
Product Quantized Translation
for Fast Nearest Neighbor Search

Yoonho Hwang, Mooyeol Baek, Saehoon Kim,∗
Bohyung Han, Hee-Kap Ahn

Dept. of Computer Science and Engineering
POSTECH, Korea

{cypher, mooyeol, kshkawa, bhhan, heekap}@postech.ac.kr

Abstract

This paper proposes a simple nearest neighbor search algo-
rithm, which provides the exact solution in terms of the Eu-
clidean distance efficiently. Especially, we present an interest-
ing approach to improve the speed of nearest neighbor search
by proper translations of data and query although the task
is inherently invariant to the Euclidean transformations. The
proposed algorithm aims to eliminate nearest neighbor candi-
dates effectively using their distance lower bounds in nonlin-
ear embedded spaces, and further improves the lower bounds
by transforming data and query through product quantized
translations. Although our framework is composed of sim-
ple operations only, it achieves the state-of-the-art perfor-
mance compared to existing nearest neighbor search tech-
niques, which is illustrated quantitatively using various large-
scale benchmark datasets in different sizes and dimensions.

Introduction

Nearest neighbor search is a fundamental technique applica-
ble to various problems in machine learning, computer vi-
sion, natural language processing, information retrieval, and
so on. They have been investigated actively in various fields
of study, and a lot of promising results have been reported.
However, it is not straightforward to identify the nearest
neighbor efficiently from large-scale databases in very high
dimensional spaces due to huge computational cost and in-
herent characteristics of data distribution (Beyer et al. 1999).

The most naı̈ve approach for this problem is sequential
scan, which simply computes the distance from a query to
every entry in database iteratively. Although the running
time of this technique is proportional to database size and di-
mensionality, it often shows the state-of-the-art performance
in very high dimensional data, because the distances to the
nearest neighbor and the farthest neighbor are not differen-
tiated sufficiently and the benefit of algorithms based on so-
phisticated data structures tends to become negligible com-
pared to their costs (Weber, Schek, and Blott 1998).

Many existing techniques for the exact nearest neigh-
bor search employ tree-based data structures and manage
data through hierarchical partitioning. Representative ex-
amples include KD-tree (Bentley 1975; Arya et al. 1998),

∗S.Kim is also affiliated with AItrics.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Cover tree (Beygelzimer, Kakade, and Langford 2006).
They typically aim to improve search performance in moder-
ately high dimensional space, and do not suit well for high-
dimensional data due to their equidistant property. In addi-
tion, these methods require significant amount of time and
memory space for data structure construction and manage-
ment (Karger and Ruhl 2002). Another type of exact algo-
rithms incorporates data embedding tricks, where original
data are projected onto low dimensional subspaces either
linearly (Hel-Or and Hel-Or 2005) or nonlinearly (Hwang,
Han, and Ahn 2012). However, it turns out that the lin-
ear projection method based on Walsh-Hadamard trans-
form (Hel-Or and Hel-Or 2005) is identical to the sequential
scan if it is applied to the data without inter-dependency1.
There also exist various techniques to improve throughput
of the algorithm by parallel implementation or batch run of
multiple queries, but they are beyond the scope of this paper.

Instead of computing exact solutions, some algorithms
find approximate nearest neighbors in which they focus on
reducing computational complexity while minimizing loss
of accuracy. Approximate Nearest Neighbor (ANN) search
algorithm (Arya et al. 1998) employs a KD-tree to main-
tain data, and other techniques based on KD-trees have
also been presented (Silpa-Anan and Hartley 2008; Jia et
al. 2010). In general, they achieve fairly good performance
but require substantial preprocessing time and memory.
FLANN (Muja and Lowe 2014) constructs multiple tree-
based data structures including randomized KD-trees, prior-
ity search k-means tree and hierarchical clustering tree, and
attempts to improve approximate nearest neighbor search
speed by integrating a few additional techniques. Product
Quantization (PQ) approaches generate a large number of
data clusters through the combinations of clusters in mul-
tiple axis-aligned subspaces and compute the distances to
individual data from a query efficiently using the precom-
puted distances between identified cluster centers in the sub-
spaces. It is first introduced in (Jégou, Douze, and Schmid
2011) and an optimized solution is discussed in (Ge et al.
2013). Hashing algorithms typically manage a hash table
and reduce nearest neighbor candidates significantly using

1An example showing the benefit of (Hel-Or and Hel-Or 2005)
is dense nearest neighbor search between all pairs of patches from
images.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3295

an associated hash function. Examples in this category in-
clude locality-sensitive hashing (Indyk and Motwani 1998;
Datar et al. 2004), spectral hashing (Weiss, Torralba, and
Fergus 2008), and coherency sensitive hashing (Korman and
Avidan 2011). Although hashing is effective to find approxi-
mate nearest neighbors, it is not appropriate for exact search
due to rapid increase of computational cost to resolve colli-
sions.

Our goal is to find the exact nearest neighbor efficiently
from large-scale databases in terms of the Euclidean dis-
tance with no constraint on data distribution. The proposed
algorithm belongs to the same category with (Hwang, Han,
and Ahn 2012) while it has a few interesting new features
for performance enhancement. The main idea of (Hwang,
Han, and Ahn 2012) is to reject non-nearest neighbors by
efficiently computing distance lower bounds from a query,
where the lower bound of distance between each data point
and the query is given by their element means and variances.

We propose a product quantized translation algorithm to
increase the distance lower bounds for filtering more exam-
ples and improve empirical time complexity of the nearest
neighbor search. Our algorithm is combined with a filtering-
based nearest neighbor search technique (Hwang, Han, and
Ahn 2012), and achieves the state-of-the-art performance in
various datasets. For the purpose, we precompute a quan-
tized translation of each data point in database and apply the
same translation to a query to identify the nearest neighbor
by filtering. To determine a proper quantized translation vec-
tor for each example, we perform clustering all data points in
database and use the membership information of each point
to the identified clusters. This idea sounds a bit weird since
nearest neighbor search is invariant to translation, but we
will show how to improve the distance lower bound statisti-
cally by translating data.

The remaining issue is that the number of clusters re-
quired to improve the distance lower bound through data
translations increases rapidly as their dimensionality grows,
which makes query time significantly slower. Hence, we
adopt the idea from product quantization (Jégou, Douze,
and Schmid 2011) to solve this issue, where the clusters in
the full dimension are obtained from a Cartesian product of
subspace clusters. We need to maintain few clusters in each
subspace while an extremely large number of clusters are
generated by the combinations of subspace clusters.

The contributions and characteristics of this paper are
summarized below:

• We observe that the distance lower bounds (Hwang, Han,
and Ahn 2012) of points in a group from a query are im-
proved by a proper translation (same translation for all the
points in the group).

• To achieve better lower bounds, we employ product quan-
tization (Jégou, Douze, and Schmid 2011; Ge et al. 2013)
and generate a extremely large number of quantized trans-
lation vectors.

• The proposed algorithm illustrates outstanding perfor-
mance in four large-scale datasets without any sophisti-
cated data structures and large memory requirement.

The rest of the paper is organized as follows. We first sum-
marize two important prior works closely related to our al-
gorithm. Then, the main idea of our algorithm and its tech-
nical details are presented. In the section for experiment, the
proposed algorithm is evaluated in four public benchmark
datasets and its effectiveness is illustrated with respect to
other exact nearest neighbor search methods.

Background

This section reviews two prior works closely related to our
approach, nonlinear embedding for exact nearest neighbor
search (Hwang, Han, and Ahn 2012) and product quantiza-
tion for approximate nearest neighbor search (Jégou, Douze,
and Schmid 2011).

Nearest Neighbor Search by Nonlinear Embedding

An interesting method for efficient nearest neighbor search
has been proposed in (Hwang, Han, and Ahn 2012), which
embeds data points onto a low-dimensional space and filters
non-nearest neighbors out using the distances in the embed-
ded space.

Denote a data point in database X by x = (x1, . . . , xd)
T.

The mean and variance of the elements in x ∈ R
d are

μx =
1

d

d∑
i=1

xi and σ2
x =

1

d

d∑
i=1

(xi − μx)
2, (1)

respectively. If a query y = (y1, . . . , yd)
T is presented, a

lower bound on the squared Euclidean distance between x

and y, ‖x− y‖2, is given by

‖x−y‖2≥d
(
(μx−μy)

2+(σx−σy)
2
)≡LB(x,y). (2)

Since μx and σx can be precomputed, we need to compute
μy and σy once in a query time and LB(x,y) for any x ∈ X
is computed in O(1). Then, the nearest neighbor search from
a query is performed efficiently by filtering candidates based
on the lower bound.

Product Quantization

Product quantization (Jégou, Douze, and Schmid 2011;
Ge et al. 2013) is a technique for approximate nearest neigh-
bor search, which quantizes data in multiple exclusive low-
dimensional axis-aligned subspaces and computes approx-
imate distances using the quantized vectors obtained from
a Cartesian product of the subspaces. The main advantage
of product quantization is that a huge number of quantized
vectors in the original dimension are generated using only
a few quantized codewords in each subspace through Carte-
sian product. Note that it is not necessary to store the huge
number of quantized vectors in full dimension while we
need to store only a few codewords in each subspace and
their pairwise distances.

A data x ∈ X ⊂ R
d is divided into m subvectors, which

is denoted by uj ∈ Xj (j = 1, . . . ,m). Each subvector
uj is quantized separately by either clustering or encod-
ing function. Formally, x = (uT

1 , . . . ,u
T
m)T is quantized to

q̂(x) = (q1(u1)
T, . . . ,qm(um)T)T, where qj : Xj �→ Cj is

a quantization function on each of m partitioned subspaces.

3296

The distance from a query y = (vT
1 , . . . ,v

T
m)T to x is com-

puted using the codewords approximately as

‖x− y‖ ≈
⎛
⎝

m∑
j=1

‖qj(uj)− vj‖2
⎞
⎠

1/2

. (3)

Since points in database are quantized, it is possible to com-
pute all the distances from a query approximately by com-
puting distances with the codewords. Moreover, due to the
benefit of product quantization, we maintain small quantiza-
tion errors by generating a huge number of quantized codes
using a small number of clusters in each subspace.

Main Algorithm

Our algorithm computes the nearest neighbor by filtering
data based on their distance lower bounds given by a non-
linear embedding as in (Hwang, Han, and Ahn 2012). For
more aggressive filtering, we identify translation vectors to
improve distance lower bounds between two points. This
section describes why this technique is useful to improve
the lower bounds and requires an extremely large number
of translation vectors for better performance. We also dis-
cuss how to generate sufficiently many translation vectors
by product quantization technique.

Translation for Exact Nearest Neighbor Search

The nearest neighbor search is invariant to translation, i.e.,
‖x−y‖ = ‖(x−t)− (y−t)‖, ∀t ∈ R

d while the distance
lower bound defined in Eq. (2) is affected by the translation
as shown in

LB(x−t,y−t) = d
(
(μx−t−μy−t)2+(σx−t−σy−t)2

)

= d
(
(μx−μy)

2+(σx−t−σy−t)2
)
. (4)

If t gets close to x, i.e., t ≈ x, the following equation holds:

LB(x− t,y − t) ≈ d(μ2
x−y + σ2

x−y)

= ‖x−y‖2 , (5)

which means that the lower bound is optimized when t = x.
When we find the nearest neighbor among xi ∈ X , one op-
tion is to translate query y by every xi and compute the dis-
tance between y and xi, which is time-consuming because it
becomes equivalent to sequential scan. Instead of translating
y by all the vectors in X , we aim to reduce the number of
translations while maintaining tight lower bounds. This ob-
jective is achieved by quantized translations, for which we
should identify good translation vectors.

To maximize the benefit of quantized translation, we need
to identify tightly coupled clusters and apply the same trans-
lation to all the points in a cluster. The objective function
corresponding to this goal is given by

argmin
{X l,tl}l=1:k

∑
l

∑
x∈X l

||x− tl||2, (6)

which is equivalent to the objective of k-means clustering.
In other words, by integrating k-means clustering algorithm,
we learn a set of proper translation vectors and achieve the

improved distance lower bound; the identified k centroids
and cluster membership information are used for translation.
Figure 1 illustrates the procedure to generate a set of proper
translations and improve the distance lower bounds for the
2D examples.

On the other hand, it is unlikely to reduce quantization
error substantially only with a small number of translation
candidates. In the next subsection, we present a technique
that generates an extremely large number of translations ef-
fectively and selects the best one efficiently through combi-
nations of subspace translations.

Product Quantized Translation for Nearest
Neighbor Search

When the dimensionality is very high and there are a large
number of data, it is unlikely that one can reduce quan-
tization error using a small number of candidate transla-
tions effectively. To resolve this issue, we introduce prod-
uct quantized translation (PQT) that borrows some idea
from product quantization. In PQT, a few quantized vec-
tors are obtained from each subspace independently and the
full quantizations are generated by a Cartesian product of
subspace quantizations (Jégou, Douze, and Schmid 2011;
Ge et al. 2013).

If a data point x ∈ X is divided into m subspaces as
x = (uT

1 , . . .u
T
m)T, we precompute a quantized translation

qj(uj) ∈ Cj (j = 1, . . . ,m) for each uj ∈ R
dj and gen-

erate a large number of translation candidates in the full di-
mension q̂(x) = (q1(u1)

T, . . . ,qm(um)T)T.
We optimize PQT by adopting the alternative-

optimization procedure introduced in (Ge et al. 2013),
which finds a good space decomposition matrix for dividing
subspaces and the clusters in each subspace. After opti-
mization, μuj

and σuj−q(uj) for ∀x ∈ X are also computed
in preprocessing step. When a query y = (vT

1 , . . . ,v
T
m)T

is given, μvj and σvj−cj for all codeword cj ∈ Cj
(j = 1, . . . ,m) are computed once. Then for any translation
vector qj(uj) ∈ Cj , its corresponding σvj−qj(uj) can be
achieved directly. This procedure is symmetric to product
quantization as shown in Table 1.

Progressive Filtering by PQT

On query time, our algorithm efficiently filters out non-
nearest neighbors using the distance lower bounds discussed
above. We compute the distance lower bound by augmenting
the lower bounds in subspaces progressively. Let L̂Bj(x,y)
be the cumulative lower bound of the distance between x
and y in the jth subspace, which is given by

L̂B0(x,y)≡0 (7)

L̂Bj(x,y)≡ L̂Bj−1(x,y)+LB(uj−qj(uj),vj−qj(uj)). (8)

If L̂Bj(x,y) is larger than the distance to the current nearest
neighbor, we reject x. Otherwise, we repeat the same proce-
dure to obtain a better lower bound with the next subspace.

It is still possible to fail to determine whether x is the
nearest so far even after computing L̂Bm(x,y). In this case,
our algorithm comes back to the first partition and update its

3297

Cluster 1 Cluster 2

Figure 1: Procedure to identify translations through 2-means clustering for 2-dimensional data. Two cluster centers are denoted
by red and blue x marks. Note that, if we apply the translation to each cluster (t1 for cluster 1 and t2 for cluster 2) so that the
cluster center becomes the origin, there are more possibilities to improve the distance lower bounds and to reject more examples
statistically given a query denoted by black star with the same translation.

Table 1: Symmetry between product quantization and PQT
Product Quantization PQT

Target to quantize data vectors x ∈ X translations for x ∈ X
Optimization

∑ ‖x− q̂(x)‖2, q̂ : X �→ C ∑ ‖x− q̂(x)‖2, q̂ : X �→ C
Query time generation ‖y − c‖2,∀c ∈ C σy−c,∀c ∈ C

Algorithm 1 Nearest neighbor search by product quantized
translation

1: Pick a vector in X as the seed xmin

2: MINDIST ← ∥∥xmin − y
∥∥2

3: Compute μvj and σvj−q(vj) (j = 1, . . . ,m)
4: for x ∈ X do
5: for j = 1 → m do
6: if ˆLBj(x,y) ≥ MINDIST then
7: continue // the first stage filtering
8: for j = 1 → m do
9: if LB+

j (x,y) ≥ MINDIST then

10: continue // the second stage filtering
11: if LB+

m(x,y) < MINDIST then
12: xmin ← x
13: MINDIST ← LB+

m(x,y)
14: return {xmin, MINDIST}

distance lower bound with the exact distance to increase the
lower bound, which is given by

L̂B
+
0 (x,y)≡ L̂Bm(x,y) (9)

L̂B
+
j (x,y)≡ L̂B

+
j−1(x,y)

−LB(uj−qj(uj),vj−qj(uj)) + ‖uj−vj‖2 .
(10)

By increasing the distance lower bound as described, we can
identify the exact nearest neighbor at some point.

Summary of Algorithm

First, we partition the input dimensions into multiple axis-
aligned subspaces and augment the distance lower bound

incrementally using the subspaces for data filtering. In this
step, the idea for the product of quantized translations is em-
ployed to improve the lower bound. Second, if there still
remain unfiltered examples, we convert the lower bound
of each partition to the exact distance one by one and in-
crease the lower bound. In the middle of the procedure, we
stop at any time and identify the nearest neighbor when
there is a single example unfiltered among all data in the
database. The pseudocode of our algorithm is presented in
Algorithm 1.

Since the algorithm uses the linear scan scheme, the
search time in the best case is O(n) in theory. In contrast,
the worst case search time is O(dn) when every filtering is
failed. However, such a bad case hardly happens in practice,
since we use extremely large number of translations with
progressive filtering to increase the distance lower bounds.
In the next section, we illustrate outperforming performance
of our algorithm with detailed analysis on the improvement
of lower bounds and filtering performance via quantized
translations.

Experiment

The proposed algorithm is evaluated in four benchmark
datasets with different characteristics, and the detailed re-
sults are presented in this section.

Datasets

We perform the experiments on four independent
datasets, which are denoted by MNIST (Lecun et al.
1998), SIFT5M (Jégou, Douze, and Schmid 2011),
GIST1M (Jégou, Douze, and Schmid 2011), and MS-
COCO (Lin et al. 2014). MNIST is well-known machine

3298

MNIST(10×) SIFT5M GIST1M MS-COCO
0

30

60

90

Ti
m

e
[s

ec
] ANN

CT
SEQ
SEQ-BLAS
FNN
PQT

Figure 2: Query times of the compared algorithms in the four tested datasets. MNIST query times are scaled up by 10 times
for readability. PQT is consistently better than all other methods. For PQT, the number of clusters and the dimensionality of
partitions are set to 64 and 32, respectively.

learning dataset which consists of 70,000 784-dimensional
handwritten digit images. SIFT5M has five million entries
of 128-dimensional SIFT (Lowe 2004) feature descriptors
while GIST1M is composed of one million 960-dimensional
GIST (Oliva and Torralba 2001) feature descriptors. MS-
COCO contains 4,096-dimensional vectors, which are
feature descriptors for 123,287 images in training and
validation sets from the last convolutional layer (fc7) in
VGG-16 net (Simonyan and Zisserman 2015). Individual
datasets have their unique characteristics; data dimensions
are diverse, from 128 to 4096, and the numbers of data are
from as small as 70 thousand and to as large as 5 million.
In addition, data in MNIST, SIFT5M, and GIST1M are typ-
ically located in low- or moderate-dimensional manifolds
while MS-COCO has substantial randomness and contains
many outliers.

Implementation Details

All tested algorithms are implemented in C++ in Linux (Fe-
dora 21, g++ 4.9.2), specifically using a single core on In-
tel Core i7-5820k@3.30Ghz with 64GB main memory. We
use the source codes released by authors for the implemen-
tations of the external algorithms, and the results from all
algorithms are reproduced with the default parameters in the
original implementations.

Since our algorithm adopts the idea from the product
quantization algorithm (Jégou, Douze, and Schmid 2011),
we can naturally incorporate the existing optimization tech-
nique to alternate translations of the cluster centers and rota-
tions of the original data (Ge et al. 2013) for preprocessing.
Since k-means clustering and data rotations in the prepro-
cessing step are computationally expensive, we employ 1%
of examples with minimum 10,000 samples for the cluster-
ing.2 We randomly select five seeds for initialization of our
algorithm (for line 1 in Algorithm 1), which is similar to
(Hwang, Han, and Ahn 2012). In all experiments, randomly
selected 100 queries are executed one by one. By default,

2When clustering and rotation are performed using 10% of data,
the performance improvement is marginal.

the number of clusters and the dimensionality of partitions
are set to 64 and 32, respectively.

Results

We now present comprehensive results from our experi-
ments in all tested datasets. Our algorithm is compared with
a few important external algorithms that are able to re-
port the exact nearest neighbor, which include: 1) optimized
sequential scan (SEQ) that conditionally branches, 2) full
search using OpenBLAS (Xianyi, Qian, and Yunquan 2012)
library and precomputed norms (SEQ-BLAS), 3) nonlinear
embedding method (FNN) (Hwang, Han, and Ahn 2012),
4) the exact version of approximate nearest neighbor search
with KD-tree (ANN) (Arya et al. 1998), and 5) cover tree
(CT) (Beygelzimer, Kakade, and Langford 2006). The pro-
posed algorithm is denoted by product quantized translation
(PQT). We also present an analysis on the behavior of our
algorithm by investigating how much the lower bounds are
improved by our approach in each dataset.

Quantitative results Figure 2 summarizes the quantita-
tive results of all compared algorithms in all datasets, where
our algorithm presents the state-of-the-art performance con-
sistently. Except our algorithm, another filtering-based ap-
proach, FNN, shows relatively good performance.

To understand how much the distance lower bounds are
improved by identifying appropriate translations, we evalu-
ate the quality of distance lower bound in our algorithm for
three choices of quantized translations: PQT, PQT-Random,
and PQT-NoTran. PQT is the algorithm with product quan-
tized translations using k-means clustering, PQT-Random
is based on clustering with k random centroids, and PQT-
NoTran is without any translation. Figure 3 shows the im-
provement of lower bound quality due to the translations in
PQT.

Filtering performance Figure 4 illustrates how many ex-
amples are filtered by our algorithm and SEQ in each
dataset. The filtering ratio of PQT #1 and PQT #2 are mea-
sured at the first and second filtering stage in our Algo-

3299

LB(x,y)/||x-y||2

0

1

2

3

4

5

6
MNIST

PQT
PQT-Random
PQT-NoTran

×10-3

0 0.2 0.4 0.6 0.8 1

(a) MNIST
LB(x,y)/||x-y||2

0

2

4

6

8

10

12
SIFT5M

PQT
PQT-Random
PQT-NoTran

×10-3

0 0.2 0.4 0.6 0.8 1

(b) SIFT5M
LB(x,y)/||x-y||2

0

1

2

3

4 ×10-3 GIST1M

PQT
PQT-Random
PQT-NoTran

0 0.2 0.4 0.6 0.8 1

(c) GIST1M
LB(x,y)/||x-y||2

0

2

4

6

8

10

12 ×10-3 MS-COCO

PQT
PQT-Random
PQT-NoTran

0 0.2 0.4 0.6 0.8 1

(d) MS-COCO

Figure 3: The probability density of LB quality (LB(x,y)/ ‖x− y‖2) with different clustering options in the tested datasets.
The quality is substantially improved with proper product quantized translations identified by k-means clustering.

Fi
lte

rin
g

ra
tio

0 200 400 600 800
Dimension

0

0.2

0.4

0.6

0.8

1
MNIST

SEQ
PQT #1
PQT #2

(a) MNIST

Fi
lte

rin
g

ra
tio

0 32 64 96 128
Dimension

0

0.2

0.4

0.6

0.8

1
SIFT5M

SEQ
PQT #1
PQT #2

(b) SIFT5M

0 240 480 720 960
Dimension

0

0.2

0.4

0.6

0.8

1

Fi
lte

rin
g

ra
tio

GIST1M

SEQ
PQT #1
PQT #2

(c) GIST1M

Fi
lte

rin
g

ra
tio

0 1024 2048 3072 4096
Dimension

0

0.2

0.4

0.6

0.8

1
MS-COCO

SEQ
PQT #1
PQT #2

(d) MS-COCO

Figure 4: Filtering performance of the proposed algorithm in the four tested datasets. Each graph shows the ratio of remaining
examples with respect to the number of dimensions.

Table 2: Query times of our algorithm in seconds with several different parameter sets. We did not present the results of 64D
cases in SIFT5M because its partition is too coarse compared to the full dimensions and the results are not meaningful.

MNIST SIFT5M GIST1M MS-COCO
of clusters 32 64 128 32 64 128 32 64 128 32 64 128

Partition
dimension

16 0.56 0.55 0.56 12.90 12.28 11.57 9.96 10.14 10.62 10.78 12.67 18.32
32 0.36 0.35 0.35 17.46 15.83 14.60 7.94 8.39 9.07 10.42 10.45 12.66
64 0.35 0.31 0.31 – – – 9.54 10.45 11.15 10.66 11.30 11.45

rithm 1, respectively. We compute the distance lower bound
of an example in the embedded space after translation and
reject the example based on the lower bound if possible. It
would be better if we can eliminate many candidates at the
early stages, but the rejection rates depend on the charac-
teristics of data. According to our observation, a significant
portion of data is rejected by the first stage of our filter-
ing algorithm in MNIST, SIFT5M, and GIST1M. However,
in MS-COCO, filtering ratio is relatively low because it in-
volves a lot of randomness and the lower bounds computed
in the embedded spaces are not sufficiently tight, unfortu-
nately. Since many nearest neighbor search algorithms have
similar issues in this kind of datasets, sequential scan of-
ten shows the best performance. However, even with such
challenges, our algorithm still presents the state-of-the-art
performance in MS-COCO, which indirectly demonstrates
low overhead of the first stage filtering. On the other hand,
filtering performance curves of SEQ are located consistently
between the ones for the first and the second stages of our al-

gorithm, which is reasonable considering overall time com-
plexity of both algorithms. The good performance in MS-
COCO is a great advantage since the feature descriptors ob-
tained from convolutional neural networks are very discrim-
inative and simple classifiers relying on the nearest neighbor
search get more attention in various visual recognition prob-
lems.

Parameter settings Table 2 presents how much the per-
formance of the proposed algorithm is affected by parameter
setting. Specifically, we evaluate the speed of our algorithm
by varying the number of clusters and the dimensionality of
partitioned vectors, where three different values are tested
for each parameter. The bold-faced numbers in Table 2 indi-
cate the best-performing combinations of the two parameters
in the benchmark datasets. Although our algorithm has mod-
erate variations in performance with respect to the choices of
parameters, it illustrates reasonably good performance in all
datasets regardless of parameter setting.

3300

Conclusion

We proposed a novel exact nearest neighbor search algo-
rithm by product quantized translations and presented its
computational efficiency compared with existing methods.
We empirically show that the distance lower bound of a point
from a query is improved by a proper quantized translation,
and the distance lower bound is further improved by learn-
ing translation vectors. The proposed algorithm is useful to
enhance the performance in filtering-based nearest neighbor
search algorithms. It is possible to identify the best trans-
lation vector among a large number of precomputed candi-
dates by the combination of the translations in subspaces.
The proposed algorithm was evaluated in various indepen-
dent datasets, and illustrates the state-of-the-art performance
consistently.

Acknowledgements

This research was supported in part by the MSIT (Ministry
of Science and ICT), Korea, under the SW Starlab support
program (IITP–2017–0–00905) supervised by the IITP (In-
stitute for Information & communications Technology Pro-
motion.) and the IITP grant [2017-0-01778, Development of
Explainable Human-level Deep Machine Learning Inference
Framework; 2017-0-01780, The Technology Development
for Event Recognition/Relational Reasoning and Learning
Knowledge based System for Video Understanding; 2016-
0-00563, Research on Adaptive Machine Learning Technol-
ogy Development for Intelligent Autonomous Digital Com-
panion].

References

Arya, S.; Mount, D. M.; Netanyahu, N. S.; Silverman, R.;
and Wu, A. Y. 1998. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. Journal of the
ACM 45(6):891–923.
Bentley, J. L. 1975. Multidimensional binary search trees
used for associative searching. Communications of ACM
18(9):509–517.
Beyer, K.; Goldstein, J.; Ramakrishnan, R.; and Shaft, U.
1999. When is “nearest neighbor” meaningful? In ICDT.
Beygelzimer, A.; Kakade, S.; and Langford, J. 2006. Cover
trees for nearest neighbor. In ICML.
Datar, M.; Immorlica, N.; Indyk, P.; and Mirrokni, V. S.
2004. Locality-sensitive hashing scheme based on p-stable
distributions. In SoCG, 253–262.
Ge, T.; He, K.; Ke, Q.; and Sun, J. 2013. Optimized product
quantization for approximate nearest neighbor search. In
CVPR.
Hel-Or, Y., and Hel-Or, H. 2005. Real-time pattern matching
using projection kernels. TPAMI 27(9):1430–1445.
Hwang, Y.; Han, B.; and Ahn, H.-K. 2012. A fast near-
est neighbor search algorithm by nonlinear embedding. In
CVPR.
Indyk, P., and Motwani, R. 1998. Approximate nearest
neighbors: Towards removing the curse of dimensionality.
In STOC, 604–613.

Jégou, H.; Douze, M.; and Schmid, C. 2011. Product quan-
tization for nearest neighbor search. TPAMI 33(1):117–128.
Jia, Y.; Wang, J.; Zeng, G.; Zha, H.; and Hua, X.-S. 2010.
Optimizing KD-trees for scalable visual descriptor indexing.
In CVPR.
Karger, D. R., and Ruhl, M. 2002. Finding nearest neighbors
in growth-restricted metrics. In STOC, 741–750.
Korman, S., and Avidan, S. 2011. Coherency sensitive hash-
ing. In ICCV.
Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
Lin, T.-Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick,
R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C. L.; and
Dollár, P. 2014. Microsoft coco: Common objects in context.
In ECCV.
Lowe, D. 2004. Distinctive image features from scale-
invariant keypoints. IJCV 60(2):91–110.
Muja, M., and Lowe, D. G. 2014. Scalable nearest neighbor
algorithms for high dimensional data. TPAMI 36(11):2227–
2240.
Oliva, A., and Torralba, A. 2001. Modeling the shape of
the scene: A holistic representation of the spatial envelope.
IJCV 42(3):145—175.
Silpa-Anan, C., and Hartley, R. 2008. Optimised KD-trees
for fast image descriptor matching. In CVPR.
Simonyan, K., and Zisserman, A. 2015. Very deep convolu-
tional networks for large-scale image recognition. In ICLR.
Weber, R.; Schek, H.-J.; and Blott, S. 1998. A quantitative
analysis and performance study for similarity-search meth-
ods in high-dimensional spaces. In VLDB, 194–205.
Weiss, Y.; Torralba, A.; and Fergus, R. 2008. Spectral hash-
ing. In NIPS, 1753–1760.
Xianyi, Z.; Qian, W.; and Yunquan, Z. 2012. Model-driven
level 3 blas performance optimization on loongson 3a pro-
cessor. In ICPADS.

3301

