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Abstract

We propose a new approach to conditional probability es-
timation for ordinal labels. First, we present a specialized
hierarchical softmax variant inspired by k-d trees that lever-
ages the inherent spatial structure of (potentially-multivariate)
ordinal labels. We then adapt ideas from signal processing on
noisy graphs to develop a novel regularizer for such hierarchi-
cal softmax models. Both our tree structure and regularizer
independently boost the sample efficiency of a deep learning
model across a series of simulation studies. Furthermore, the
combination of these two techniques produces additive gains
and the model does not suffer from the pathologies of other
approaches in the literature. We validate our approach empiri-
cally on a suite of real-world datasets, in some cases reducing
the error by nearly half in comparison to other popular meth-
ods in the literature. Our results demonstrate that our method
is a powerful new modeling technique for conditional proba-
bility estimation of ordinal labels, especially in the low-to-mid
sample size regimes such as those often found in biological
and other physical sciences.

1 Introduction
Recently there has been a flurry of interest in using deep
learning methods for conditional probability estimate (CPE).
The applications of such models cover a wide variety of sci-
entific areas, from cosmology (Ravanbakhsh et al. 2016) to
health care (Ranganath et al. 2016; Ng et al. 2017). A sub-
set of this area deals specifically with discrete conditional
distributions for ordinal labels, where an explicit estimation
of the likelihood is desired—as opposed to simply the abil-
ity to sample the distribution, as with GAN-based models
(Goodfellow et al. 2014). Deep learning models that predict
such distributions have achieved state-of-the-art results in
text-to-speech synthesis (van den Oord et al. 2016a), image
generation (van den Oord et al. 2016b; van den Oord, Kalch-
brenner, and Kavukcuoglu 2016; van den Oord et al. 2016c;
Gulrajani et al. 2016; Salimans et al. 2017), image super-
resolution (Dahl, Norouzi, and Shlens 2017), image coloriza-
tion (Deshpande et al. 2016), and EHR survival modeling
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(Ranganath et al. 2016). There have been broad calls from
other fields for methods that efficiently handle more moderate
numbers of samples, as in medical imaging, where one pre-
dicts diagnostic scores from histological, MRI, or other high-
dimensional medical data that is very expensive to gather
(Greenspan, van Ginneken, and Summers 2016). Address-
ing this challenge is crucial for adapting deep learning from
the engineering realm of “big data” to the scientific realm,
frequently characterized by smaller high-quality datasets.

In this paper we focus on the form of the output layer
for CPE models that predict (potentially-multivariate) or-
dinal labels, such as the next waveform (1d) in an audio
clip or the next pixel (1d or 3d) in an image. Typically, this
distribution is modeled by the output layer of a deep neu-
ral network and contains either the logits of a multinomial
distribution or the parameters of a mixture model, such as
a Gaussian mixture model (mixture density networks, see
(Bishop 1994)). Previous work (van den Oord et al. 2016a;
2016b) has found empirically that using a multinomial model
often outperforms GMMs on ordinal labels. Methods to im-
prove performance over the naive multinomial model often
involve domain-specific heuristic compression of the space
into a smaller number of bins (van den Oord et al. 2016a)
or hand-crafting a mixture model to better-suit the marginal
distribution of the data (Salimans et al. 2017).

We propose Leaf-Smoothed Hierarchical Softmax (LSHS)
as a flexible, general alternative model. LSHS leverages the
structure of the ordinal label space by first using a hierarchical
decomposition of the output probabilities in a manner similar
to kd-trees. This increases the overall sample efficiency of the
model, but increases the error at labels with a neighbor close
in ordinal space but far in leaf-to-leaf path length along the
tree. To overcome this, we draw from the signal processing
literature to develop a graph-based trend filtering regularizer
that locally smooths the area around each target value. These
two techniques leverage the spatial structure in the discrete
distribution to enable points to borrow statistical strength
from their nearby neighbors, improving the estimation of the
latent conditional distribution.

This paper makes the following novel contributions:

• An in-depth analysis of existing output models for ordinal
CPE models, including an exploration of failure modes of
each model.
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• A scalable graph-based regularization approach for large
(finely discretized) domains.

• Leaf-Smoothed Hierarchical Softmax: A new non-
parametric approach for estimating discrete probability
distributions with deep learning models. LSHS does not
suffer from any of the biases identified in previous ap-
proaches, and it out-performs all previous models on both
synthetic and real datasets.
The remainder of this paper proceeds as follows. Section

2 outlines our hierarchical softmax variant. Section 3 details
our approach to smoothing the discrete probability space via
graph-based trend filtering. Section 4 shows our experimental
analysis of LSHS and our benchmarks confirming its strong
performance. Section 5 provides a discussion of related work
and the limitations of our model. Finally, Section 6 gives
concluding remarks.

2 Hierarchical softmax variant

Our model relies on representing the target ordinal distribu-
tion using a tree rather than a flat set of class probabilities.
Tree-based models for distribution estimation have a long
history in machine learning. This includes seminal work us-
ing k-d trees for nonparametric density estimation (Gray and
Moore 2003) and hierarchical softmax (HS) for neural lan-
guage models (Morin and Bengio 2005). We draw inspiration
from these past works in the choice of our hierarchical soft-
max model, essentially combining the space-splitting strategy
of the former with the hierarchical CPE model of the latter to
yield a fast, sample-efficient baseline architecture.

Dyadic decomposition

Rather than outputting the logits of a multinomial distribution
directly, we instead create a balanced binary tree with its root
node in the center of the ordinal space. From the root, we
recursively partition the space into a series of half spaces,
resulting in n− 1 nodes for a discrete space of size n. The
deep learning model then outputs the splitting probabilities
for every node, Ei, parameterized as the logits in a series of
independent binary classification tasks,

p(y > bi|x) =
1

1 + exp(−Ei) , (1)

where bi is the center of the node.
Figure 1 illustrates the hierarchical softmax approach. For

ease of exposition, we denote the conditional probabilty of y
being greater than the node value as simply p(N) for a given
node N . For a target value of yi = 4 with some training
example xi, we calculate the log probability during training
as log(p(yi = 4|xi)) = log [p(A)(1− p(C))(1− p(F ))].
The training objective for the model is then the sum of the
log probabilities of the training data.

There are several computational advantages to using this
particular structure compared to a multinomial. For large
spaces, multinomial models typically require some form of
negative sampling (Mikolov et al. 2013; Jean et al. 2014)
at training time to remain copmutationally efficient. In the
HS model, however, every split is conditionally independent
of the rest of the tree and there is no partition function to

Figure 1: An illustration of our algorithm. The ordinal space
is recursively partitioned into a series of binary left-right
splits and the model outputs the splitting probability for each
node. During training, computing the log probability of a
target label only requires calculating the path to the label in
the tree and its local smoothing neighborhood. In the single-
dimensional example above, the target label is 4 and the
neighborhood radius is 2, resulting in the need to calculate
the target path (orange) and the paths of the surrounding 2
labels on each side (blue). As the size of the ordinal space
grows larger, especially in multi-dimensional spaces, the
computational savings of this approach become substantial.

estimate. Instead, we only require the O(log2n) path from
the root to the target node to estimate the probability of a
given training example. Using a balanced tree also guaran-
tees that every path has a fixed-length of �log2n�, making
vectorization on a GPU straightforward. Finally, the resulting
computations are more numerically stable in the case of pos-
itive dependency between adjacent labels, and rarely result
in very small or large log-probabilities, a problem that often
arises in both multinomial and mixture-model approaches.

Multiple dimensions

We extend the HS approach to multi-dimensional distribu-
tions in a manner similar to a balanced k-d tree. We enumer-
ate the splits in the tree in a breadth-first fashion, alternating
dimensions at each level of the tree. This has two distinct
advantages over a depth-first approach of enumerating the
first dimension before proceeding to the next dimension. The
breadth-first approach means that all nodes close in Euclidean
space will share more coarse-grained parents. This makes
training more efficient by imposing a more principled notion
of structure on the ordinal space. It also improves computa-
tional efficiency for the local smoothing strategy described in
Section 3, as nearby values have heavily overlapping paths;
this results in a well-utilized GPU cache when training.

We note that while many of the computational advantages
of a generic HS approach are well-known (Morin and Ben-
gio 2005), the sample efficiency of the structure is our top
priority. Anecdotally, for instance, we have found that a bal-
anced binary tree that begins from the center of the space and
expands breadth-wise tends to be more sample efficient and
robust across a wider range of problems.
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3 Leaf smoothing

Our HS approach leverages the coarse-to-fine-grained spatial
structure of the ordinal space through a multiresolution hi-
erarchical decomposition. While this allows for larger-scale
blocks of space to effectively share statistical strength, it also
leads to local biases between nearby pairs of labels that lay
on opposite sides of a high-level tree split. Consider the ex-
ample from Figure 1. A sample of yi = 4 is likely to result
in an increase in probability of p(yi = 5|xi) as well, since
both A and C will increase in the direction of 5 and only F
will be downweighted. However, it will clearly decrease the
likelihood of p(yi = 3|xi), since it will shift the probability
of A away from 3 and leave the other nodes in the path of
3 unchanged. This imabalance in updates leads to a jagged
distribution of errors in the estimation of the underlying con-
ditional distribution.

Figure 2 shows a concrete example of the bias introduced
by the HS model in a 64-label, 1000-sample, 1d experiment
when the labels have positive dependence similar to that
found in many ordinal prediction scenarios; labels 15, 31,
and 47 all have outsized error due to being on the boundary
of the top two levels of the HS tree. These biases diminish
as the sample size grows sufficiently large, but for modest
datasets can be substantial. Furthermore, these errors are
exacerbated in higher dimensions since the likelihood of two
neighboring labels falling on the opposite side of a high-level
split increases due to the breadth-first tree construction.

To address this issue, we next develop a structured smooth-
ing regularizer that spreads out the probability mass to nearby
neighbors as a function of distance in the underlying ordi-
nal space, rather than only their specific paths on the tree.
The resulting LSHS model then uses the HS structure to
capture long-range dependencies between labels and the leaf-
smoothing regularizer to enforce local smoothness.

Trend filtering logits

Smoothing over discrete, graph-structured spaces where de-
pendency between observations can be represented as edges
between nodes is a well-studied problem in the signal pro-
cessing literature. A common approach in such problems is
to take a known graph structure with noisy observations at
each node and leverage the inherent dependency between
adjacent observations to reduce the overall estimation er-
ror of the true signal. Trend filtering (TF) (Kim et al. 2009;
Tibshirani and others 2014) is one such recently-proposed
technique for denoising that solves the following convex op-
timization problem:

minimize
β∈RN

�(y,β) + λ
∣
∣
∣

∣
∣
∣Δ(k)β

∣
∣
∣

∣
∣
∣
1
, (2)

where y is a vector of noisy observations with some smooth
convex loss function � and a generalized lasso (Tibshirani
and Taylor 2011) penalty term parameterized by the matrix
Δ(k) = D(k+1). D is the oriented edge adjaceny matrix with
each row corresponding to an edge (i, j) in the graph such
that the ith and jth columns have value −1 and 1 respectively,
and all other entries in that row have value 0. The Δ ma-
trix thus encodes the (k + 1)th-order differences and the L1

penalty creates sparsity in these differences.

In the case of univariate Gaussian loss, solving the TF
minimization problem results in a piecewise polynomial fit
similar to a spline with adaptive knot placement. The order
of the polynomial k and the weight λ are hyperparameters
chosen to minimize some objective criterion such as AIC
or BIC. Recent work (Wang et al. 2016) extends trend fil-
tering to arbitrary graphs, and theoretical results show that
trend filtering has strong minimax rates (Sadhanala, Wang,
and Tibshirani 2016) and is optimally spatially adaptive for
univariate discrete spaces (Guntuboyina et al. 2017).

We adapt TF to ordinal CPE by first noting that the label
space defines a d-dimensional lattice graph, with each label
in the ordinal space having an edge to its immediate neigh-
bors. For example, if we have a two-dimensional label space
then y2,2 would be connected to y1,2, y2,1, y3,2, and y2,3.
However, even given this natural dependency structure, TF
is not immediately applicable to deep learning models. First,
the optimization problems for most deep models are highly
non-convex and cannot leverage specialized TF solvers. Fur-
thermore, although the graph structure is given, it is over the
set of conditional probabilities, rather than the coefficients of
a linear model as in the generalized lasso setup.

Rather than smooth the coefficients in our model, we in-
stead regularize the output log-probabilities. This encourages
the model to produce smooth conditional distributions for
every sample and yields the following loss function,

Li = −log [p(y = yi|xi)]+λ
∣
∣
∣

∣
∣
∣Δ(k)vec(log [p(y|xi)])

∣
∣
∣

∣
∣
∣
1
.

(3)
We choose the hyperparameters k and λ via a validation set.
As we show in Section 4, as dataset size increases, the best
LSHS setting will drift towards smaller values of λ. Thus,
in small-to-moderate sample size regimes, LSHS relies on
trend filtering to smooth out the underlying space, and in
large sample regimes it converges to the pure HS model.

Local smoothing via neighborhood filtering

A naive implementation of the trend filtering regularizer
would require evaluating all the nodes in the discrete space.
This would remove many of the computational performance
advantages of the HS model described in Section 2. To en-
sure that HS scales to large spaces, we smooth only over a
local neighborhood around the target value. Specifically, for a
given yi, we smooth over all nodes in the hypercube of radius
r in output space, centered at yi. The resulting regularization
loss is then only over this subset of the space,

Li = −log [p(y = yi|xi)] + λ
∣
∣
∣

∣
∣
∣Δ̃(k)�(yi, xi)

∣
∣
∣

∣
∣
∣
1
. (4)

In (4), Δ̃(k) is the graph trend filtering matrix for a discrete
grid graph of size (2r + 1)d and �(·) is the neighborhood
selection function that returns the vector of local conditional
logits to smooth. Figure 1 illustrates this local filtering for a
neighborhood radius of size 2 and a target label of 4.

By only needing to compute the values of a local neigh-
borhood, the HS model regains its computational efficiency.
For instance, in the case of a neighborhood radius of size 5
in a 3d scenario where each dimension is of size 64, the full
smoothing model would have to calculate ≈ 262K output
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Figure 2: Average label error for a 64-label, 10-coefficient synthetic ordinal CPE problem, averaged over 300 trials with bars
corresponding to standard error. For each trial, the true coefficients are drawn from a Gaussian process with squared exponential
kernel and bandwidth 1 to simulate the smoothness of many real-world ordinal datasets. The HS model errors are generally
higher at the labels that lay on the boundary of high-level splits in the HS tree.

HS nodes. The local smoother on the other hand only needs
paths of size 24 for 1331 logits for an upper bound of≈ 32K
nodes. Even though this is already a sharp reduction (≈ 88%),
most of the local neighborhood will have highly-overlapping
paths and thus the average number of nodes sampled is much
lower than the upper bound.

4 Experiments

We evaluate LSHS on a series of benchmarks against real and
synthetic data. First, we compare LSHS against approaches
found in the recent literature and highlight the particular
pathologies of each method. We then measure the perfor-
mance of each method on real datasets of one, two, and
three-dimensional discrete conditional target distributions,
including a comparison of LSHS modifying a large-scale
model, WaveNet (van den Oord et al. 2016a). Finally, in the
appendix we show how hierarchical softmax is effected by
the trend filtering with different neighborhood sizes.

Synthetic conditional distributions

We created a synthetic benchmark to evaluate the sample
efficiency and systematic pathologies of both our method
and other methods used in the recent literature. Our task is a
variant on the well-known MNIST classification problem but
with the twist that rather than mapping each digit to a latent
class, each digit is mapped to a latent discrete distribution. For
each sample image, we generate a label (y) by first mapping
the digit to its corresponding distribution and then sampling
y as a draw from that distribution, resulting in a training set
of (X, y) values where X is an image (whose digit class is not
explicitly known by the model) and y is an integer.

We compare six methods:
• Multinomial (MN): A multinomial model with no knowl-

edge of the structure of the output space.
• Gaussian Mixture Model (GMM): An m-component

GMM or Mixture Density Network (MDN) (Bishop 1994).
For multi-dimensional data, we use a Cholesky parameter-
ization of the covariance matrix.

• Logistic Mixture Model (LMM): An m-component mix-
ture of logistics, implemented using the CDF method of
PixelCNN++ (Salimans et al. 2017).

• Unsmoothed Hierarchical Softmax (HS): Our hierarchi-
cal softmax model with no smoothing.

• Smoothed Multinomial (SMN): A multinomial model
where structure of the space is smoothed by applying our
trend filtering regularizer.

• Leaf-Smoothed Hierarchicl Softmax (LSHS): Hiearar-
chical softmax with a local smoothing window.

The first three methods appear in recent works in the literature.
The HS and SMN models are ablation models that enable us
to evaluate the effectiveness of LSHS components separately.

We consider two different ground truth distribution classes,
both one dimensional. The first uses a 3-component GMM
where component means and standard deviations are sampled
uniformly from the range [1, 7] and [0.3, 2], respectively. The
model is then discretized by evaluating the PDF at an evenly-
spaced (zero-indexed) 128-bin grid along the range [0.1, 10].
The resulting distribution always has modes that fall far away
from the boundaries at 0 and 127.

Real discrete data, however, often exhibits spikes near the
boundaries. To address this case, we generated a second set
of experiments where the ground truth is a mixture model of
the form

p(x) =
1

3
Exp(x|λ1) +

1

3
Exp(10.1− x|λ2) +

1

3
N (x|μ, σ) ,

(5)
where Exp is the exponential distribution. We sample λ1 and
λ2 uniformly randomly from the range [0.25, 2] and sample μ
and σ as in the GMM, then discretize this method following
the same procedure used for the GMM. This creates an edge-
biased distribution, with a smooth mode somewhere in the
middle of the space and exponentially increasing mass at
the boundaries, similar to the observed marginal subpixel
intensity in the CIFAR dataset (Salimans et al. 2017).

For both distributions, we evaluate all six models on sam-
ple sizes of 500, 1K, 3K, 5K, 10K, 15K, 30K, and 60K. The
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(a) GMM Distribution (b) Edge-Biased Distribution

Figure 3: Performance of each method on latent (a) GMM, and (b) edge-biased distributions as sample size increases. The
smooth GMM distribution is a 3-component mixture of Gaussians with no modes near the boundaries, resulting in an easy task
for a GMM (mixture density network) model, though LSHS outperforms the other (misspecified) models, and is competitive
in the small-sample regime. The edge-biased distribution has peaks at both boundaries, similar to observed pixel intensities
in natural images, and LSHS performs well. In the low-sample regime, LSHS outperforms both of its constituent methods
(Unsmoothed HS and Smoothed MN).

base network architecture for each model uses two 5 × 5
convolution layers of size 32 and 64 with 2× 2 max pooling,
followed by a dense hidden layer of size 1024; all layers
use ReLU activations and dropout. Models are trained for
100K steps using Adam with learning rate 10−4, ε = 1, and
batch size 50, reserving 20% of the train set for validation,
with validation every 100 steps to save the best model and
prevent overfitting. For GMM and LMM, we evaluated over
m ∈ {1, 3, 5, 10, 20}. For smoothed models, we fixed the
neighborhood radius to 5 and evaluated at k ∈ {1, 2} and
λ ∈ {1e-4,5e-4,1e-3,5e-3,1e-2,5e-2, 0.1, 0.5, 1.0}.
Hyperparameters were set by validation performance.

Figure 3 shows results in terms of total variation distance
from the true distribution, averaged across ten independent
trials. For the GMM distribution (Figure 3a), the GMM model
is well-specified and consequently performs very well. In the
low-sample GMM regime, the LSHS model is competitive
with the GMM model, despite the fact that the GMM matches
the parametric form of the ground truth. As previously noted,
however, most data sets do not follow such an ideal form; for
example, previous work (van den Oord et al. 2016a; 2016b;
van den Oord, Kalchbrenner, and Kavukcuoglu 2016) has
noted a multinomial model often outperforms a GMM model.
If the GMM distribution were reflective of real data, we
would not expect the multinomial model to outperform it.

The edge-biased results in Figure 3b may be of more prac-
tical interest, as the design of this experiment is directly
motivated by the real marginal subpixel intensity distribu-
tions seen in natural images. In the edge-biased scenario
the multinomial model does in fact outperform the GMM
model. However LSHS is clearly the best model here, with
much stronger performance across all sample sizes. Inter-
estingly, the LMM model performs very poorly, despite its
design also being inspired by modeling pixel intensities. To
better understand the performance of each of the models on
the edge-biased dataset, we generated example conditional
distributions when the model is trained with 3K samples.

Figure 4 shows plots of each model’s estimate of the con-
ditional distribution of the label for a single example image,
with the ground truth shown in gray. The multinomial model
(Figure 4a) treats every value as independent, resulting in a
jagged reconstruction, especially in the tails, where the vari-
ance is particularly high. The GMM (Figure 4b) provides a
smooth estimation which captures the middle mode well but
drastically underestimates the tails because of the symmetric
assumption of the model components. Conversely, the LMM
(Figure 4c) produces large spikes at the two boundaries, due
to the fact that the model takes boundaries to be the total
component mass from (−∞, 0] and [127,∞). This is an in-
tentional bias in the model designed to better match CIFAR
pixel intensities which also have spikes at the boundaries.
This is quite a strong bias, effectively resulting in a two-
point-inflated smooth model with a nontrivial bias towards
the boundaries. Finally, the HS and SMN models (Figures 4d
and 4e) result in slightly better fits than the simple multino-
mial model, but combining both into the LSHS model (Figure
4f) results in a smooth fit that is able to estimate the tails well.

In both distributions, we observe that the hierarchical soft-
max and local smoothing are jointly beneficial. Both HS and
SMN outperform a simple multinomial, and combining them
both in the LSHS model is superior to both. As the sample
size grows, LSHS converges to the HS model in performance,
as increased data results in a decreased need for smoothing.
Indeed, as we show in the appendix, the average chosen λ
(smoothing) value decreases as the sample size grows.

Real-world datasets

We compile a benchmark of real-world datasets with discrete
conditional distributions as a target output (or where the target
variable is discrete). We use seven datasets from the UCI
database; three are one-dimensional targets, three are two-
dimensional, and one is three-dimensional. Every model uses
a network architecture of three hidden layers of sizes 256,
128, and 64 with ReLU activation, weight decay, and dropout.
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(a) Multinomial (b) GMM (c) LMM

(d) Unsmoothed HS (e) Smoothed MN (f) LSHS

Figure 4: Example fits for benchmark methods with 3000 training samples on the edge-biased distribution. (a) The multinomial
model is extremely noisy, as it ignores label structure. (b) The GMM never puts substantial mass outside the feasible range,
resulting in misplaced modes near the tails. (c) The LMM over-estimates the boundaries due to the CDF formulation of the
log-likelihood. (d,e) The unsmoothed HS and smoothed MN models both improve on the pure multinomial model, but are still
noisy. (f) The LSHS model finds a smooth fit which does not grossly misestimate the tails.

Models were trained with Adam with decaying learning rate
with initial rate 10−1, minimum rate 10−4, and decay rate of
0.25, decaying the rate after the current model has failed to
improve for 10 epochs. Training stops after 1000 epochs or if
the current learning rate is below the minimum learning rate.
All results are averages using 10-fold cross-validation and
we use 20% of the training data in each trial as a validation
set. For all datasets, we select hyperparameter settings as in
Section 4. We plot the marginal distributions of each real
dataset in the appendix.

We also evaluate on a pixel prediction task for both MNIST
and CIFAR-10, where we sample a 10× 10 patch of the im-
age and must predict the pixel located at (11, 11), relative to
the origin of the patch. For both image datasets, we consider
3 different training sample sizes (500, 5K, and 50K). Every
model uses a network architecture of two 3× 3 convolution
layers of size 32 and 64, with 2×2 max pooling, followed by
three dense hidden layers of size 1024, 128, and 32; all layers
use ReLU activation, weight decay, and dropout. Other train-
ing details are identical to the UCI dataset, with the exception
that we only perform a single trial on the CIFAR datasets
due to computational constraints. Similarly, we reduce the
resolution of the CIFAR dataset from 2563 to 643. Plots of
the marginal distributions of all our datasets are available in
the supplementary material.

Table 1 presents the results on all the candidate datasets,
with the best-performing score in bold for each dataset and
metric. We measure performance both in log-probability of
observed points and root mean squared error (RMSE), as the

discrete space has a natural measurement of distance. In gen-
eral, LSHS performs very well in cases where the size of the
discrete space dominates the sample size. In datasets where
this is not the case (Abalone and Parkinsons), the multinomial
model has sufficient data to model the space well. LMM out-
performs LSHS in terms of log-probs on the Housing dataset,
likely due to the large peaks at the boundaries in the data
(see plot in the supplement for details). The CIFAR dataset
also has substantial peaks (especially at corners), resulting in
the LMM outperforming the multinomial model, as demon-
strated previously in (Salimans et al. 2017). However, the
additional dataset structure is better modeled via the LSHS
model, which has nearly half the RMSE of other methods.

WaveNet-LSHS

As a final validation, we modify the WaveNet generative au-
dio model (van den Oord et al. 2016a) to use LSHS.* The
WaveNet model performs a compression of the waveform
to a pre-specified number of bins. The original experiments
used 256 bins with a multinomial distribution, which was
found empirically by (van den Oord et al. 2016a) to outper-
form GMMs and is thus the model we compare against. All
trials were run on the VCTK corpus (Yamagishi 2012), with
varying compression sizes, for 6K epochs; for LSHS we used
a radius of 5 and λ = 0.01 for all experiments; all other
parameters were set to defaults. Table 2 shows the results for

*We use the WaveNet implementation at https://github.com/ibab/
tensorflow-wavenet.
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Multinomial GMM LMM LSHS
Model Grid Size Samples log-probs RMSE log-probs RMSE log-probs RMSE log-probs RMSE
Abalone 29 4177 -822.83 2.17 -907.78 2.42 -857.23 2.30 -851.88 2.31
Auto-MPG 377 392 -177.81 37.34 -187.02 31.59 -186.67 32.49 -160.31 30.84
Housing 451 506 -297.59 69.20 -247.23 40.81 -240.20 39.53 -246.44 36.18
MNIST-500 256 500 -1416.69 80.90 -2588.79 92.78 -1658.78 81.57 -1466.65 86.68
MNIST-5K 256 5000 -1229.77 64.10 -2096.24 94.16 -1231.01 64.29 -1224.42 63.06
MNIST-50K 256 50000 -1173.80 58.82 -2365.57 94.24 -1191.11 60.41 -1161.69 57.16

Students 21× 20 395 -209.07 5.27 -219.67 5.44 -209.43 5.26 -200.76 5.18
Energy 38× 38 768 -323.10 6.21 -492.49 10.89 -437.90 14.24 -279.01 4.17
Parkinsons 36× 49 5875 -1941.91 6.42 -3969.63 10.91 -3633.29 13.53 -3530.22 14.93
Concrete 30× 59× 43 103 -115.88 21.34 -107.46 18.91 -108.63 21.07 -102.34 18.09
CIFAR-500 64× 64× 64 500 -9980.57 26.35 -9177.59 24.69 -9109.57 26.00 -8519.21 25.81
CIFAR-5K 64× 64× 64 5000 -9688.08 26.26 -9106.04 23.01 -9213.49 26.11 -7504.35 14.89
CIFAR-50K 64× 64× 64 50000 -8409.60 22.66 -9099.49 23.02 -9214.51 26.08 -6796.39 13.42

Table 1: Results for the four models on a series of discrete datasets from the UCI database and the MNIST and CIFAR-10
datasets. The best scores for each metric and dataset are bolded; grid size corresponds to the number of bins in the underlying
discrete space. Overall, the LSHS model performs very strongly, especially where the grid size is much larger than sample size.

Model Original (Multinomial) LSHS
WaveNet-256 2.5780 2.4820
WaveNet-512 3.2630 3.2970
WaveNet-1024 3.9440 3.8730
WaveNet-2048 4.7100 4.6240

Table 2: Results for WaveNet on the VCTK corpus (in bits-
per-sample) as sound fidelity is increased. LSHS outperforms
the original model at most resolutions.

each model, given in bits-per-sample on the test set. Overall,
LSHS outperforms the original WaveNet model in three out
of four settings and remains close on the fourth setting.

5 Discussion

As our experiments demonstrate, the LSHS model outper-
forms several alternative models commonly used in the deep
learning literature. In the one-dimensional case, other mod-
els have been proposed, ranging from more flexible para-
metric component distributions for mixture models (Car-
reau and Bengio 2009) to quantile regression (Taylor 2000;
Lee and Yang 2006). Extending these models to higher di-
mensions is non-trivial, making them unsuitable for use in
many of our target applications. Furthermore, even in the
1d case, it is often unclear a priori which parametric com-
ponents should be included in a mixture model, and simply
adding a large number may result in overfitting. A quantile
regression model would also suffer from the same overfit-
ting issues as the unsmoothed HS model in the appendix
neighborhood experiments, as it does not explicitly impose
smoothness. Quantile regression would also require all nodes
to be calculated at every iteration and would therefore not
scale well to large (i.e. finely-discretized) 1d spaces.

There have also been other multidimensional models, no-
tably the line of work in neural autoregressive models such
as NADE (Uria et al. 2016), RNADE (Uria, Murray, and
Larochelle 2013), and MADE (Germain et al. 2015); and
variational autoencoders (Kingma and Welling 2013) such as

DRAW (Gregor et al. 2015). We see such models as comple-
mentary approaches rather than competitive approaches to
LSHS. For instance, one could modify the outputs of MADE
to be a separate discrete distribution for each dimension rather
than a single likelihood. This would also address the main
scalability issue of our model: currently LSHS requires O(n)
output nodes for a space of n possible values. In the low-
dimensional problems explored in this paper this was not a
problem, but it quickly exceeds the memory of a GPU once
one moves beyond three or four dimensions.

6 Conclusion

We have presented LSHS, a model for conditional probabil-
ity estimation over ordinal labels. By dividing a label space
into a series of half-spaces, LSHS transforms the distribution
estimation task into a hierarchical classification task which
overcomes many disadvantages of simple multinomial mod-
eling. The leaf nodes in the tree are then smoothed at train
time using graph-based trend filtering on the resulting logit
probabilities in a local region around the target label. Hier-
archical decomposition and leaf smoothing were shown to
have an additive effect on total variation error reduction in
synthetic datasets. The benchmark results on both real and
synthetic datasets suggest that LSHS is a powerful method
that sometimes substantially improves the performance of
ordinal prediction models, especially when sample efficiency
is a concern.
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Uria, B.; Côté, M.-A.; Gregor, K.; Murray, I.; and Larochelle,
H. 2016. Neural autoregressive distribution estimation. Jour-
nal of Machine Learning Research 17(205):1–37.
Uria, B.; Murray, I.; and Larochelle, H. 2013. Rnade: The
real-valued neural autoregressive density-estimator. In Ad-
vances in Neural Information Processing Systems, 2175–
2183.
van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.;
Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; and
Kavukcuoglu, K. 2016a. WaveNet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499.
van den Oord, A.; Kalchbrenner, N.; Espeholt, L.; Vinyals,
O.; Graves, A.; et al. 2016b. Conditional image generation
with PixelCNN decoders. In Advances in Neural Information
Processing Systems, 4790–4798.
van den Oord, A.; Kalchbrenner, N.; Vinyals, O.; Espeholt,
L.; Graves, A.; and Kavukcuoglu, K. 2016c. Conditional
image generation with PixelCNN decoders. arXiv preprint
arXiv:1606.05328.
van den Oord, A.; Kalchbrenner, N.; and Kavukcuoglu, K.
2016. Pixel recurrent neural networks. arXiv preprint
arXiv:1601.06759.
Wang, Y.-X.; Sharpnack, J.; Smola, A.; and Tibshirani, R. J.
2016. Trend filtering on graphs. Journal of Machine Learning
Research 17(105):1–41.
Yamagishi, J. 2012. English multi-speaker corpus for cstr
voice cloning toolkit.

4122


