2

‖ (Θi,j −Θi,j−1)− 1

Ni

∑
z∈adj(i)

(Θz,j −Θz,j−1) ‖22

s.t. Θi,1≤Θi,2≤Θi,3≤ ...≤Θi,k−1, i ∈ {1, 2, ...,S} (7)

Where the function adj(i) returns the set of tasks that is
adjacent to task i and Ni is the total number of its neighbors.
This term will encourage adjacent tasks to have a similar ra-
tio for the odds between two consecutive scales by encourag-
ing the difference between threshold parameter Θi+1−Θi to
be similar among adjacent tasks. The regularization hyper-
parameter β controls the importance of this term.

Algorithm

In this section, we propose a new algorithm to optimize
the parameters of MITOR models in Equation (7). Since
MITOR-I is a special case of MITOR-II when β = 0, we
focus on MITOR-II here.

The problem in Equation (7) is nonconvex and nons-
mooth. Moreover, the parameter Θ has isotonicity con-
straints (namely Θi,1 ≤Θi,2 ≤Θi,3 ≤ ...≤Θi,k−1). These
challenges neutralize the existing methods like subgradient
and coordinate descent methods (Bishop 2006). In order to
solve the challenges, we propose a new algorithm based
on ADMM (Boyd et al. 2011) that first decomposes the
original problem into several simpler subproblems and then
solve them iteratively. To handle the isotonicity constraints,
quadratic penalties of non-smooth functions have been in-
troduced, which are solved by our newly proposed methods
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based on dynamic programming that can ensure global opti-
mal solution for this subproblem.

The pseudo-code of the proposed algorithm is
summarized in Algorithm 1. The parameter set
{W,Θ, U, V, y(1), y(2), y(3)} is alternately solved by
the proposed algorithm until convergence is achieved.
Lines 3-7 show the alternating optimization of each of the
variables. The detailed optimization for all the variables are
described in more detail below.

Algorithm 1: The Proposed Algorithm
Require: X,Y, ρ, α, β, λW , λΘ

Ensure: solution W,Θ
1: initialize W 0,Θ0, U0, V 0, y(1)0, y(2)0, y(3)0, i = 0
2: repeat
3: W i,Θi ⇐ Equation (9)
4: U i ⇐ Equation (10)
5: V i ⇐ calculation following Theorem 1
6: y(1)i, y(2)i, y(3)i ⇐ Equation (11)
7: i ⇐ i+ 1
8: until convergence

Base on ADMM formulation, the original objective func-
tion of MITOR-II can be re-written as follows:

L(W,Θ) + α||U ||2,1+
β

2

S∑
i=1

k−1∑
j=2

‖ (Vi,j − Vi,j−1)− 1

Ni

∑
z∈adj(i)

(Vz,j − Vz,j−1) ‖22

s.t. W = U,Θ = V (8)
Vi,1 ≤ Vi,2 ≤ Vi,3 ≤ ... ≤ Vi,k−1 for i ∈ {1, 2, ...,S}

Thus, the augmented Lagrangian is:

argmin
W,Θ,U,V

L(W,Θ) + α||U ||2,1 + trace(y(1)(W − U)T )+

+ρ/2||W − U ||22 + trace(y(2)(Θ− V )T ) + ρ/2||Θ− V ||22+
β

2

S∑
i=1

k−1∑
j=2

‖(Vi,j − Vi,j−1)− 1

Ni

∑
z∈adj(i)

(Vz,j − Vz,j−1)‖22+

∑k−1

i=2
y
(3)
·,i (V·,i−1−V·,i)

T+ρ/2
∑k−1

i=2
||max(V·,i−1−V·,i, 0)||22

Notice that the max operator here acts as a vector max
which will set the element of the vector to 0 when it is less
than 0.

Update W,Θ

The sub-problem of updating W and Θ is as follows:

argminW,Θ L(W,Θ) + trace(y(1)(W − U)T )+ (9)

ρ/2||W−U ||22+trace(y(2)(Θ−V )T )+ρ/2||Θ−V ||22
Since L(W,Θ) is a non-convex function with respect to

W and Θ, we will use a traditional gradient descent algo-
rithm, carefully choosing the step size λW and λΘ for W
and Θ to jointly update them to local optima.

Update U
The sub-problem of updating U is as follows:

argminU α||U ||2,1+trace(y(1)(W−U)T )+ρ/2||W−U ||22 (10)

This can be solved by proximal gradient descent using the
proximal operator on the �2,1 norm (Bach et al. 2012).

Update V
The sub-problem of updating V is as follows:

argmin
V

β

2

S∑
i=1

k−1∑
j=2

‖ (Vi,j − Vi,j−1)− 1

Ni

∑
z∈adj(i)

(Vz,j − Vz,j−1) ‖22

+ρ/2||Θ− V ||22 + trace(y(2)(Θ− V )T )+∑k−1

i=2
y
(3)
·,i (V·,i−1 − V·,i)

T + ρ/2
∑k−1

i=2
||max(V·,i−1 − V·,i, 0)||22

The adj() function introduces some difficulties for updat-
ing V , since every pair of consecutive class level thresholds
for the same task show in the same term. In addition, the
same class level threshold among all tasks will also lead to
recursive relationships. This makes elemental-wise updating
of V impossible in pratice.

In order to address this problem, we can treat the adj()
function as the matrix representation R ∈ R

S×S , and refor-
mulate the problem as matrix multiplication:

argmin
V

β

2

S∑
i=1

k−1∑
j=2

∣∣∣
∣∣∣(V·,j − V·,j−1)

T
RT

∣∣∣
∣∣∣2
2
+ trace

(
y(2)(Θ− V )T

)
+

ρ

2
||Θ− V ||22 +

k−1∑
i=2

y
(3)
·,i (V·,i−1 − V·,i)

T +
ρ

2

k−1∑
i=2

||max(V·,i−1 − V·,i, 0)||22

Where Ri,i = 1 and Ri,adj(i) = − 1
Ni

, for i = 1...S . Ni

is the total number of neighbors of task i.
Theorem 1. The optimal solution for matrix V can be ob-
tained by computing its column vectors in order as follows:

V·,1 = y
(2)
·,1 /ρ+Θ·,1

V·,i=

{
(βV·,i−1L+y

(2)
·,i +ρ(Θ·,i+V·,i−1)+y

(3)
·,i−1)(βL+2ρI)−1 V·,i<V·,i−1

(βV·,i−1L+ y
(2)
·,i + ρΘ·,i + y

(3)
·,i−1)(βL+ ρI)−1 V·,i≥V·,i−1

Where L = RTR and i = 2...k − 1.

Proof. Please see the supplemental material1 .

Update y

Finally, update y(1), y(2), y(3) as follows:

y(1) = y(1) + ρ(W − U), y(2) = y(2) + ρ(Θ− V ) (11)

y
(3)
i = max(y

(3)
i + ρ(Vi−1 − Vi), 0), for i = 2...k − 1

Experiments
In this section, the performance of the proposed new model,
MITOR, is evaluated using 10 real datasets. First, the ex-
perimental setup is introduced. The effectiveness and effi-
ciency of MITOR is then evaluated against several existing
baseline methods. All the experiments were conducted on a
64-bit machine with Intel(R) core(TM) quad-core processor
(i7CPU 2.5 GHz) and 16GB memory.

1
https://github.com/zhaoliangvaio/homepage/blob/master/materials/aaai supplementary

multi ordinal.pdf
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Dataset and Experiment Setup

In this study, 8 datasets from civil unrest forecasting and 2
datasets from influenza outbreak forecasting are used for the
experimental evaluations.

Civil unrest: each dataset is from each of 8 different
countries in Latin America, namely Argentina, Brazil, Chile,
Colombia, Mexico, Paraguay, Uruguay, and Venezuela. For
these datasets, data sources from Twitter are adopted as the
model inputs. In each case the data for the period from
July 1, 2013 to February 9, 2014 is used for training, while
the data from February 10, 2014 to December 31, 2014,
is used for the performance evaluation. The event fore-
casting results are validated against a labeled events set,
known as the gold standard report (GSR) (GSR Dataset
). GSR is a collection of civil unrest news reports from
the most influential newspaper outlets in Latin America
(O’Connor et al. 2010). The event scale for the civil un-
rest dataset is the relative crowd size (‘none’ ≺ ‘small’
≺ ‘large’). An example of a labeled GSR event is given
by the tuple: (CITY=“Hermosillo”, STATE =“Sonora”,
COUNTRY = “Mexico”, DATE = “2013-01-20”, EVENT
SCALE=“large”).

Influenza outbreaks: The 2 datasets for influenza out-
breaks in the U.S. use Twitter data as the data source. A total
number of 1,266,301 tweets that contain the flu-related key-
words like ‘flu’ and ‘influenza’ are included in the datasets.
In the first dataset, data of year 2011 is used for training and
data of year 2012 is used for performance evaluation. In the
second dataset, data of year 2013 is used for training and
data of year 2014 is used for performance evaluation. The
forecasting results for the flu outbreaks are validated against
the corresponding influenza statistics reported by the Cen-
ters for Disease Control and Prevention (CDC ). CDC pub-
lishes the weekly influenza-like illness (ILI) activity level
for each state in the U.S. based on the proportional level of
outpatient visits to healthcare providers for ILI. The event
scale is the relative ILI activity level (‘insufficient data’ ≺
‘minimal’ ≺ ‘low’ ≺ ‘moderate’ ≺ ‘high’). An example of
a CDC flu outbreak event is: (STATE = “Virginia”, COUN-
TRY = “United States”, WEEK = “01-06-2013 to 01-12-
2013”, ACTIVITY LEVEL = “low”).

Parameter Setting: The hyper-parameters in the pro-
posed model have been chosen based on the performance
for the validation set. The validation set consists of a ran-
domly chosen 15% of the training data. Moreover, we have
illustrated and discussed the parameter sensitivity in Section
“Parameter Sensitivity Study”.

Performance Evaluation: To evaluate the prediction per-
formance for ordinal variables, Mean Zero-one Error (MZE)
and Mean Absolute Error (MAE) are commonly used.

MZE is the error rate of the classifier: MZE =
1
N

∑N
i=1[[y

∗
i �= yi]] = 1−Acc, where yi is the true label, y∗i

is the predicted label and Acc is the accuracy of the classi-
fier. MZE values range from 0 to 1; they are related to global
performance, but do not consider the order.

MAE is the average deviation in absolute value of the pre-
dicted rank y∗i from the true one yi (Baccianella, Esuli, and
Sebastiani 2009): MAE = 1

N

∑N
i=1 |y∗i − yi|. MAE values

range from 0 to k − 1 (maximum deviation in number of
scales).

Baselines for comparison: The performance of the pro-
posed models is compared with the baseline as well as the
state of the art methods, namely: SVC1V1 (Support Vector
Classifier with OneVsOne), SVC1VA (Support Vector Clas-
sifier with OneVsAll) (Hsu and Lin 2002), SVMOP (Sup-
port Vector Machines with OrderedPartitions) (Waegeman
and Boullart 2009), and POM (Proportional Odds Model)
(McCullagh and Nelder 1989). The detail introduction and
hyper-parameter setting is included in supplemental mate-
rial.

Performance

Tables 1, 2, 3 show the performance for all the methods on
all the datasets based on both MZE and MAE. The runtime
of training is shown on flu dataset. The runtime for civil un-
rest follows the similar trends and is not included due to
space limitations. For the test times, all the methods con-
sume negligible testing times (less than 1 sec).

These results indicate that the methods that utilize multi-
task frameworks perform better than most baseline methods
overall. Moreover, when the group sparcity �2,1 constraint
and adjacency location based threshold constraint are in-
cluded, the performance of the MITOR-II model is superior.

Table 1 shows that MITOR-II consistently performs well
across different countries, being the best in Argentina,
Brazil, Colombia, Mexico, Uruguay, and Venezuela and
competitive in Paraguay and Chile and outperforming the
baseline models by 10% - 50% both in MZE and MAE.
MITOR-I also achieves good scores, but is not as compet-
itive as MITOR-II. This is largely because MITOR-II uti-
lizes geo-information by including the proposed adjacency
location based threshold constraint. Interestingly, MITOR-
II largely outperformed the baselines by around 50% on the
Argentina dataset, but only by 10% on the Mexico dataset.
Examining the dataset, 16 of the 23 states have incomplete
scale labels in the Argentina dataset, covering nearly 70% of
the entire country, while only 17 out of 32 states have incom-
plete scale labels in the Mexico dataset, around 50% of the
country. This may suggest that the threshold regularization
term in MITOR-II improves the performance substantially
when there is more serious incompleteness of labels.

Tables 2, 3 also demonstrate the effectiveness of the pro-
posed methods. MITOR-II outperformed the baseline mod-
els consistently by 20% - 40% both in MZE and MAE. The
tables also show the training times for all the methods. We
can see that SVM models tend to have short training times,
with SVM with OneVsOne binary decomposition scheme
(SVC1V1) having the shortest training time. The training
time for the proposed methods outperform the baseline POM
model, but as MITOR is constructed based on POM, this
still demonstrates the proposed optimization method is an
efficient way to solve the proposed models.

The table that shows top 10 features selected by MITOR
is included in supplemental material.
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Figure 3: The heat map for the US flu dataset for Θ·,4 −Θ·,3 and ground truth proportional odds of class 4 over class 3

Table 1: Event forecasting performance comparison on civil unrest datasets (MZE, MAE)
Method Argentina Brazil Chile Colombia Mexico Paraguay Uruguay Venezuela

SVC1VA 0.0368, 0.0708 0.0440, 0.0857 0.0657, 0.1129 0.0552, 0.0916 0.1284, 0,2284 0.0353, 0.0674 0.0223, 0.0390 0.0615, 0.1127
SVC1V1 0.0339, 0.0670 0.0441, 0.0860 0.0610, 0.1098 0.0506, 0.0884 0.1187, 0.2184 0.0339, 0.0610 0.0227, 0.0403 0.0690, 0.1201
SVMOP 0.0392, 0.0709 0.0482, 0.0854 0.0740, 0.1189 0.0542, 0.0889 0.1187, 0.2184 0.0337, 0.0608 0.0239, 0.0398 0.0690, 0.1201

POM 0.0287, 0.0572 0.0626, 0.1230 0.0524, 0.0989 0.0376, 0.0724 0.0982, 0.1906 0.0367, 0.0717 0.0340, 0.0667 0.0374, 0.0722
MITOR-I 0.0161, 0.0306 0.0344, 0.0665 0.0436, 0.0812 0.0280, 0.0534 0.0967, 0.1875 0.0284, 0.0551 0.0132, 0.0250 0.0289, 0.0551
MITOR-II 0.0158, 0.0305 0.0339, 0.0657 0.0436, 0.0812 0.0274, 0.0521 0.0875, 0.1690 0.0286, 0.0555 0.0122, 0.0231 0.0286, 0.0545

Table 2: Experimental results for 2011-2012 U.S. flu dataset
Model Training time MZE MAE

SVC1VA 144 0.2246 0.3167
SVC1V1 68 0.2220 0.3096

POM 1216 0.2250 0.3117
SVMOP 96 0.2269 0.3118
MITOR-I 394 0.1148 0.1900
MITOR-II 395 0.1145 0.1895

Table 3: Experimental results for 2013-2014 U.S. flu dataset
Model Training time MZE MAE

SVC1VA 187 0.2861 0.4367
SVC1V1 77 0.2869 0.4368

POM 800 0.3036 0.4822
SVMOP 114 0.2921 0.4310
MITOR-I 425 0.1796 0.3473
MITOR-II 532 0.1794 0.3466

Parameter Sensitivity Study

There are two hyper-parameters in the proposed MITOR-II
model, as shown in Equation (8), where α controls group
sparsity �2,1 norm and β controls the proposed regulariza-
tion term on Θ. α is also introduced in MITOR-I model and
follows similar trends as it performs in MITOR-II.

Figure 4 show the MZE and MAE of the model versus α
and β respectively. Only the results for Mexico within civil
unrest datasets and 2011-12 influenza outbreak dataset are
shown due to space limitations. The top 2 bar charts in Fig-
ure 4 show the MZE and MAE of the model versus α. By
varying α across the range from 0.0001 to 10, the perfor-
mance of the influenza outbreak dataset is stable, with the
fluctuation ranges less than 0.01. For the civil unrest dataset,
the fluctuation range is 0.015 in MZE and 0.03 in MAE. The
best performance is obtained when α = 0.5. We can also
see a clear trend where both MZE and MAE increase when
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Figure 4: Sensitivity analysis for hyper-parameters

α is too large or too small. The bottom 2 bar charts illustrate
the MZE and MAE of the model versus β, which is varied
across the same range as α. The fluctuation ranges around
0.01 for both MZE and MAE. In general, the performance
is good when β is small, but deteriorates once β becomes
too large. This is because a large β will force the model to
pay too much attention to being similar to its adjacent tasks
and may thus lead to the loss of its own characteristic and a
consequent decrease in overall performance.

The Effect of Scale Pattern Regularization

This section validates the effectiveness of the threshold reg-
ularization term on scale patterns in MITOR-II. On the flu
dataset, Figure 3 compares the scale patterns in terms of Θ
learned by MITOR-I (i.e., without threshold regularization)
and MITOR-II (i.e., with threshold regularization). Each of
Figure 3(a) and (b) shows the difference between 3rd and
4th thresholds Θi,4 − Θi,3 for each ith task (state) in the
U.S. Figure 3(c) shows the ground truth proportional odds of
class 4 over class 3 for each of the states for two years, 2013
and 2014. Figure 3(a) shows a dramatic divergence among
the values for different states while in Figure 3(b) the pat-
terns among nearby states is spatially smoothed, which is
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more similar to the patterns in ground truth shown in Fig-
ure 3(c). This is because MITOR-II can utilize threshold
regularization to encourage the nearby states to share their
knowledge with each other under the “first law of geogra-
phy”, which will largely alleviate each state’s incomplete-
ness of label set. For example, the pattern of the relatively
small state “Colorado” suffered from data incompleteness
and deviated from the neighbor states, but MITOR-II cor-
rected this, as compared with the ground truth in Figure 3(c).

Conclusions

Effective forecasting of future event scales can be used to
qualitatively inform reasonable re-source allocation and en-
able more accurate proactive actions by practitioners. To ad-
dress this issue, this paper proposes a novel MultI-Task Or-
dinal Regression (MITOR) framework that characterizes the
feature sparsity, task scale incompleteness, and scale pat-
tern correlation. An efficient algorithm for parameter op-
timization is proposed to handle this non-convex and non-
smooth problem with isotonicity constraints. Extensive ex-
periments on 10 real-world datasets demonstrate that the
proposed model outperforms other comparison methods in
multiple application domains.
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