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Abstract

We study an important yet under-addressed problem of
quickly and safely improving policies in online reinforce-
ment learning domains. As its solution, we propose a novel
exploration strategy - diverse exploration (DE), which learns
and deploys a diverse set of safe policies to explore the envi-
ronment. We provide DE theory explaining why diversity in
behavior policies enables effective exploration without sacri-
ficing exploitation. Our empirical study shows that an online
policy improvement algorithm framework implementing the
DE strategy can achieve both fast policy improvement and
safe online performance.

Introduction

Recent advances in autonomy technology have promoted the
widespread emergence of autonomous agents in various do-
mains such as autonomous vehicles, online marketing, and
financial management. Common to all of these domains is
the requirement to quickly improve from the current pol-
icy/strategy in use while ensuring safe operations. We call
this requirement the Fast and Safe (policy) Improvement
(FSI) problem. On one hand, fast policy improvement de-
mands that an agent acquire a better policy quickly (i.e,
through fewer interactions with the environment). On the
other hand, a new policy to be deployed needs to be safe
- guaranteed to perform at least as well as a baseline pol-
icy (e.g., the current policy). Untested policies and/or unre-
stricted exploratory actions that potentially cause degener-
ated performance are not acceptable.

Reinforcement Learning (RL) (Sutton and Barto 1998)
has great potential in enabling robust autonomous agents
that learn and optimize from new experiences. The explo-
ration/exploitation problem is a well studied RL problem.
Past research has focused mainly on learning an optimal or
near-optimal policy, instead of the FSI problem. Conven-
tional exploration strategies do not provide a suitable trade-
off between exploitation and exploration to achieve both fast
and safe policy improvement. They make potentially sub-
optimal and unsafe exploratory action choices (either blindly
like ε-greedy (Sutton and Barto 1998) or intentionally to
reduce uncertainty like R-MAX (Brafman and Tennenholtz

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2003)) at the “state” level, and achieve exploration by “devi-
ating” from the best policy according to current knowledge.

In this work, we take a radically different approach to
exploration by performing exploration over the space of
stochastic policies. We propose Diverse Exploration (DE)
which learns and deploys a diverse set of safe policies to ex-
plore the environment. Following the insight that in almost
all cases, there exist different safe policies with similar per-
formance for complex problems, DE makes exploratory de-
cisions at the “policy” level, and achieves exploration at little
to no sacrifice to performance by searching policy space and
“exploiting” multiple diverse policies that are safe according
to current knowledge.

The main contributions of this paper are four-fold. First,
it formally defines the FSI problem. Second, it proposes a
new exploration strategy DE as a solution. Third, it provides
DE theory which shows how diversity in behavior policies
in one iteration promotes diversity in subsequent iterations,
enabling effective exploration under uncertainty in the space
of safe policies. Finally, it proposes a general algorithmic
framework for DE. The framework iteratively learns a di-
verse set of policies from a single batch of experience data
and evaluates their quality through off-policy evaluation by
importance sampling before deploying them. We compare
this to a baseline algorithm, referred to as SPI (safe policy
improvement), which follows the same framework but only
learns and deploys a single safe policy at every iteration. Ex-
periments on three domains show that the DE framework can
achieve both safe performance and fast policy improvement.

Preliminaries

RL problems can be elegantly described within the context
of Markov Decision Processes (MDP) (Puterman 2009). An
MDP, M , is defined as a 5-tuple, M = (S,A, P,R, γ),
where S is a fully observable finite set of states, A is a finite
set of possible actions, P is the state transition model such
that P (s′|s, a) ∈ [0, 1] describes the probability of transi-
tioning to state s′ after taking action a in state s, Ra

s,s′ is the
expected value of the immediate reward r after taking a in s,
resulting in s′, and γ ∈ (0, 1) is the discount factor on future
rewards. A solution to an MDP is a policy, π(a|s) which
provides the probability of taking action a in state s when
following policy π. The quality or performance of a policy
is determined by the expected value that can be obtained by
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following it from any given state. In RL scenarios P and R
are unknown and π must be learned from experiences that
take the form of samples. Experience samples are single-
step observations of transitions from the domain. They are
represented by tuples, (st, at, rt+1, st+1), which consist of
a state st, an action at, the next state st+1, and the immedi-
ate reward rt+1. A trajectory of length T is an ordered set of
transitions: τ = {s0, a0, r1, s1, a1, r2, ..., sT−1, aT−1, rT }.

It is a challenging problem to estimate the perfor-
mance of a policy without deploying it. To address
this challenge the authors of (Thomas, Theocharous, and
Ghavamzadeh 2015a) proposed high-confidence off-policy
evaluation (HCOPE) methods which lower-bound the per-
formance of a target policy, πp, based on a set of trajectories,
D, generated by some behavior policy (or policies), πq . In
their work, the (normalized and discounted) return of a tra-
jectory is defined as: R(τ) = ((

∑T
t=1 γ

t−1rt)−R )/(R+−
R ) ∈ [0, 1], where R+ and R are upper and lower bounds
on

∑T
t=1 γ

t−1rt.
HCOPE applies importance sampling (Precup, Sutton,

and Singh 2000) to produce an unbiased estimator of
ρ(πp) from a trajectory generated by a behavior pol-
icy, πq . The estimator is called the importance weighted
return, ρ̂(πp|τ, πq), and is given by: ρ̂(πp|τ, πq) =
R(τ)w(τ, πp, πq), where w(τ, πp, πq) is the importance
weight: w(τ, πp, πq) =

∏T
t=1

πp(at|st)
πq(at|st) . Based on a set of

importance weighted returns, HCOPE provides a high con-
fidence lower bound for ρ(πp). Let X1, ..., Xn be n random
variables, which are independent and all have the same ex-
pected value, μ = E[Xi]. HCOPE considers ρ̂(πp|τi, πi) as
Xi, and so μ = ρ(πp).

One difficulty with this approach is importance weighted
returns often come from distributions with heavy upper
tails, which makes it challenging to estimate confidence in-
tervals based on samples. In (Thomas, Theocharous, and
Ghavamzadeh 2015b) the authors studied the effectiveness
of three methods; concentration inequality, Student’s t-test,
and bootstrap confidence interval. We adopt the t-test due to
its good performance and computational efficiency. Under
mild assumptions of the central limit theorem, the distribu-
tion of the sample mean approximates a normal distribution,
and it is appropriate to use a one-sided Student’s t-test to get
a 1−δ confidence lower bound on the performance of a pol-
icy. In (Thomas, Theocharous, and Ghavamzadeh 2015b),
policies deemed safe by the t-test are called semi-safe since
the estimate is based on possibly false assumptions.

Rationale for Diverse Exploration

Problem Formulation

Definition 1. Consider an RL problem with an initial pol-
icy, π0, a lower bound, ρ , on policy performance, and
a confidence level, δ(0 < δ < 1/2), all specified by
a user. Let π1, ..., πd be d(d ≥ 1) iterations of behav-
ior policies and ρ(πi) be the performance (expected re-
turn) of πi. Fast and Safe Improvement (FSI) aims at:
max(ρ(πd) − ρ(π0)) subject to ∀i = 1, ..., d, ρ(πi) ≥
ρ , with probability at least (1− δ) per iteration.

FSI requires that in each iteration of policy improvement,
a behavior policy (the policy that gets deployed) πi’s ex-
pected return is no worse than a bound ρ , with probabil-
ity at least 1 − δ. We call such a policy πi a safe policy.
Both δ and ρ can be adjusted by the user to specify how
much risk is reasonable for the application at hand. ρ can
be the performance of π0 or πi−1. Furthermore, FSI aims at
maximally improving the behavior policy within a limited
number of policy improvement iterations. This objective is
what distinguishes FSI from the safe policy improvement
(SPI) problem that enforces only the safety constraint on
behavior policies (Petrik, Ghavamzadeh, and Chow 2016;
Thomas, Theocharous, and Ghavamzadeh 2015b).

To achieve exploration within the safety constraint, one
could resort to a stochastic safe policy. However, this is of-
ten ineffective for fast improvement because the randomness
of the policy and hence the exploratory capacity must be
limited in order to achieve good performance. Alternatively,
we propose DE which strives for behavior diversity and per-
forms exploration in the space of stochastic policies.

Advantage of DE Over SPI Solutions

DE can be thought of as a generalized version of any solu-
tion to the SPI problem. DE learns and deploys a diverse set
of safe policies instead of a single safe policy (as is typi-
cal in SPI) during each policy improvement iteration. The
high confidence policy improvement method in (Thomas,
Theocharous, and Ghavamzadeh 2015b) is an SPI method
that applies HCOPE (reviewed earlier) to provide lower
bounds on policy performance. For simplicity, from here on
we use SPI to refer to a solution to the SPI problem that uses
this safety model. The safety guarantees in HCOPE are the
result of importance sampling based estimates. A problem
with SPI, which has not been previously discussed in the
literature, stems from a property of importance sampling:
data from a single behavior policy can result in very differ-
ent variances in the estimates for different candidate policies
that SPI evaluates for safety. Specifically, variance will be
low for policies that are similar to the behavior policy. Thus,
deploying a single behavior policy results in an implicit bias
(in the form of a lower variance estimate, and hence a better
chance of confirming as a safe policy) towards a particular
region of policy space with policies similar to the deployed
policy. This does not allow SPI to fully explore the space of
policies which may obstruct fast policy improvement.

To overcome this limitation of SPI and address the FSI
challenge, we need to generate sufficient exploration while
maintaining safety. Our DE solution achieves exactly this.
The DE theory later shows why deploying a population of
safe policies achieves better exploration than a single safe
policy. Informally, in the context of HCOPE by importance
sampling, when diverse behavior policies are deployed (i.e.,
by multiple importance sampling) DE leads to uniformity
among the variances of estimators, which gives an equal
chance of passing the safety test to different candidate poli-
cies/target distributions. Such uniformity in turn promotes
diversity in the behavior policies in subsequent iterations.
While iteratively doing so, DE also maintains the average
of the variances of estimators (i.e., maintaining utility of the
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Figure 1: A motivating example for : (a) A 4× 4 grid-world
with five possible actions (↗, ↑,→, ↓,←); optimal actions
for each state labeled in the upper left corner; an example
of two policies (red and blue) of similar quality but differ-
ent actions at 9 states. (b) A partial view of the distribution
of pair-wise diversity (i.e., no. of states two policies differ)
across a range of policy quality (i.e., total extra steps to Goal
than optimal over all states).

current data for confirming the next round of candidates). In
contrast, SPI deploys only one reliable policy among avail-
able ones (i.e., by single importance sampling), and gives a
heavily biased chance towards the policy that is most simi-
lar to the behavior policy, which leads to a limited update to
the data. These theoretical insights are consistent with our
intuition that for a population, diversity promotes diversity,
while homogeneity tends to stay homogeneous.

Environments with Diverse Safe Policies

We now show that the behavior diversity needed to realize
the synergistic circle of diversity to diversity naturally ex-
ists. Consider a 4 × 4 grid-world environment in Figure 1
(a). The goal of an agent is to move from the initial (bottom
left) state to the terminal (top right) state in the fewest steps.
Immediate rewards are always -1. Compared to the standard
grid-world problem, we introduce an additional diagonal up-
right action to each state that significantly increases the size
of the policy search space and also serves to expand and
thicken the spectrum of policy quality. From a deterministic
point of view, in the standard grid-world, there are a total
of 29 optimal policies (which take either up or right in the
9 states outside of the topmost row and rightmost column).
All of these policies become sub-optimal at different levels
of quality in this extension.

As shown in Figure 1 (a), two policies of similar quality
can differ greatly in action choices due to: (1) they take dif-
ferent but equally good actions at the same state; and (2) they
take sub-optimal actions at different states. As a result, there
exists significant diversity among policies of similar quality
within any small window in the spectrum of policy qual-
ity. This effect is demonstrated by Figure 1 (b). To manage
the space of enumeration, we limit the policies considered
in this illustration to the 59 policies that take the diagonal,
up, left, down, or right action in the 9 states outside of the
topmost row and rightmost column and take the optimal ac-
tion in other states. The quality of a policy is measured in

terms of the total extra steps to Goal starting from each state,
compared to the total steps to Goal by an optimal policy.
Besides the existence of significant diversity, another inter-
esting observation from Figure 1 (b) is that as policy quality
approaches optimal (extra steps approaches 0), both the total
number of policies at a given quality level and the diversity
among them decrease.

In domains with large state and action spaces and com-
plex dynamics, it is reasonable to expect some degree of di-
versity among safe policies at various levels of quality and
the existence of multiple exploratory paths for policy im-
provement. It is worth noting that in simple domains1 where
there is significant homogeneity in the solution paths of bet-
ter policies towards an optimal solution, DE will not be very
effective due to limited diversity in sub-optimal policies. In
complex domains, the advantage from exploiting diversity
among safe policies can also diminish as the quality of safe
policies approaches near optimal. Nevertheless, DE will not
lose to a safe policy improvement algorithm when there is
little diversity to explore, since it will follow the safe algo-
rithm by default. When there is substantial diversity to ex-
ploit, our DE theory in the next section formally explains
why it is beneficial to do so.

Theory on Diverse Exploration

This section provides justification for how deploying a di-
verse set of behavior policies, when available, improves uni-
formity among the variances of policy performance esti-
mates, while maintaining the average of the variances of es-
timators. This theory section does not address how to effec-
tively identify diverse safe policies.

Importance sampling aims to approximate the expectation
of a random variable X with a target density p(x) on D by
sampling from a proposal density q(x).

μ = Ep[X] =

∫
D

f(x)p(x)dx =

∫
D

f(x)p(x)
q(x)

q(x)
dx

= Eq[
f(x)p(x)

q(x)
] (1)

Let {p1, p2, . ., pr} be a set of r ≥ 2 target distributions
and {q1, q2, . ., qm} a set of m ≥ 2 proposal distributions
(which correspond to candidate policies, πp, and behavior
policies, πq , in the RL setting, respectively). Note this prob-
lem setting is different from traditional single or multiple
importance sampling because we consider multiple target
distributions (r ≥ 2). All target and proposal distributions
are assumed distinct. For 1 ≤ j ≤ r, 1 ≤ t ≤ m, 1 ≤
i ≤ n, n > m, Xj,t,i =

pj(xi)f(xi)
qt(xi)

is the importance sam-
pling estimator for the j’th target distribution using the i’th
sample generated by the t’th proposal distribution.

The sample mean of Xj,t,i is

μj,t =
1

n

n∑
i=1

Xj,t,i (2)

1For example, a Markov chain domain with two actions (left or
right), and the goal state is at one end of the chain.
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Then, the variance of μj,t is

var(μj,t) = var(
1

n

n∑
i=1

Xj,t,i) =
var(Xj,t,i)

n

where var(Xj,t,i) < ∞ (3)

In the context of multiple importance sampling, the sam-
ple mean of Xj,t,i, 1 ≤ t ≤ m is defined as

μj,k =
1

n

m∑
t=1

kt∑
i=1

Xj,t,i

where k = (k1, k2, . ., km), kt ≥ 0
m∑
t=1

kt = n. (4)

The vector k describes how a total of n samples are se-
lected from the m proposal distributions. kt is the number
of samples drawn from proposal distribution qt(x). The sec-
ond subscript of the estimator μ has been overloaded with
the vector k to indicate that the collection of n samples has
been distributed over the m proposal distributions. There
are special vectors of the form k = (0, . ., n, . ., 0) where
kt = n, kl = 0 ∀ l �= t, which correspond to single im-
portance sampling. We denote these special vectors as k(t)

where 1 ≤ t ≤ m. When k = k(t), μj,k reduces to μj,t

because all n samples are collected from the t’th proposal
distribution.

μj,k has variance

var(μj,k) = var(
1

n

m∑
t=1

kt∑
i=1

Xj,t,i) =
1

n2

m∑
t=1

ktvar(Xj,t,i)

(5)

When k = k(t), var(μj,k) reduces to var(μj,t).
Given the FSI problem, we are interested in promoting

uniformity of variances (i.e., reducing variance of variances)
across estimators for an unknown set of target distributions
(candidate policies). This brings us to the following con-
strained optimization problem:

k∗ = arg mink
1

r

r∑
j=1

|var(μj,k)− 1

r

r∑
j=1

var(μj,k)|

subject to k∗ = (k∗1 , k
∗
2 , . ., k

∗
m), k∗t ≥ 0

m∑
t=1

k∗t = n (6)

where k∗ is an optimal way to distribute n samples over
m proposal distributions such that the variances of the es-
timates are most similar (i.e., the average distance between
var(μj,k) and their mean be minimized). If the set of target
distributions and the set of proposal distributions are both
known in advance, computing k∗ can be solved analytically.
However, in the FSI context, the set of promising candidate
target distributions to be estimated and evaluated by a safety
test are unknown before the collection of a total of n sam-
ples from the set of available proposal distributions which
are already confirmed by the safety test in the past policy

improvement iteration. Under such uncertainty, it is infea-
sible to make an optimal decision on the sample size for
each available proposal distribution according to the objec-
tive function in Equation (6). Given the objective is convex,
the quality of a solution vector k depends on its distance to
an unknown optimal vector k∗. The closer the distance, the
better uniformity of variances it produces. Lemma 1 below
provides a tight upper bound on the distance from a given
vector k to any possible solution to the objective in Equa-
tion (6).
Lemma 1. Given any vector k = (k1, k2, . ., km) such that
kt ≥ 0,

∑m
t=1 kt = n. Let kmin = kt where kt ≤ ki ∀ i �=

t. Then

maxy||y − k||L1 = 2n− 2kmin ,

where y = (y1, y2, . ., ym), yt ≥ 0,

m∑
t=1

yt = n. (7)

In any given iteration of policy improvement, the SPI ap-
proach (Thomas, Theocharous, and Ghavamzadeh 2015b)
simply picks one of the available proposal distributions and
uses it to generate the entire set of n samples. That is, SPI
selects with equal probability from the set of special vectors
k(t). The effectiveness of SPI with respect to the objective in
Equation (6) depends on the expectation E[||k(t) − k∗||L1 ]
where the expectation is taken over the set of special vectors
k(t) with equal probability. DE, a better, and optimal under
uncertainty of target distributions, approach based on mul-
tiple importance sampling, samples according to the vector
kDE = ( n

m , n
m , . ., n

m ).
Theorem 1. With respect to the objective in Equation (6),
(i) the solution vector kDE is worst case optimal; and

(ii) 0 ≤ ||kDE − k∗||L1
≤ E[||k(t) − k∗||L1

] = 2n− 2
n

m

(8)

where the expectation is over all special vectors k(t).

Proof. (Sketch):
(i) 0 ≤ kmin ≤ n

m can be shown by a straightforward
pigeonhole argument. In addition, from Lemma 1, smaller
kmin gives larger upper bound. Since kDE has the largest
value of kmin = n

m , kDE is worst case optimal and

0 ≤ ||kDE − k∗||L1
≤ 2n− 2

n

m
. (9)

(ii) Follows by evaluating

E[||k(t)−k∗||L1 ] =
1

m

m∑
t=1

||k(t)−k∗||L1 = 2n−2
n

m

(10)

Theorem 1 part (i) states that the particular multiple im-
portance sampling solution kDE which equally allocates
samples to the m proposal distributions has the best worse
case performance (i.e., the smallest tight upper bound on the
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distance to an optimal solution). Additionally, any single im-
portance sampling solution k(t) has the worst upper bound.
Any multiple importance sampling solution vector k with
kt > 0 ∀ t has better worst case performance than k(t). Part
(ii) states that the expectation of the distance between sin-
gle importance sampling solutions and an optimal k∗ upper
bounds the distance between kDE and k∗. Together, Theo-
rem 1 shows that kDE achieves in the worst case optimal
uniformity among variances across estimators for a set of r
target distributions and greater or equal uniformity with re-
spect to the average case of k(t).

Theorem 2. The average variance across estimators for the
r target distributions produced by kDE equals the expected
average variance produced by the SPI approach. That is,

1

r

r∑
j=1

var(μj,kDE ) = E[
1

r

r∑
j=1

var(μj,k(t))] (11)

where the expectation is over special vectors k(t).

Proof. (Sketch): It follows from rearranging the following
equation:

1

r

r∑
j=1

var(μj,kDE ) =
1

r

r∑
j=1

1

n2

m∑
t=1

n

m
var(Xj,t,i) (12)

In combination, Theorems 1 and 2 show that DE achieves
better uniformity among the variances of the r estimators
than SPI while maintaining the average variance of the sys-
tem. Although DE may not provide an optimal solution, it
is a robust approach. Its particular choice of equal allocation
of samples is guaranteed to outperform the expected perfor-
mance of SPI. This leads to the design of our DE algorithm
framework in the next section.

Diverse Exploration Algorithm Framework

Algorithm 1 provides the overall DE framework. In each
policy improvement iteration, it deploys the most recently
confirmed set of policies P to collect n trajectories as uni-
formly distributed over the πi ∈ P as possible. That is, if
|P| = m, according to kDE = ( n

m , . ., n
m ). For each trajec-

tory, it maintains a label with the πi which generated it in
order to track which policy is the behavior policy for impor-
tance sampling later on. For each set of trajectories Di col-
lected from πi, partition Di and append to Dtrain and Dtest

accordingly. Then, from Dtrain a set of candidate policies
is generated in line 8 after which each is evaluated in line 9
using Dtest. If any subset of policies are confirmed they be-
come the new set of policies to deploy in the next iteration.
If no new policies are confirmed, the current set of policies
are redeployed.

In choosing a lower bound ρ for each iteration, the
EvalPolicies function performs a t-test on the normalized
returns of Dtest without importance sampling. It treats the
set of deployed policies as a mixture policy that generated
Dtest. In this way, ρ reflects the performance of the past

Algorithm 1 DIVERSEEXPLORATION(π0 ,r, d, n, δ)
Input: π0: starting policy, r: number of candidates to gen-
erate, d: number of iterations of policy improvement, n:
number of trajectories to collect per iteration, δ: confi-
dence

1: P ← {π0}
2: Dtrain, Dtest = ∅
3: for j = 1 to d do
4: for πi ∈ P do
5: Generate n

|P| trajectories from πi and append a
fixed portion to Dtrain and the rest to Dtest

6: end for
7: ρ = t-test(Dtest, δ, |Dtest|)
8: {π1, . ., πr} = GenCandidatePolicies(Dtrain, r)
9: passed = EvalPolicies({π1, . ., πr},Dtest, δ, ρ )

10: if |passed| > 0 then
11: P = passed
12: end if
13: end for

policies, and naturally increases per iteration as deployed
policies improve and |Dtest| increases.

We assume a set of trajectories Dtrain has been col-
lected by deploying an initial policy π0. The question re-
mains how to learn a set of diverse and good policies which
requires a good balance between the diversity and qual-
ity of the resulting policies. Inspired by ensemble learn-
ing (Dietterich 2001), our approach learns an ensemble
of policy or value functions from Dtrain. The function
GenCandidatePolicies can employ any batch RL algo-
rithm such as a direct policy search algorithm as in (Thomas,
Theocharous, and Ghavamzadeh 2015b) or a fitted value it-
eration algorithm like Fitted Q-Iteration (FQI) (Ernst et al.
2005). A general procedure for GenCandidatePolicies is
given in Algorithm 2.

Algorithm 2 GENCANDIDATEPOLICIES(Dtrain,r)
Input: Dtrain: set of training trajectories, r: number of can-
didates to generate
Output: set of r candidate policies

1: C = ∅
2: π1 = LearnPolicy(Dtrain)
3: C ← append(C, π1)
4: for i = 2 to r do
5: D′ = bootstrap(Dtrain)
6: πi = LearnPolicy(D′)
7: C ← append(C, πi)
8: end for
9: return C

In this paper, we employ a bootstrapping (sampling with
replacement) method with an additional subtlety which fits
naturally with the fact that trajectories are collected incre-
mentally from different policies. Our intention is to maintain
the diversity in the resulting trajectories in each bootstrapped
subset of data. With traditional bootstrapping over the entire
training set, it is possible to get unlucky and select a batch of
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trajectories that do not represent policies from each iteration
of policy improvement. To avoid this, we bootstrap within
trajectories collected per iteration. Training on a subset of
trajectories from the original training set Dtrain may sacri-
fice the quality of the candidate policies for diversity, when
the size of Dtrain is small as at the beginning of policy im-
provement iterations. Thus, the first policy added to the set
of candidate policies is trained on the full Dtrain, and the
rest are trained on bootstrapped data.

There is potential for the application of more sophisti-
cated ensemble ideas. For example, one could perform an
ensemble selection procedure to maximize diversity in a
subset of member policies based on some diversity measure
(e.g., pairwise KL divergence between member policies). In
this paper, our emphasis is on the feasibility and effective-
ness of the basic idea of DE, so we opt for the basic boot-
strapping approach.

Although the proposed procedure has some similarity to
ensemble learning, it is distinct in how the individual mod-
els are used. Ensemble learning aggregates the ensemble of
models into one, while our procedure will validate each de-
rived policy and deploy the confirmed ones independently
to explore the environment. As a result, only the experience
data from these diverse behavior policies are assembled for
the next round of policy learning.

To validate candidate policies, we need a set of trajec-
tories independent from the trajectories used to generate
candidate policies. So, we maintain separate training and
test sets Dtrain, Dtest by partitioning the trajectories col-
lected from each behavior policy πi based on a predeter-
mined ratio (1/5, 4/5) and appending to Dtrain and Dtest.
GenCandidatePolicies uses only Dtrain whereas valida-
tion in EvalPolicies uses only Dtest.

Specifically, EvalPolicies uses the HCOPE method (de-
scribed earlier) to obtain a lower bound ρ on policy perfor-
mance with confidence 1 − δ. However, since it performs
testing on multiple candidate policies, it also applies the
Benjamini Hochberg procedure (Benjamini and Hochberg
1995) to control the false discovery rate in multiple testing.
A general procedure for EvalPolicies is outlined in Algo-
rithm 3.

Algorithm 3 EVALPOLICIES(C ,Dtest ,δ,ρ)
Input: C: set of candidate policies, Dtest: set of test trajec-
tories, δ: confidence, ρ: lower bound
Output: passed: candidates that pass

1: Apply HCOPE t-test ∀ πi ∈ C with Dtest, δ, |Dtest|
2: passed = {πi| πi deemed safe following FDR control}
3: return passed

Relationship to Baseline Algorithm

Algorithm 3 reduces to the baseline algorithm SPI when the
number of candidate policies to generate, r, is set to 1. In
this case, GenCandidatePolicies simply returns one pol-
icy π1 trained on the full trajectory set. The multiple com-
parison procedure in EvalCandidatePolicies degenerates

to a single t-test on importance weighted returns. The tra-
jectory collection phase in DiverseExploration becomes
a collection of n trajectories from one policy.

In implementation, this baseline algorithm is most sim-
ilar to the Daedalus2 algorithm proposed in (Thomas,
Theocharous, and Ghavamzadeh 2015b) (reviewed earlier)
with some technical differences. For example, the lower
bound ρ is fixed for each iteration of policy improvement
whereas in our algorithm, ρ increases over iterations.

Empirical Study
In this section, we present an empirical analysis of DE to
evaluate its diversity, safety, and overall effectiveness in on-
line learning settings. As a baseline, we use SPI which, like
DE, provides a feasible solution to the FSI problem, mak-
ing a more suitable candidate for comparison than either ε-
greedy or R-MAX like approaches. Comparing DE with SPI
allows us to directly contrast multiple importance sampling
vs. single importance sampling.

We use three RL benchmark domains in our analysis:
an extended Grid World as described earlier and the clas-
sic control domains of Mountain Car and Acrobot (Sutton
and Barto 1998). To demonstrate the generality of the DE
framework we use two markedly different RL algorithms
for learning policies. In Grid World we use Covariance Ma-
trix Adaptation, Evolution Strategies (CMA-ES) (Hansen
2006), a gradient-free policy search algorithm that directly
maximizes the importance sampled estimate as the objective
as in (Thomas, Theocharous, and Ghavamzadeh 2015b). In
Mountain Car and Acrobot, we use FQI, an off-policy value
approximation algorithm, with Fourier basis functions of or-
der 3 (Konidaris, Osentoski, and Thomas 2011) for func-
tion approximation. Following (Thomas, Theocharous, and
Ghavamzadeh 2015b), we set δ = .05 for all experiments.

Candidate policies are generated as mixed policies,
as in (Thomas, Theocharous, and Ghavamzadeh 2015b)
and (Jiang and Li 2016), to control how different a candidate
policy can be from a prior behavior policy. A mixed policy
μα,π0,π is defined as a mixture of policies π0 and π by mix-
ing parameter α ∈ [0, 1]: μα,π0,π(a|s) := (1 − α)π(a|s) +
απ0(a|s). A larger α tends to make policy confirmation eas-
ier, at the cost of yielding a more conservative candidate pol-
icy and reducing the diversity in the confirmed policies. In
experiments, we use α = .3 for Gridworld and α = .9 for
Mountain Car/Acrobot. For Mountain Car and Acrobot, we
need a high value of α because FQI does not directly maxi-
mize the importance sampled estimate objective function as
with CMA-ES used for Gridworld. With smaller values of
α, DE still outperforms SPI but requires significantly more
iterations.

To measure how DE contributes to the diversity of the ex-
periences collected, we use the joint entropy measure which
is calculated over the joint distribution over states and ac-
tions. Higher entropy (uncertainty) means higher diversity
in experienced (s,a) pairs, which reflects more effective ex-
ploration to reduce the uncertainty in the environment.

Figure 2 shows the results comparing DE with SPI on
Grid World. We can see that DE succeeds in our FSI ob-
jective of learning more quickly and reliably than SPI does.
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Figure 2: (a) Average normalized returns over 50 runs of
policy improvement (b) Diversity in experienced (s, a) pairs

Domain SPI DE
Grid World 604.970 675.562
Mountain Car 362.038 381.333
Acrobot 417.145 430.146

Table 1: Average aggregate normalized returns. Bold results
are significant improvements (p ≤ .001)

DEs deployed policies obtain a higher average return from
iteration 7 onward and ultimately achieve a higher return of
.73 compared to .65 from SPI. To be clear, each point in
the two curves shown in Figure 2 (a) represents the aver-
age (over 50 runs) of the average normalized return of a
total of n = 40 trajectories collected during a policy im-
provement iteration. To test the significance of the results
we ran a two-sided paired t-test at each iteration and found
p < .001. Further, Figure 2 (b) clearly shows that DE is
superior in terms of the joint-entropy of the collected sam-
ple distribution, meaning DE collects more diverse samples.
We attribute DE’s advantage in overall performance to the
significant increase in sample diversity.

Ideally, an FSI solution will derive and confirm an optimal
policy π∗ in as few iterations as possible, although determin-
ing if a given policy is optimal can be difficult in complex
domains. In Grid World, this is not a difficulty as there are 64
distinct optimal policies π∗. For these experiments we com-
puted the average number of iterations required to confirm
at least one π∗. DE achieved this after 16 iterations whereas
SPI achieved this after 22 iterations. This translates to a 240
trajectory difference on average in favor of DE. Addition-
ally, DE was able to confirm an optimal policy in all 50 runs
whereas SPI was unsuccessful in 5 runs.

For conciseness of presentation, Table 1 shows the perfor-
mance results of the two methods over all three domains in
the form of average aggregate normalized return. This statis-
tic corresponds to the area under the curve for performance
curves as shown in Figure 2 (a). Higher values indicate faster
policy improvement and more effective learning. The results
show that DE succeeds in learning and deploying better per-
forming policies more quickly than SPI.

Finally, to evaluate the safety of deployed policies we also
compute the empirical error rates (the probability that a pol-
icy was incorrectly declared safe). In all experiments the em-
pirical error for DE is well below the 5% threshold. Com-

bined these results demonstrate that DE can learn faster and
more effectively than SPI without sacrificing safety.

Related Work

Some recent studies on safe exploration (Garcia and Fer-
nandez 2012; Moldovan and Abbeel 2012; Turchetta,
Berkenkamp, and Krause 2016; Achiam et al. 2017; Lee et
al. 2017) provide safety guarantees during exploration. Their
notion of safety is to avoid unsafe states and actions which
can cause catastrophic failures in safety critical applications.
In contrast, our notion of safety in this paper is defined at
the policy level instead of the state and action level. A safe
policy must perform at least as well as a baseline policy. A
recent work on deep exploration (Osband et al. 2016) al-
luded to a similar idea of exploring the environment through
a diverse set of policies, but it does not address the safety is-
sue. Recent advances in approximate policy iteration have
produced safe policy improvement methods such as con-
servative policy iteration (Kakade and Langford 2002) and
its derivatives (Abbasi-Yadkori, Bartlett, and Wright 2016;
Pirotta et al. 2013), and off-policy methods (Jiang and
Li 2016; Petrik, Ghavamzadeh, and Chow 2016; Thomas,
Theocharous, and Ghavamzadeh 2015b) which decide safe
policies based on samples or model estimates from past be-
havior policies. These methods do not perform active ex-
ploration during policy improvement. Manipulating behav-
ior distributions has been explored but with the objective to
find an optimal behavior policy to use as a proposal policy
for a known target policy (Hanna et al. 2017).

Conclusions and Future Work

We have provided a novel exploration strategy as the solu-
tion to the FSI problem and the DE theory explaining the
advantage of DE over SPI. We have shown that the DE algo-
rithm framework can achieve both safe and fast policy im-
provement and that it significantly outperforms the baseline
SPI algorithm.

We have only studied some special instances of the DE
algorithm under the proposed general framework. It is natu-
ral to incorporate other importance sampling estimators such
as (Jiang and Li 2016; Thomas and Brunskill 2016; Wang,
Agarwal, and Dudik 2017) into the framework. It would be
interesting to see how DE can be integrated with other safe
policy improvement algorithms (Petrik, Ghavamzadeh, and
Chow 2016). Another future direction is to investigate how
to optimally generate diverse policies to fully capitalize on
the benefit of DE as evidenced in this work.
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