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Abstract

We analyze the K-armed bandit problem where the reward
for each arm is a noisy realization based on an observed con-
text under mild nonparametric assumptions. We attain tight
results for top-arm identification and a sublinear regret of
Õ
(
T

1+D
2+D

)
, where D is the context dimension, for a mod-

ified UCB algorithm that is simple to implement. We then
give global intrinsic dimension dependent and ambient di-
mension independent regret bounds. We also discuss recov-
ering topological structures within the context space based
on expected bandit performance and provide an extension
to infinite-armed contextual bandits. Finally, we experimen-
tally show the improvement of our algorithm over existing
approaches for both simulated tasks and MNIST image clas-
sification.

Introduction
Multi-armed bandits (MABs) are an important sequential
optimization problem introduced by Robbins (1985). These
models have extensively been used in a wide variety of fields
related to statistics and machine learning.

The classical MAB consists of K arms where at each
point in time the learner can sample (or pull) one of them
and observe a reward. Then various objectives can be estab-
lished, such as finding the best arm (Top-Arm Identification)
or minimizing some regret over time.

For contextual bandits (also referred to as bandits with
side information or covariates), the learner has access to a
context on which the payoffs depend. Then, based on the ob-
servations, we aim to determine the best policy (or context-
to-arm mapping) and to optimize some notion of regret.

Most approaches to stochastic contextual bandits make
strong assumptions on the payoffs. A popular approach
models the mean reward for each arm as being linear in the
context space (Chu et al. 2011; Li et al. 2010). However,
this is rarely the case in real data. In this paper, we take a
more general approach and allow the reward functions to be
non-linear and of arbitrary shape.

Using recent developments in nonparametric statistics
(Jiang 2017b), we show that with simple and easily im-
plementable techniques, we can construct bandit algorithms
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which can learn over the entire context space with strong
guarantees, despite the difficulty that arises with allowing a
wide variety of reward functions. While this is not the first
work which blends nonparametric statistics with bandits, we
are the first to show simple and practical methods while still
maintaining strong theoretical guarantees.

We reanalyze the uniform and upper confidence bound
sampling strategies and demonstrate what nonparametric ap-
proaches can offer to contextual bandit learning. No other
technique can adapt to the inherently difficult and complex
real world reward functions while allowing such a strong
theoretical understanding of the underlying algorithms.

While nonparametric models are powerful in their abil-
ity to learn arbitrary functions free of distributional as-
sumptions, a major weakness is the curse of dimensional-
ity. In order to have any theoretical guarantees, they require
an exponential-in-dimension number of samples. However,
when the data lies on an unknown low-dimensional structure
such as a manifold, we show that our algorithms can con-
verge as if the data was on a lower dimension and not in the
potentially much large ambient dimension. Another striking
fact is that no preprocessing of the data is required. This is of
practical importance because modern data has increasingly
more features but the underlying degrees of freedom often
remain small.

We then discuss recovering geometric structures in the
context space based on bandit performance. Specifically, we
recover the connected components of the context space in
which a particular bandit is the top-arm. Although learning
a context-to-arm mapping gives us the estimated top-arm
at each point in the context space, this alone does not tell
the space’s topological structure, such as the number and
shapes of connected components. We recover these struc-
tures with uniform consistency guarantees with mild as-
sumptions, where the shapes and relative positions of the
components can be arbitrary and the number of such com-
ponents is recovered automatically.

We then provide an extension to infinite-armed bandits
and conclude with empirical results from simulations and
image classification on the MNIST dataset.

Setup

Suppose there are K bandit arms indexed in [K]. At each
time-step t, the learner observes a context xt ∈ R
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where xt is drawn i.i.d. from a context density pX with
compact support X bounded below away from zero (e.g.
infx∈X pX(x) ≥ p0 for some p0 ≥ 0). Then the learner
chooses an arm It ∈ [K] and observes reward

rt = fIt(xt) + ξt

where ξt is drawn according to white noise random variable
ξ and fi : X → R is the i-th arm’s mean reward. We make
the following assumptions.
Assumption 1. (Lipschitz Mean Reward) There exists L
such that |fi(x) − fi(x

′)| ≤ L|x − x′| for all x, x′ ∈ X
and i ∈ [K].
Assumption 2. (Sub-Gaussian White noise) ξ satisfies
E[ξ] = 0 and is sub-Gaussian with parameter σ2 (i.e.
E[exp(λξ)] ≤ exp(σ2λ2/2) for all λ ∈ R).

We require the finite-sample strong uniform consistency
result (Theorem 1) for k-NN regression defined as fellows:
Definition 1 (k-NN). Let the k-NN radius of x ∈ X be
rk(x) := inf{r : |B(x, r) ∩ X| ≥ k} where B(x, r) :=
{x ∈ X : |x − x′| ≤ r} and the k-NN set of x ∈ X be
Nk(x) := X ∩B(x, rk(x)). Then for x ∈ X ,

f̂k-NN(x) :=
1

|Nk(x)|
n∑

i=1

yi · 1 [xi ∈ Nk(x)] .

Theorem 1. (Rate for k-NN (Jiang 2017b)) Let δ > 0.
There exists N0 and universal constant C such that if n ≥
N0 and k = �n2/(2+D)�, then with probability at least 1−δ,

sup
x∈X

|f(x)− f̂k-NN(x)| ≤ C
√
log n log(1/δ) · n−1/(2+D).

It will be implicitly understood from here on that f̂i de-
notes the k-NN regression estimate of fi under the settings
of Theorem 1.

Top-Arm Identification

Algorithm 1 Uniform Sampling

1: Parameters: T , total number of time steps.
2: For each arm i of the K arms:
3: For each time step t ∈ [ (i−1)T

K + 1, iT
K ]:

4: Pull arm It := i.
5: Define f̂i : X → R to be the k-NN regression estimator

from the sampled context and reward observations for
each i ∈ [K].

Definition 2. (ε-optimal arm) Arm i is be ε-optimal at con-
text x ∈ X if maxj∈[K] fj(x)− fi(x) ≤ ε.

Following we show a uniform (over context) result about
ε-optimal arm recovery:
Theorem 2. (ε-optimal arm recovery) Let δ > 0. For Algo-
rithm 1, with probability at least 1− δ/K, if

T ≥ Kmax

{
N0,

log

(
C
√

log(1/δ)

ε

)
· (2 +D)(2C)2+D log(1/δ)1+D/2

ε2+D

}
,

then π̂(x) := argmaxi∈[K]f̂i(x) is ε-optimal at context x
uniformly for all x ∈ X .

Remark 1. This result shows that with Õ(ε−(2+D)) sam-
ples, we can determine an ε-approximate best arm. Known
lower bounds in nonparametric regression stipulate that we
need Ω(ε−(2+D)) to identify differences between functions
of size ε so our result matches lower bounds up to logarith-
mic factors.

Proof. By Theorem 1, it follows that based on the choice
of T , each arm has at least enough time such that
supx∈X |f̂i(x) − fi(x)| ≤ ε/2. Thus, we have ∀x ∈ X ,
defining π(x) = maxj∈[K] fj(x),

fπ(x)(x)− fπ̂(x)(x) ≤ f̂π(x)(x)− f̂π̂(x) + ε ≤ ε,

as desired.

Regret Analysis For UCB Strategy

Define Ti(t) to be the number of times arm i was pulled by
time t.

Algorithm 2 Upper Confidence Bound (UCB)

1: Parameters: M0, M1, δ, T .
2: Define σ(n) = M1

√
log n(log(nK/δ)) · n−1/(2+D).

3: Pull each of the K arms M0 times.
4: For each round t = KM0,KM0 + 1, . . . , T :
5: Pull It := argmaxi∈[K]f̂i(t) + σ(Ti(t− 1)).

We use the following notion of regret.

RT =
T∑

t=1

[
max

i
fi(xt)− fIt(xt)]

]
.

Remark 2. Note that this notion of regret is different from
those studied in classical MABs as well as other works
in nonparametric contextual bandits. Usually the expected
form E[RT ] is bounded. Here, our regret analysis is not un-
der this expectation and hence is a stronger notion of regret.

Theorem 3. Let δ > 0. Suppose that M0 ≥ N0 and M1 >
C in Algorithm 2. Then we have that with probability at least
1− δ,

RT ≤M12
1 +D

2 +D
K
√
log T (log(TK/δ) · T 1+D

2+D

+KM0 max
i

||fi||∞.

Remark 3. This shows a sub-linear regret of Õ(T
1+D
2+D ).

Proof. Denote f̂i,Ti(t) to be the k-NN regression estimate of
fi at time t. Letting C0 = KM0 maxi ||fi||∞, we have by
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Theorem 1

RT ≤
T∑

i=1

σ(Tπ̂(xt)(t− 1)) + C0 ≤ K
T∑

i=1

σ(i) + C0

= M1K
√

log T (log(TK/δ)
T∑

t=1

t−1/(2+D) + C0

≤ M1K
√

log T (log(TK/δ)

∫ T

t=0

(1 + t)−1/(2+D)dt

+ C0

≤ M12
1 +D

2 +D
K
√
log T (log(TK/δ) · T 1+D

2+D + C0.

The first inequality holds because the confidence bound of
a sub-optimal arm must be higher than that of the optimal
at xt in order for that arm to be chosen and the regret at
that time-step is bounded by the confidence bound. The sec-
ond inequality holds because of the following simple com-
binatorial argument. Each time a suboptimal arm is cho-
sen, its count increments, or otherwise there is no regret in-
curred.

Contextual Bandits on Manifolds

Assumption 3. (Manifold Assumption) pX and the family
of fi are supported on M , where:

• M is a d-dimensional smooth compact Riemannian man-
ifold without boundary embedded in compact subset X ⊆
R

D.
• The volume of M is bounded above by a constant.
• M has condition number 1/τ , which controls the curva-

ture and prevents self-intersection.

Let pX be the density of P with respect to the uniform mea-
sure on M .

Theorem 4. (Manifold Rate for k-NN (Jiang 2017b)) Let
δ > 0. There exists N0 and universal constant C such that if
n ≥ N0 and k = �n2/(2+d)�, then with probability at least
1− δ,

sup
x∈X

|f(x)− fk(x)| ≤ C
√
log n log(1/δ) · n−1/(2+d).

Then, simply by using Theorem 4 instead of Theorem 1,
we automatically enjoy faster rates for Theorems 2 and 3.
Theorem 5. (ε-optimal arm recovery on manifolds) Let δ >
0. For Algorithm 1, with probability at least 1− δ/K, if

T ≥ Kmax

{
N0,

log

(
C
√

log(1/δ)

ε

)
· (2 +D)(2C)2+d log(1/δ)1+D/2

ε2+d

}
,

then π̂(x) := argmaxi∈[K]f̂i(x) is ε-optimal at context x
uniformly for all x ∈ X .

Remark 4. Now the sample complexity is Õ(ε2+d) instead
of Õ(ε2+D).

Theorem 6. (UCB Regret Analysis on Manifolds) Let δ > 0.
Suppose that M0 ≥ N0 and M1 > C in Algorithm 2. Then
we have that with probability at least 1− δ,

RT ≤M12
1 + d

2 + d
K
√
log T (log(TK/δ) · T 1+d

2+d

+KM0 max
i

||fi||∞.

Topological Analysis
In this section, we discuss how topological features about
the bandit arms can be recovered. This is similar to recover-
ing the Hartigan notion of clusters as level-sets of the den-
sity functions from a finite sample (Chaudhuri and Dasgupta
2010; Jiang 2017a), but here, we find similar structures in the
reward functions based on noisy observations of them. We
give procedures which can estimate with consistency guar-
antees the following structure: maximal connected regions
in X where a particular arm is the top-arm.

From the uniform sampling strategy earlier, we obtained
estimated policy π̂ which is δ-optimal uniformly in X with
high probability. Although this is already powerful in giving
us the mapping between context space and the correspond-
ing top-arm, it does not immediately tell us the topological
features of this mapping. In this subsection, we discuss how
to recover the connected components of {x ∈ X : ri(x) =
maxj∈[K] rj(x)}, the region where arm i is the top-arm.

We give the following simple procedure.

Algorithm 3 Recovering Regions where i-th arm is top arm.

1: Given: Bandit arm i and R > 0.
2: Pull each of the K arms T/K times.
3: Let G be the graph with vertices {xt : t ∈ [T ], f̂i(xt) =

maxj∈[K] f̂j(xt)} and edges between vertices whose
euclidean distance is at most R.

4: return The connected components of G.

We now give a consistency result for Algorithm 3.
First, we require the following regularity assumption,

which ensures that there are no full-dimensional regions
where the top-arm is not unique. This ensures that it is possi-
ble to unambiguously recover the regions where a particular
arm is top.
Assumption 4. The region in X where the top-arm is not
unique has measure 0, and for each arm i, the region Xi

where it is unique can be partitioned into full-dimensional
connected components.

Our rates will be in terms of the Hausdorff distance.
Definition 3.

dH(A,B) = inf{ε ≥ 0 : A ⊆ B ⊕ ε, B ⊆ A⊕ ε},
where A⊕ r := {x ∈ X : infa∈A d(x, a) ≤ r}.

Theorem 7. Suppose that Xi := {x ∈ X : fi(x) =
maxj∈[K] fj(x)}. Let C1, ..., Cl be the maximal connected
components of Xi. Define the following minimum distance
between two connected components.

R0 := min
p �=q

inf
x∈Cp,y∈Cq

d(x, y).
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Also define the following minimum separation in the reward
functions

D0 := inf
x �∈Xi⊕R0/4

max
j∈[K]

fj(x)− fi(x).

Then the following holds simultaneously for all C1, ..., Cl.
Let Algorithm 3 with setting 0 < R < R0/4 return
Ĉ1, ..., Ĉl̂. Then for n sufficiently large, l̂ = l and there ex-
ists permutation γ of [l] such that

dH(Cj , Cγ(j)) ≤ ξ(n)

for some ξ that satisfies ξ(n) → 0 as n → ∞.

Proof. We first show that no two connected components can
appear in the same returned component in Algorithm 3. We
choose n sufficiently large such that in light of Theorem 1,
we have

sup
x∈X

max
j∈[K]

f̂j(x) ≤ D0

3
.

. Then, uniformly for any x ∈ Xi ⊕R0/4, we have

f̂i(x) ≤ fi(x) +
D0

3
≤ max

j∈[K]
fj(x)− 2D0

3

≤ max
j∈[K]

f̂j(x)− D0

3
< max

j∈[K]
f̂j(x).

Thus, Xi ⊕ R0/4 is disjoint from the returned points. Since
R < R0/4, it follows that no two connected components
points will appear in the same returned connected compo-
nent from Algorithm 3.

Next, we show that for each connected component Cp,
there exists Ĉq for some q ∈ [l̂] such that dH(Ĉq, Cp) → 0.
It suffices to show that for each r > 0, we have that for
n sufficiently large, dH(Ĉq, Cp) < r. There are thus two
directions to show, that Ĉp ⊆ Cq ⊕ r and Cq ⊆ Ĉp ⊕ r. To
show the first, define

D1 := inf
x∈(Cq⊕r)\(Cq⊕(r/2))

max
j∈[K]

fj(x)− fi(x).

Then choose n sufficiently large such that in light of Theo-
rem 1, we have

sup
x∈X

max
j∈[K]

|f̂j(x)− fj(x)| ≤ D1

3
.

. Then we have for all x ∈ Ĉp, if x = Cq ⊕ r/2, then

f̂i(x) ≤ fi(x) +
D1

3
≤ max

j∈[K]
fj(x)− 2D1

3
< max

j∈[K]
f̂j(x),

thus, x ∈ Cq ⊕ r/2 ⊆ Cq ⊕ r. The other direction follows
from a similar argument.

All that remains is to show that such points appear in
in the same connected component in the graph computed
by Algorithm 3. This follows from uniform concentration
bounds on balls (e.g. Chaudhuri and Dasgupta (2010)).

Infinite-Armed Bandits

In this section, we consider the setting where the action
space A is no longer a finite set of bandits, but a compact
subset of RD′

for some D′ > 0.
We given analogous results for the uniform sampling top-

arm identification and regret bounds for UCB-type strategy.
Definition 4. (Mean Reward function)

f : X ×A → R,

where f(x, a) is the expected reward of action a ∈ A at
context x ∈ X .

Assumption 5. (Lipschitz Reward) There exists L > 0 such
that for all x, x′ ∈ X and a, a′ ∈ A, |f(x, a)− f(x′, a′)| ≤
L|(x, a) − (x′, a′)|, where (x, a) represents the (D + D′)-
dimensional concatenation of x and a.

Then at each time t, the learner chooses arm at ∈ A and
observes context xt ∈ X and a stochastic reward

RT = f(xt, at) + ξt,

where ξ1, ... are i.i.d. white noise with mean 0 and variance
σ2.

Algorithm 4 Infinite-Armed Uniform Sampling

1: Parameters: T , total number of time steps.
2: For t = 1, ..., T :
3: Pull It, sampled uniformly from A.
4: Observe context xt and reward Rt.
5: Define f̂ to be the k-NN regression estimate from

samples (a1, R1), ..., (aT , RT ) with setting k =

�n2/(2+D+D′)�.

Definition 5. (ε-optimal arm) Define arm a ∈ A to be ε-
optimal at context x ∈ X if supa′∈A f(x, a′)− f(x, a) ≤ ε.

Following is a uniform (over context and action space)
result about ε-optimal arm recovery:
Theorem 8. (ε-optimal arm recovery) There exists constant
C̃1, C̃2 such that the following holds. Let δ > 0. For Algo-
rithm 4, with probability at least 1− δ, we have that for

T ≥ C̃1 log

(√
log(1/δ)

ε

)
log(1/δ)1+(D+D′)/2

εD+D′+2
+ C̃2,

arm π̂(x) := argmaxa∈Af̂(x) is ε-optimal at context x uni-
formly for all x ∈ X .

Proof. By Theorem 1, it follows that based on the choice
of T , there is enough time spent on pulling each arm such
that supa∈A,x∈X |f̂(x, a) − f(x, a)| ≤ ε/2. Thus, we have
∀x ∈ X , defining π(x) = argmaxa∈Af(x, a),

f(x, π(x))− f(x, ˆπ(x))

≤ ε

2
+ f̂(x, π(x)) +

ε

2
− f̂(x, π̂(x)) ≤ ε,

as desired.
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Algorithm 5 Infinite-Armed Upper Confidence Bound
(UCB)

1: Parameters: M , M1, T
2: Define σ(n) = M1n

−1/(2+D+D′).
3: For t = 1, ...,M :
4: Sample at uniformly from A.
5: Observe context xt and reward Rt.
6: For t = M + 1, ..., T :
7: Choose It := argmaxa∈Af̂(xt, a) + σ(t).

Finally, using the notion of regret

RT =
T∑

t=1

[
sup
a∈A

f(xt, a)− f(xt, at)
]
,

we give the following result. The proof idea is similar to that
of Theorem 3 and is omitted here.
Theorem 9. There exists C̃1 and C̃2 such that the following
holds. Let δ > 0. Suppose that M and M1 are chosen suffi-
ciently large in Algorithm 5 depending on f and σ. Then we
have that with probability at least 1− δ,

RT ≤ C̃1

√
log T (log(T/δ) · T 1+D+D′

2+D+D′ + C̃2

Remark 5. This shows a sub-linear regret of Õ(T
1+D+D′
2+D+D′ ).

Related Works

Canonical works for the standard bandit problem are Lai and
Robbins (1985); Berry and Fristedt (1985); Gittins (1989);
Auer et al. (2002); Cesa-Bianchi and Lugosi (2006); Bubeck
and Cesa-Bianchi (2012).

Work in contextual bandits can be roughly classified into
adversarial and stochastic approaches. Much of the former,
initiated by Auer et al. (2002), assumes that there is an ad-
versarial game between nature and the learner where, based
on a context seen by both players, nature generates rewards
for each arm at the same time the learner chooses an arm.
Solutions typically involve game theoretical methods. In the
stochastic approach, one assumes that the rewards for the
arms are generated by a context-dependent distribution.

Approaches to modeling the arm rewards as a function
of context are most commonly parametric. One of the most
popular is that of linear payoffs, studied under a mini-
max framework (Goldenshluger and Zeevi 2009; 2013),
with UCB-type algorithms (Chu et al. 2011; Li et al. 2010;
Auer et al. 2002), or with Thompson sampling (Agrawal and
Goyal 2013).

However, it is often the case that the dependency between
the payoffs and the contexts are complex and therefore diffi-
cult to capture with models such as linear payoffs, many of
which requiring strong assumptions on the data. To allevi-
ate this, we can go beyond parametric modeling and blend
nonparametric statistics with contextual bandits. Despite the
advantage of learning much more general context-payoff de-
pendencies, this line of work has received far less attention.

To the best of our knowledge, the first such work appeared
in Yang and Zhu (2002), who used histogram, k-NN, and

kernel methods and showed asymptotic convergence rates.
Rigollet and Zeevi (2010); Perchet and Rigollet (2013) then
combined histogram-type binning techniques in nonpara-
metric statistics to obtain strong regret guarantees for con-
textual bandits with optimality guarantees.

Lu, Pál, and Pál (2009) study an interesting setting where
the reward depends on a Lipschitz measure which is jointly
in the context and the action space. They provide upper and
lower regret bounds based on a covering argument and give
results in terms of the packing dimension. This is highly re-
lated to the infinite-armed bandit setting in the present work;
we provide similar regret guarantees but with a simple and
practical procedure.

More recently, Qian and Yang (2016b); Qian and
Yang (2016a) use the strong uniform consistency properties
of kernel smoothing regression to establish regret guaran-
tees.

Langford and Zhang (2008); Dudik et al. (2011) alterna-
tively impose neither linear nor smoothness assumptions on
the mean reward function. The former propose a modifica-
tion of an ε-greedy policy and showed that expected regret
converges to 0 while the latter considers a finite class of poli-
cies.

In this paper, using recent finite-sample results about k-
NN regression established in Jiang (2017b), we show that
using the simple k-NN regression is an effective alternative
approach. Moreover, unlike many other nonparametric tech-
niques, k-NN adapts to a lower intrinsic dimension (Kpotufe
2011) and thus we show that our regret bounds can adapt to
a lower intrinsic dimension automatically and perform as if
we were operating in that lower dimensional space.

Experiments

Simulations

We consider three two-arm bandit scenarios in the two-
dimensional unit square, where pX is uniform. We set arm
i ∈ {1, 2} to be top in region Ri respectively. Figure 1 illus-
trates the regions for the different scenarios.
• Scenario 1 (Quintic Function): We define two regions

above and below a quintic function:
• Scenario 2 (Smiley): We use two circles and a semicircle

to demarcate the regions in a ”smiley face” pattern.

• Scenario 3 (Bullseye): We define the regions using the
alternating regions of four concentric circles centered in
the support.

The true reward functions of the two arms are as follows.

fi(x) =

{
1, x ∈ Ri

0.5, x ∈ Rj �=i

The learner observes the rewards with white noise random
variable ξ ∼ N (μ = 0, σ = 0.5).

We compare the performance of k-NN regression (non-
parametric) and Ridge regression at top-arm identification
and regret minimization in the three scenarios. Mirroring our
theoretical discussion, we use uniform sampling for top-arm
identification and UCB strategy for regret analysis. Note that
Ridge regression with UCB is the LinUCB algorithm.
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Table 1: Top-arm identification and regret results from Ridge and k-NN regressors. Each model was tuned individually and
optimal hyperparameters are shown. k-NN performs better on both metrics for all three scenarios.

Quintic Function Smiley Bullseye
Ridge kNN Ridge kNN Ridge kNN

Top-Arm Test Error from Uniform Sampling 0.065 0.002 0.080 0.000 0.335 0.005
Number of samples 500k 500k 2k 5000k 100k 500k

Number of neighbors - 100 - 50 - 20

Test Regret from UCB sampling 0.0315 0.001 0.0375 0.0135 0.161 0.004
Number of samples 1k 500k 5k 1000k 50k 1000k

Number of neighbors - 100 - 20 - 100

(a) Quintic (b) Smiley (c) Bullseye

Figure 1: Top-arm boundaries. Red and blue regions corre-
spond to where top-arm is arm 1 and 2 respectively.

(a) Quintic (b) Smiley (c) Bullseye

Figure 2: Observed reward density plots from 10k uniform
samples illustrating pseudo-randomness of training data. In
the colormap (right) warmer colors correspond to higher val-
ues, normalized on the range of the observed rewards.

(a) Quintic Ridge (b) Smiley Ridge (c) Bullseye Ridge

(d) Quintic k-NN (e) Smiley k-NN (f) Bullseye k-NN

Figure 3: Test results on top-arm identification using Ridge
regression and 25-NN regression. Contexts are labeled in red
and blue if arms 1 and 2 are estimated to be top respectively.

Qualitative Analysis We first qualitatively show that k-
NN regression can successfully model the bandits whereas
the linear method cannot. The difficulty of the task is illus-
trated by Figure 2, which plots 10k uniformly sampled sam-
ples from each scenario with a colormap. We can see that a
human would have a hard time recovering the regions where
each arm is top due to the randomness in the observed re-
wards. This randomness is considerable as we set σ = 0.5
to be the same as |fi(x ∈ Ri)− fi(x /∈ Ri)|.

We fix the number of training samples N to 10k and the
number of nearest neighbors to k = 25. We evaluate on 10k
random test samples. Figure 3 shows that k-NN regression
does an excellent job of reproducing the region boundaries.
Ridge regression does a poor job in the Quintic Function
case, making a linear approximation to the quintic curve, and
completely fails in the Smiley and Bullseye Cases, simply
choosing the arm whose top-arm region is larger.

Quantitative Analysis We report numerical results and
optimal hyperparameters in Table 1. We tuned other hyper-
parameters using grid search on a validation set of size 1k
using grid search and we evaluate performance of our mod-
els on a test set of size 1k. We use the UCB strategy in
Auer et al. (2002) (a simplified version of UCB by Agrawal
and Goyal (2013)). We found that a confidence level of 0.1
worked well for all settings. We see that k-NN significantly
outperforms Ridge regression for both top-arm identification
and regret minimization in all three scenarios (Table 1).

Image Classification Experiments

We extend our experiments to image classification of the
canonical MNIST dataset, which consists of 60k training
images and 10k test images of isolated, normalized, hand-
written digits. The task is to classify each 28×28 image into
one of ten classes. We reframe this as a contextual MAB
problem by treating the classes as arms and the images as
the contexts. Note that for every context, the payoff of all
arms are known: 1 if the class is the true label and 0 oth-
erwise. We compare k-NN and Ridge regressions at regret
minimization using the UCB strategy. As before we use the
UCB strategy in Auer et al. (2002) and fix the confidence
level to 0.1. We do not employ any data augmentation.

We obtain test regret of 17.5% from LinUCB with α = 5,
where α is the coefficient of L2 regularization, and signif-
icantly lower test regret of 5.8% from 4-NNUCB. Figure
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4 shows that k-NN regression maintains lower regret than
Ridge regression over a range of values of k and α. We note
that Ridge regression working well for relatively large val-
ues of α itself suggests that it is a poor model for the task.

Figure 4: Test results on regret minimization for MNIST im-
age classification over varied values of α (for LinUCB) and
k (for k-NNUCB). The nonparametric approach achieves
significantly lower regret over a range of hyperparameters.

Conclusion
For the multi-armed bandit setting, we use nonparametric re-
gression to attain tight results for top-arm identification and
a sublinear regret of Õ(T

1+D
2+D ), where D is the dimension

of the context. We also show that if the underlying context
space has a lower intrinsic dimension d < D, then our al-
gorithm automatically adapts to the lower dimension and at-
tains a faster rate of Õ(T

1+d
2+d ). We also provide a procedure

for recovering the maximal connected regions in a support
where a particular arm is the top-arm and provide a consis-
tency analysis. We then give a natural extension to infinite-
armed contextual bandits. Our simulations confirm that our
method is able to learn in the contextual setting with arbi-
trary decision boundaries, even in the presence of significant
noise, and our experiments on classification of MNIST im-
ages demonstrate superior performance of our method over
LinUCB on a real world task.
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