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Abstract

Deep reinforcement learning (RL) has achieved several
high profile successes in difficult decision-making problems.
However, these algorithms typically require a huge amount of
data before they reach reasonable performance. In fact, their
performance during learning can be extremely poor. This may
be acceptable for a simulator, but it severely limits the appli-
cability of deep RL to many real-world tasks, where the agent
must learn in the real environment. In this paper we study a
setting where the agent may access data from previous con-
trol of the system. We present an algorithm, Deep Q-learning
from Demonstrations (DQfD), that leverages small sets of
demonstration data to massively accelerate the learning pro-
cess even from relatively small amounts of demonstration
data and is able to automatically assess the necessary ratio
of demonstration data while learning thanks to a prioritized
replay mechanism. DQfD works by combining temporal dif-
ference updates with supervised classification of the demon-
strator’s actions. We show that DQfD has better initial per-
formance than Prioritized Dueling Double Deep Q-Networks
(PDD DQN) as it starts with better scores on the first million
steps on 41 of 42 games and on average it takes PDD DQN
83 million steps to catch up to DQfD’s performance. DQfD
learns to out-perform the best demonstration given in 14 of
42 games. In addition, DQfD leverages human demonstra-
tions to achieve state-of-the-art results for 11 games. Finally,
we show that DQfD performs better than three related algo-
rithms for incorporating demonstration data into DQN.

Introduction

Over the past few years, there have been a number
of successes in learning policies for sequential decision-
making problems and control. Notable examples in-
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clude deep model-free Q-learning for general Atari game-
playing (Mnih et al. 2015), end-to-end policy search for con-
trol of robot motors (Levine et al. 2016), model predictive
control with embeddings (Watter et al. 2015), and strategic
policies that combined with search led to defeating a top hu-
man expert at the game of Go (Silver et al. 2016). An im-
portant part of the success of these approaches has been to
leverage the recent contributions to scalability and perfor-
mance of deep learning (LeCun, Bengio, and Hinton 2015).
The approach taken in (Mnih et al. 2015) builds a data set of
previous experience using batch RL to train large convolu-
tional neural networks in a supervised fashion from this data.
By sampling from this data set rather than from current expe-
rience, the correlation in values from state distribution bias
is mitigated, leading to good (in many cases, super-human)
control policies.

It still remains difficult to apply these algorithms to
real world settings such as data centers, autonomous ve-
hicles (Hester and Stone 2013), helicopters (Abbeel et al.
2007), or recommendation systems (Shani, Heckerman, and
Brafman 2005). Typically these algorithms learn good con-
trol policies only after many millions of steps of very poor
performance in simulation. This situation is acceptable when
there is a perfectly accurate simulator; however, many real
world problems do not come with such a simulator. Instead,
in these situations, the agent must learn in the real domain
with real consequences for its actions, which requires that
the agent have good on-line performance from the start of
learning. While accurate simulators are difficult to find, most
of these problems have data of the system operating under a
previous controller (either human or machine) that performs
reasonably well. In this work, we make use of this demon-
stration data to pre-train the agent so that it can perform well
in the task from the start of learning, and then continue im-
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proving from its own self-generated data. Enabling learning
in this framework opens up the possibility of applying RL
to many real world problems where demonstration data is
common but accurate simulators do not exist.

We propose a new deep reinforcement learning al-
gorithm, Deep Q-learning from Demonstrations (DQfD),
which leverages even very small amounts of demonstration
data to massively accelerate learning. DQfD initially pre-
trains solely on the demonstration data using a combination
of temporal difference (TD) and supervised losses. The su-
pervised loss enables the algorithm to learn to imitate the
demonstrator while the TD loss enables it to learn a self-
consistent value function from which it can continue learn-
ing with RL. After pre-training, the agent starts interacting
with the domain with its learned policy. The agent updates
its network with a mix of demonstration and self-generated
data. In practice, choosing the ratio between demonstra-
tion and self-generated data while learning is critical to im-
prove the performance of the algorithm. One of our con-
tributions is to use a prioritized replay mechanism (Schaul
et al. 2016) to automatically control this ratio. DQfD out-
performs pure reinforcement learning using Prioritized Du-
eling Double DQN (PDD DQN) (Schaul et al. 2016; van
Hasselt, Guez, and Silver 2016; Wang et al. 2016) in 41 of
42 games on the first million steps, and on average it takes
83 million steps for PDD DQN to catch up to DQfD. In ad-
dition, DQfD out-performs pure imitation learning in mean
score on 39 of 42 games and out-performs the best demon-
stration given in 14 of 42 games. DQfD leverages the hu-
man demonstrations to learn state-of-the-art policies on 11
of 42 games. Finally, we show that DQfD performs better
than three related algorithms for incorporating demonstra-
tion data into DQN.

Background

We adopt the standard Markov Decision Process (MDP) for-
malism for this work (Sutton and Barto 1998). An MDP is
defined by a tuple 〈S,A,R, T, γ〉, which consists of a set
of states S, a set of actions A, a reward function R(s, a), a
transition function T (s, a, s′) = P (s′|s, a), and a discount
factor γ. In each state s ∈ S, the agent takes an action a ∈ A.
Upon taking this action, the agent receives a reward R(s, a)
and reaches a new state s′, determined from the probability
distribution P (s′|s, a). A policy π specifies for each state
which action the agent will take. The goal of the agent is to
find the policy π mapping states to actions that maximizes
the expected discounted total reward over the agent’s life-
time. The value Qπ(s, a) of a given state-action pair (s, a)
is an estimate of the expected future reward that can be ob-
tained from (s, a) when following policy π. The optimal
value function Q∗(s, a) provides maximal values in all states
and is determined by solving the Bellman equation:

Q∗(s, a) = E

[
R(s, a) + γ

∑
s′

P (s′|s, a)max
a′

Q∗(s′, a′)

]
.

The optimal policy π is then π(s) = argmaxa∈A Q∗(s, a).
DQN (Mnih et al. 2015) approximates the value function
Q(s, a) with a deep neural network that outputs a set of ac-

tion values Q(s, ·; θ) for a given state input s, where θ are the
parameters of the network. There are two key components of
DQN that make this work. First, it uses a separate target net-
work that is copied every τ steps from the regular network
so that the target Q-values are more stable. Second, the agent
adds all of its experiences to a replay buffer Dreplay , which
is then sampled uniformly to perform updates on the net-
work.

The double Q-learning update (van Hasselt, Guez, and
Silver 2016) uses the current network to calculate the
argmax over next state values and the target network
for the value of that action. The double DQN loss is
JDQ(Q) =

(
R(s, a) + γQ(st+1, a

max
t+1 ; θ

′)−Q(s, a; θ)
)2

,
where θ′ are the parameters of the target network, and
amax
t+1 = argmaxa Q(st+1, a; θ). Separating the value func-

tions used for these two variables reduces the upward bias
that is created with regular Q-learning updates.

Prioritized experience replay (Schaul et al. 2016) mod-
ifies the DQN agent to sample more important transitions
from its replay buffer more frequently. The probability of
sampling a particular transition i is proportional to its prior-
ity, P (i) =

pα
i∑

k pα
k

, where the priority pi = |δi|+ ε, and δi is
the last TD error calculated for this transition and ε is a small
positive constant to ensure all transitions are sampled with
some probability. To account for the change in the distribu-
tion, updates to the network are weighted with importance
sampling weights, wi = ( 1

N · 1
P (i) )

β , where N is the size of
the replay buffer and β controls the amount of importance
sampling with no importance sampling when β = 0 and full
importance sampling when β = 1. β is annealed linearly
from β0 to 1.

Related Work
Imitation learning is primarily concerned with matching the
performance of the demonstrator. One popular algorithm,
DAGGER (Ross, Gordon, and Bagnell 2011), iteratively
produces new policies based on polling the expert policy
outside its original state space, showing that this leads to
no-regret over validation data in the online learning sense.
DAGGER requires the expert to be available during train-
ing to provide additional feedback to the agent. In addition,
it does not combine imitation with reinforcement learning,
meaning it can never learn to improve beyond the expert as
DQfD can.

Deeply AggreVaTeD (Sun et al. 2017) extends DAGGER
to work with deep neural networks and continuous action
spaces. Not only does it require an always available expert
like DAGGER does, the expert must provide a value func-
tion in addition to actions. Similar to DAGGER, Deeply Ag-
greVaTeD only does imitation learning and cannot learn to
improve upon the expert.

Another popular paradigm is to setup a zero-sum game
where the learner chooses a policy and the adversary
chooses a reward function (Syed and Schapire 2007; Syed,
Bowling, and Schapire 2008; Ho and Ermon 2016). Demon-
strations have also been used for inverse optimal con-
trol in high-dimensional, continuous robotic control prob-
lems (Finn, Levine, and Abbeel 2016). However, these ap-
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proaches only do imitation learning and do not allow for
learning from task rewards.

Recently, demonstration data has been shown to help in
difficult exploration problems in RL (Subramanian, Jr., and
Thomaz 2016). There has also been recent interest in this
combined imitation and RL problem. For example, the HAT
algorithm transfers knowledge directly from human poli-
cies (Taylor, Suay, and Chernova 2011). Follow-ups to this
work showed how expert advice or demonstrations can be
used to shape rewards in the RL problem (Brys et al. 2015;
Suay et al. 2016). A different approach is to shape the policy
that is used to sample experience (Cederborg et al. 2015), or
to use policy iteration from demonstrations (Kim et al. 2013;
Chemali and Lezaric 2015).

Our algorithm works in a scenario where rewards are
given by the environment used by the demonstrator. This
framework was appropriately called Reinforcement Learn-
ing with Expert Demonstrations (RLED) in (Piot, Geist, and
Pietquin 2014a) and is also evaluated in (Kim et al. 2013;
Chemali and Lezaric 2015). Our setup is similar to (Piot,
Geist, and Pietquin 2014a) in that we combine TD and clas-
sification losses in a batch algorithm in a model-free setting;
ours differs in that our agent is pre-trained on the demon-
stration data initially and the batch of self-generated data
grows over time and is used as experience replay to train
deep Q-networks. In addition, a prioritized replay mecha-
nism is used to balance the amount of demonstration data in
each mini-batch. (Piot, Geist, and Pietquin 2014b) present
interesting results showing that adding a TD loss to the su-
pervised classification loss improves imitation learning even
when there are no rewards.

Another work that is similarly motivated to ours is (Schaal
1996). This work is focused on real world learning on robots,
and thus is also concerned with on-line performance. Similar
to our work, they pre-train the agent with demonstration data
before letting it interact with the task. However, they do not
use supervised learning to pre-train their algorithm, and are
only able to find one case where pre-training helps learning
on Cart-Pole.

In one-shot imitation learning (Duan et al. 2017), the
agent is provided with an entire demonstration as input in
addition to the current state. The demonstration specifies the
goal state that is wanted, but from different initial conditions.
The agent is trained with target actions from more demon-
strations. This setup also uses demonstrations, but requires
a distribution of tasks with different initial conditions and
goal states, and the agent can never learn to improve upon
the demonstrations.

AlphaGo (Silver et al. 2016) takes a similar approach to
our work in pre-training from demonstration data before in-
teracting with the real task. AlphaGo first trains a policy
network from a dataset of 30 million expert actions, using
supervised learning to predict the actions taken by experts.
It then uses this as a starting point to apply policy gradient
updates during self-play, combined with planning rollouts.
Here, we do not have a model available for planning, so we
focus on the model-free Q-learning case.

Human Experience Replay (HER) (Hosu and Rebedea
2016) is an algorithm in which the agent samples from a re-

play buffer that is mixed between agent and demonstration
data, similar to our approach. Gains were only slightly bet-
ter than a random agent, and were surpassed by their alter-
native approach, Human Checkpoint Replay, which requires
the ability to set the state of the environment. While their
algorithm is similar in that it samples from both datasets, it
does not pre-train the agent or use a supervised loss. Our re-
sults show higher scores over a larger variety of games, with-
out requiring full access to the environment. Replay Buffer
Spiking (RBS) (Lipton et al. 2016) is another similar ap-
proach where the DQN agent’s replay buffer is initialized
with demonstration data, but they do not pre-train the agent
for good initial performance or keep the demonstration data
permanently.

The work that most closely relates to ours is a workshop
paper presenting Accelerated DQN with Expert Trajecto-
ries (ADET) (Lakshminarayanan, Ozair, and Bengio 2016).
They are also combining TD and classification losses in a
deep Q-learning setup. They use a trained DQN agent to
generate their demonstration data, which on most games is
better than human data. It also guarantees that the policy
used by the demonstrator can be represented by the appren-
ticeship agent as they are both using the same state input
and network architecture. They use a cross-entropy classifi-
cation loss rather than the large margin loss DQfD uses and
they do not pre-train the agent to perform well from its first
interactions with the environment.

Deep Q-Learning from Demonstrations

In many real-world settings of reinforcement learning, we
have access to data of the system being operated by its previ-
ous controller, but we do not have access to an accurate sim-
ulator of the system. Therefore, we want the agent to learn
as much as possible from the demonstration data before run-
ning on the real system. The goal of the pre-training phase
is to learn to imitate the demonstrator with a value func-
tion that satisfies the Bellman equation so that it can be up-
dated with TD updates once the agent starts interacting with
the environment. During this pre-training phase, the agent
samples mini-batches from the demonstration data and up-
dates the network by applying four losses: the 1-step double
Q-learning loss, an n-step double Q-learning loss, a super-
vised large margin classification loss, and an L2 regulariza-
tion loss on the network weights and biases. The supervised
loss is used for classification of the demonstrator’s actions,
while the Q-learning loss ensures that the network satisfies
the Bellman equation and can be used as a starting point for
TD learning.

The supervised loss is critical for the pre-training to have
any effect. Since the demonstration data is necessarily cov-
ering a narrow part of the state space and not taking all pos-
sible actions, many state-actions have never been taken and
have no data to ground them to realistic values. If we were to
pre-train the network with only Q-learning updates towards
the max value of the next state, the network would update to-
wards the highest of these ungrounded variables and the net-
work would propagate these values throughout the Q func-
tion. We add a large margin classification loss (Piot, Geist,
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and Pietquin 2014a):

JE(Q) = max
a∈A

[Q(s, a) + l(aE , a)]−Q(s, aE)

where aE is the action the expert demonstrator took in state
s and l(aE , a) is a margin function that is 0 when a = aE
and positive otherwise. This loss forces the values of the
other actions to be at least a margin lower than the value of
the demonstrator’s action. Adding this loss grounds the val-
ues of the unseen actions to reasonable values, and makes
the greedy policy induced by the value function imitate the
demonstrator. If the algorithm pre-trained with only this su-
pervised loss, there would be nothing constraining the val-
ues between consecutive states and the Q-network would not
satisfy the Bellman equation, which is required to improve
the policy on-line with TD learning.

Adding n-step returns (with n = 10) helps propagate the
values of the expert’s trajectory to all the earlier states, lead-
ing to better pre-training. The n-step return is:

rt + γrt+1 + ...+ γn−1rt+n−1 +maxaγ
nQ(st+n, a),

which we calculate using the forward view, similar to
A3C (Mnih et al. 2016).

We also add an L2 regularization loss applied to the
weights and biases of the network to help prevent it from
over-fitting on the relatively small demonstration dataset.
The overall loss used to update the network is a combina-
tion of all four losses:

J(Q) = JDQ(Q) + λ1Jn(Q) + λ2JE(Q) + λ3JL2(Q).

The λ parameters control the weighting between the losses.
We examine removing some of these losses in Section .

Once the pre-training phase is complete, the agent starts
acting on the system, collecting self-generated data, and
adding it to its replay buffer Dreplay . Data is added to the
replay buffer until it is full, and then the agent starts over-
writing old data in that buffer. However, the agent never
over-writes the demonstration data. For proportional prior-
itized sampling, different small positive constants, εa and
εd, are added to the priorities of the agent and demonstration
transitions to control the relative sampling of demonstration
versus agent data. All the losses are applied to the demon-
stration data in both phases, while the supervised loss is not
applied to self-generated data (λ2 = 0).

Overall, Deep Q-learning from Demonstration (DQfD)
differs from PDD DQN in six key ways:
• Demonstration data: DQfD is given a set of demonstration

data, which it retains in its replay buffer permanently.
• Pre-training: DQfD initially trains solely on the demon-

stration data before starting any interaction with the envi-
ronment.

• Supervised losses: In addition to TD losses, a large mar-
gin supervised loss is applied that pushes the value of the
demonstrator’s actions above the other action values (Piot,
Geist, and Pietquin 2014a).

• L2 Regularization losses: The algorithm also adds L2 reg-
ularization losses on the network weights to prevent over-
fitting on the demonstration data.

• N-step TD losses: The agent updates its Q-network with
targets from a mix of 1-step and n-step returns.

• Demonstration priority bonus: The priorities of demon-
stration transitions are given a bonus of εd, to boost the
frequency that they are sampled.
Pseudo-code is sketched in Algorithm 1. The behavior

policy πεQθ is ε-greedy with respect to Qθ.

Algorithm 1 Deep Q-learning from Demonstrations.
1: Inputs: Dreplay: initialized with demonstration data set,

θ: weights for initial behavior network (random), θ′:
weights for target network (random), τ : frequency at
which to update target net, k: number of pre-training
gradient updates

2: for steps t ∈ {1, 2, . . . k} do
3: Sample a mini-batch of n transitions from Dreplay

with prioritization
4: Calculate loss J(Q) using target network
5: Perform a gradient descent step to update θ
6: if t mod τ = 0 then θ′ ← θ end if
7: end for
8: for steps t ∈ {1, 2, . . .} do
9: Sample action from behavior policy a ∼ πεQθ

10: Play action a and observe (s′, r).
11: Store (s, a, r, s′) into Dreplay, overwriting oldest

self-generated transition if over capacity
12: Sample a mini-batch of n transitions from Dreplay

with prioritization
13: Calculate loss J(Q) using target network
14: Perform a gradient descent step to update θ
15: if t mod τ = 0 then θ′ ← θ end if
16: s← s′
17: end for

Experimental Setup

We evaluated DQfD on the Arcade Learning Environment
(ALE) (Bellemare et al. 2013). ALE is a set of Atari games
that are a standard benchmark for DQN and contains many
games on which humans still perform better than the best
learning agents. The agent plays the Atari games from a
down-sampled 84x84 image of the game screen that has
been converted to greyscale, and the agent stacks four of
these frames together as its state. The agent must output one
of 18 possible actions for each game. The agent applies a
discount factor of 0.99 and all of its actions are repeated
for four Atari frames. Each episode is initialized with up to
30 no-op actions to provide random starting positions. The
scores reported are the scores in the Atari game, regardless
of how the agent is representing reward internally.

For all of our experiments, we evaluated three different
algorithms, each averaged across four trials:
• Full DQfD algorithm with human demonstrations
• PDD DQN learning without any demonstration data
• Supervised imitation from demonstration data without

any environment interaction
We performed informal parameter tuning for all the algo-

rithms on six Atari games and then used the same param-
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eters for the entire set of games. The parameters used for
the algorithms are shown in the appendix. Our coarse search
over prioritization and n-step return parameters led to the
same best parameters for DQfD and PDD DQN. PDD DQN
differs from DQfD because it does not have demonstra-
tion data, pre-training, supervised losses, or regularization
losses. We included n-step returns in PDD DQN to provide
a better baseline for comparison between DQfD and PDD
DQN. All three algorithms use the dueling state-advantage
convolutional network architecture (Wang et al. 2016).

For the supervised imitation comparison, we performed
supervised classification of the demonstrator’s actions using
a cross-entropy loss, with the same network architecture and
L2 regularization used by DQfD. The imitation algorithm
did not use any TD loss. Imitation learning only learns from
the pre-training and not from any additional interactions.

We ran experiments on a randomly selected subset of 42
Atari games. We had a human player play each game be-
tween three and twelve times. Each episode was played ei-
ther until the game terminated or for 20 minutes. During
game play, we logged the agent’s state, actions, rewards,
and terminations. The human demonstrations range from
5,574 to 75,472 transitions per game. DQfD learns from a
very small dataset compared to other similar work, as Al-
phaGo (Silver et al. 2016) learns from 30 million human
transitions, and DQN (Mnih et al. 2015) learns from over
200 million frames. DQfD’s smaller demonstration dataset
makes it more difficult to learn a good representation with-
out over-fitting. The demonstration scores for each game are
shown in a table in the Appendix. Our human demonstrator
is much better than PDD DQN on some games (e.g. Pri-
vate Eye, Pitfall), but much worse than PDD DQN on many
games (e.g. Breakout, Pong).

We found that in many of the games where the human
player is better than DQN, it was due to DQN being trained
with all rewards clipped to 1. For example, in Private Eye,
DQN has no reason to select actions that reward 25,000 ver-
sus actions that reward 10. To make the reward function used
by the human demonstrator and the agent more consistent,
we used unclipped rewards and converted the rewards us-
ing a log scale: ragent = sign(r) · log(1 + |r|). This trans-
formation keeps the rewards over a reasonable scale for the
neural network to learn, while conveying important infor-
mation about the relative scale of individual rewards. These
adapted rewards are used internally by the all the algorithms
in our experiments. Results are still reported using actual
game scores as is typically done in the Atari literature (Mnih
et al. 2015).

Results

First, we show learning curves in Figure 1 for three games:
Hero, Pitfall, and Road Runner. On Hero and Pitfall, the
human demonstrations enable DQfD to achieve a score
higher than any previously published result. Videos for both
games are available at https://www.youtube.com/watch?v=
JR6wmLaYuu4. On Hero, DQfD achieves a higher score
than any of the human demonstrations as well as any previ-
ously published result. Pitfall may be the most difficult Atari

game, as it has very sparse positive rewards and dense neg-
ative rewards. No previous approach achieved any positive
rewards on this game, while DQfD’s best score on this game
averaged over a 3 million step period is 394.0.

On Road Runner, agents typically learn super-human
policies with a score exploit that differs greatly from hu-
man play. Our demonstrations are only human and have a
maximum score of 20,200. Road Runner is the game with
the smallest set of human demonstrations (only 5,574 tran-
sitions). Despite these factors, DQfD still achieves a higher
score than PDD DQN for the first 36 million steps and
matches PDD DQN’s performance after that.

The right subplot in Figure 1 shows the ratio of how of-
ten the demonstration data was sampled versus how much
it would be sampled with uniform sampling. For the most
difficult games like Pitfall and Montezuma’s Revenge, the
demonstration data is sampled more frequently over time.
For most other games, the ratio converges to a near constant
level, which differs for each game.

In real world tasks, the agent must perform well from its
very first action and must learn quickly. DQfD performed
better than PDD DQN on the first million steps on 41 of
42 games. In addition, on 31 games, DQfD starts out with
higher performance than pure imitation learning, as the ad-
dition of the TD loss helps the agent generalize the demon-
stration data better. On average, PDD DQN does not surpass
the performance of DQfD until 83 million steps into the task
and never surpasses it in mean scores.

In addition to boosting initial performance, DQfD is
able to leverage the human demonstrations to learn better
policies on the most difficult Atari games. We compared
DQfD’s scores over 200 million steps with that of other deep
reinforcement learning approaches: DQN, Double DQN,
Prioritized DQN, Dueling DQN, PopArt, DQN+CTS, and
DQN+PixelCNN (Mnih et al. 2015; van Hasselt, Guez,
and Silver 2016; Schaul et al. 2016; Wang et al. 2016;
van Hasselt et al. 2016; Ostrovski et al. 2017). We took the
best 3 million step window averaged over 4 seeds for the
DQfD scores. DQfD achieves better scores than these al-
gorithms on 11 of 42 games, shown in Table 1. Note that
we do not compare with A3C (Mnih et al. 2016) or Reac-
tor (Gruslys et al. 2017) as the only published results are for
human starts, and we do not compare with UNREAL (Jader-
berg et al. 2016) as they select the best hyper-parameters
per game. Despite this fact, DQfD still out-performs the best
UNREAL results on 10 games. DQN with count-based ex-
ploration (Ostrovski et al. 2017) is designed for and achieves
the best results on the most difficult exploration games. On
the six sparse reward, hard exploration games both algo-
rithms were run on, DQfD learns better policies on four of
six games.

DQfD out-performs the worst demonstration episode it
was given on in 29 of 42 games and it learns to play bet-
ter than the best demonstration episode in 14 of the games:
Amidar, Atlantis, Boxing, Breakout, Crazy Climber, De-
fender, Enduro, Fishing Derby, Hero, James Bond, Kung Fu
Master, Pong, Road Runner, and Up N Down. In compari-
son, pure imitation learning is worse than the demonstrator’s
performance in every game.
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Figure 1: On-line scores of the algorithms on the games of Hero, Pitfall, and Road Runner. On Hero and Pitfall, DQfD leverages
the human demonstrations to achieve a higher score than any previously published result. The last plot shows how much more
frequently the demonstration data was sampled than if data were sampled uniformly, for five different games.
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Figure 2: The left plots show on-line rewards of DQfD with some losses removed on the games of Montezuma’s Revenge and
Q-Bert. Removing either loss degrades the performance of the algorithm. The right plots compare DQfD with three algorithms
from the related work section. The other approaches do not perform as well as DQfD, particularly on Montezuma’s Revenge.

Game DQfD Prev. Best Algorithm
Alien 4745.9 4461.4 Dueling DQN (Wang et al. 2016)
Asteroids 3796.4 2869.3 PopArt (van Hasselt et al. 2016)
Atlantis 920213.9 395762.0 Prior. Dueling DQN (Wang et al. 2016)
Battle Zone 41971.7 37150.0 Dueling DQN (Wang et al. 2016)
Gravitar 1693.2 859.1 DQN+PixelCNN (Ostrovski et al. 2017)
Hero 105929.4 23037.7 Prioritized DQN (Schaul et al. 2016)
Montezuma Revenge 4739.6 3705.5 DQN+CTS (Ostrovski et al. 2017)
Pitfall 50.8 0.0 Prior. Dueling DQN (Wang et al. 2016)
Private Eye 40908.2 15806.5 DQN+PixelCNN (Ostrovski et al. 2017)
Q-Bert 21792.7 19220.3 Dueling DQN (Wang et al. 2016)
Up N Down 82555.0 44939.6 Dueling DQN (Wang et al. 2016)

Table 1: Scores for the 11 games where DQfD achieves
higher scores than any previously published deep RL re-
sult using random no-op starts. Previous results take the best
agent at its best iteration and evaluate it for 100 episodes.
DQfD scores are the best 3 million step window averaged
over four seeds, which is 508 episodes on average.

Figure 2 shows comparisons of DQfD with λ1 and λ2

set to 0, on two games where DQfD achieved state-of-the-
art results: Montezuma’s Revenge and Q-Bert. As expected,
pre-training without any supervised loss results in a network
trained towards ungrounded Q-learning targets and the agent
starts with much lower performance and is slower to im-
prove. Removing the n-step TD loss has nearly as large an
impact on initial performance, as the n-step TD loss greatly
helps in learning from the limited demonstration dataset.

The right subplots in Figure 2 compare DQfD with

three related algorithms for leveraging demonstration data
in DQN:
• Replay Buffer Spiking (RBS) (Lipton et al. 2016)
• Human Experience Replay (HER) (Hosu and Rebedea

2016)
• Accelerated DQN with Expert Trajectories (ADET) (Lak-

shminarayanan, Ozair, and Bengio 2016)
RBS is simply PDD DQN with the replay buffer initially full
of demonstration data. HER keeps the demonstration data
and mixes demonstration and agent data in each mini-batch.
ADET is essentially DQfD with the large margin supervised
loss replaced with a cross-entropy loss. The results show that
all three of these approaches are worse than DQfD in both
games. Having a supervised loss is critical to good perfor-
mance, as both DQfD and ADET perform much better than
the other two algorithms. All the algorithms use the exact
same demonstration data used for DQfD. We included the
prioritized replay mechanism and the n-step returns in all of
these algorithms to make them as strong a comparison as
possible.

Discussion

The learning framework that we have presented in this paper
is one that is very common in real world problems such as
controlling data centers, autonomous vehicles (Hester and
Stone 2013), or recommendation systems (Shani, Hecker-
man, and Brafman 2005). In these problems, typically there
is no accurate simulator available, and learning must be per-
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formed on the real system with real consequences. However,
there is often data available of the system being operated by
a previous controller. We have presented a new algorithm
called DQfD that takes advantage of this data to acceler-
ate learning on the real system. It first pre-trains solely on
demonstration data, using a combination of 1-step TD, n-
step TD, supervised, and regularization losses so that it has
a reasonable policy that is a good starting point for learning
in the task. Once it starts interacting with the task, it contin-
ues learning by sampling from both its self-generated data
as well as the demonstration data. The ratio of both types
of data in each mini-batch is automatically controlled by a
prioritized-replay mechanism.

We have shown that DQfD gets a large boost in initial per-
formance compared to PDD DQN. DQfD has better perfor-
mance on the first million steps than PDD DQN on 41 of 42
Atari games, and on average it takes DQN 82 million steps
to match DQfD’s performance. On most real world tasks,
an agent may never get hundreds of millions of steps from
which to learn. We also showed that DQfD out-performs
three other algorithms for leveraging demonstration data in
RL. The fact that DQfD out-performs all these algorithms
makes it clear that it is the better choice for any real-world
application of RL where this type of demonstration data is
available.

In addition to its early performance boost, DQfD is able
to leverage the human demonstrations to achieve state-of-
the-art results on 11 Atari games. Many of these games are
the hardest exploration games (i.e. Montezuma’s Revenge,
Pitfall, Private Eye) where the demonstration data can be
used in place of smarter exploration. This result enables the
deployment of RL to problems where more intelligent ex-
ploration would otherwise be required.

DQfD achieves these results despite having a very small
amount of demonstration data (5,574 to 75,472 transitions
per game) that can be easily generated in just a few minutes
of gameplay. DQN and DQfD receive three orders of magni-
tude more interaction data for RL than demonstration data.
DQfD demonstrates the gains that can be achieved by adding
just a small amount of demonstration data with the right
algorithm. As the related work comparison shows, naively
adding (e.g. only pre-training or filling the replay buffer) this
small amount of data to a pure deep RL algorithm does not
provide similar benefit and can sometimes be detrimental.

These results may seem obvious given that DQfD has ac-
cess to privileged data, but the rewards and demonstrations
are mathematically dissimilar training signals, and naive ap-
proaches to combining them can have disastrous results.
Simply doing supervised learning on the human demonstra-
tions is not successful, while DQfD learns to out-perform
the best demonstration in 14 of 42 games. DQfD also out-
performs three prior algorithms for incorporating demon-
stration data into DQN. We argue that the combination of
all four losses during pre-training is critical for the agent
to learn a coherent representation that is not destroyed by
the switch in training signals after pre-training. Even after
pre-training, the agent must continue using the expert data.
In particular, the right sub-figure of Figure 1 shows that the
ratio of expert data needed (selected by prioritized replay)

grows during the interaction phase for the most difficult
exploration games, where the demonstration data becomes
more useful as the agent reaches new screens in the game.
RBS shows an example where just having the demonstration
data initially is not enough to provide good performance.

Learning from human demonstrations is particularly diffi-
cult. In most games, imitation learning is unable to perfectly
classify the demonstrator’s actions even on the demonstra-
tion dataset. Humans may play the games in a way that dif-
fers greatly from a policy that an agent would learn, and may
be using information that is not available in the agent’s state
representation. In future work, we plan to measure these dif-
ferences between demonstration and agent data to inform
approaches that derive more value from the demonstrations.
Another future direction is to apply these concepts to do-
mains with continuous actions, where the classification loss
becomes a regression loss.
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