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Abstract

Co-clustering computes clusters of data items and the related
features concurrently, and it has been used in many appli-
cations such as community detection, product recommenda-
tion, computer vision, and pricing optimization. In this paper,
we propose a new co-clustering method, called CoDiNMF,
which improves the clustering quality and finds directional
patterns among co-clusters by using multiple directed and
undirected graphs. We design the objective function of co-
clustering by using min-cut criterion combined with an addi-
tional term which controls the sum of net directional flow be-
tween different co-clusters. In addition, we show that a vari-
ant of Nonnegative Matrix Factorization (NMF) can solve the
proposed objective function effectively. We run experiments
on the US patents and BlogCatalog data sets whose ground
truth have been known, and show that CoDiNMF improves
clustering results compared to other co-clustering methods in
terms of average F1 score, Rand index, and adjusted Rand
index (ARI). Finally, we compare CoDiNMF and other co-
clustering methods on the Wikipedia data set of philosophers,
and we can find meaningful directional flow of influence
among co-clusters of philosophers.

Introduction
Clustering is an essential task in unsupervised learning
which finds the inherent relationships and group structures
in the data sets. In particular, co-clustering simultaneously
computes co-clusters which consist of both features and
data items or higher order entities at the same time by ex-
ploiting the dualities. Since co-clustering is effective in an-
alyzing the dyadic or higher-order relationships compared
to the traditional one-way clustering, it has many applica-
tions such as text mining (Dhillon 2001; Dhillon, Mallela,
and Modha 2003), bioinformatics (Cho et al. 2004), prod-
uct recommendation (Vlachos et al. 2014), pricing optimiza-
tion (Zhu, Yang, and He 2015), sense discovery (Chen et al.
2015), and community detection (Rohe, Qin, and Yu 2016).

Dhillon (Dhillon 2001) suggested Spectral Co-clustering
(SCo) to compute co-clusters by using the min-cut prob-
lem of a bipartite graph with documents and words as
parts. Since then, co-clustering has been studied with dif-
ferent ways over the last decades; information theoretic
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co-clustering (Dhillon, Mallela, and Modha 2003), multi-
view co-clustering (Sun et al. 2015), co-clustering based
on spectral approaches (Wu, Benson, and Gleich 2016;
Rohe, Qin, and Yu 2016), co-clustering based on NMF
(Long, Zhang, and Yu 2005; Wang et al. 2011). However,
most of co-clustering methods assume that the connections
between entities are symmetric or undirected, but many in-
teractions in real networks are asymmetric or directed. For
example, the data set of patents and words contains a cita-
tion network among patents, and it can be represented as
a directed and asymmetric graph. For development of phi-
losophy, there are influence flow from one philosopher or
philosophy school to other philosophers or schools respec-
tively, and these relationships can be directed and asymmet-
ric. Rohe et al. recently proposed a spectral co-clustering
method for directed networks, called DI-SIM, which uses
the asymmetric regularized graph Laplacian for directed
graph (Rohe, Qin, and Yu 2016). DI-SIM computes the left
and right singular vectors of regularized graph Laplacian to
generate two lower-dimensional representations for sending
and receiving nodes. Then, by using an asymmetry score, it
discovers the asymmetries in the relationships and describe
the directional communities. However, DI-SIM can only be
applied to the data sets which consist of one kind of entity
distinguished by sending and receiving roles.

In this paper, we propose a new NMF-based co-clustering
method, called CoDiNMF, which computes co-clusters by
using both directed and undirected relationships to improve
co-clustering quality. Especially, CoDiNMF is able to find
directional relationships among co-clusters by controlling
the net directional flow between different co-clusters. In the
later sections, we will derive CoDiNMF, and compare it with
other NMF-based co-clustering in terms of accuracy on the
US patents and BlogCatalog data sets. We will also demon-
strate its ability for finding directional relationships on the
Wikipedia data set of philosophers.

Related Work

In this section, we briefly discuss some of the existing
co-clustering methods in literature including spectral co-
clustering, and NMF based co-clustering.
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Spectral Co-clustering
Let X be the m × n data matrix for the set of features
A = {a1, ..., am} and the set of data items B = {b1, ..., bn}.
For a document data set, A is the set of words, B is the set
of documents, and X is the weight matrix between A and
B. Dhillon suggested Spectral Co-clustering (SCo) which
constructs graph Laplacian by using a bipartite graph rep-

resented by the edge weight matrix M =

[
0 X

X� 0

]
to

computes low dimensional embedding, and it runs k-means
clustering on the computed embedding to find k co-clusters
(Dhillon 2001). More specifically, the objective function of
co-clustering for bipartition is designed to solve min-cut
problem defined with a partition vector q and the weight
matrix M , where qi =

√
η2

η1
if the i-th row/column of

M belongs to the first cluster and qi = −
√

η1

η2
if the i-th

row/column of M belongs to the second cluster, ηi is the
sum of edge weights of the nodes in the i-th cluster, and the
plus or minus sign of qi plays an important role in assigning
nodes to clusters. Since the problem of solving the proposed
objective function is NP-complete, SCo was suggested. It
computes the second left and right singular vectors of nor-
malized weight matrix Xn = D

−1/2
1 XD

−1/2
2 , and construct

vector y ∈ R
m+n as an approximation of q, where D1 and

D2 are diagonal matrices such that D1(i, i) =
∑

j Xi,j , and
D2(i, i) =

∑
j Xj,i. Finally, it runs k-means algorithm on

the 1-dimensional y to compute co-clusters. For multiparti-
tioning, it uses � = �log2 k� singular vectors of Xn to con-
struct a matrix Y ∈ R

(m+n)×� and runs k-means on Y .
Wu et al. extended the spectral co-clustering method for

the tensor data sets and proposed a method called Gen-
eral Tensor Spectral Co-clustering (GTSC) (Wu, Benson,
and Gleich 2016). First, GTSC extends the original rectan-
gle data tensor to a square and symmetric extended tensor.
Next, it constructs a Markov chain by using the transition
matrix and the super-spacey stationary vector, and computes
the second leading real-valued eigenvector of Markov chain.
At the final step, it recursively applies sweep cut for the re-
cursive bisection procedures for clustering. Although GTSC
extended spectral co-clustering, it still uses undirected and
symmetric connections between entities.

Rohe et al. recently proposed a new spectral co-clustering
method called DI-SIM, which applies the spectral co-
clustering approach to directed graph (Rohe, Qin, and Yu
2016). First, it assumes that we have an n × n weight ma-
trix S which represents directed connections among n nodes
in the data set, and it constructs a regularized graph Lapla-
cian by normalizing S as L = O−1/2SP 1/2, where O,P
are n × n diagonal matrices with Oi,i =

∑
j Si,j + τ and

Pi,i =
∑

j Sj,i + τ , and the regularization parameter τ is
the average out-degree. Next, it computes the first k left and
right singular vectors of L, and constructs a k-dimensional
embedding by normalizing rows of singular vectors. At the
final step, it runs k-means on the k-dimensional embedding
and finds the asymmetry in the relationships by using an
asymmetry score. Although DI-SIM can analyze the clus-

tering asymmetries on some data sets, it can be applied only
to the special case of data set which represents sending and
receiving relationships among the nodes of the same kind of
entities.

NMF-based Co-clustering
Non-negative Matrix Factorization (NMF) and its variants
have been used for clustering (Xu, Liu, and Gong 2003;
Kim and Park 2011; Kuang, Yun, and Park 2015; Kuang and
Park 2013; Du et al. 2017a), and NMF has the advantage of
providing intuitive interpretation for the result. Non-negative
Block Value Decomposition (NBVD) was proposed to ana-
lyze the latent block structure of the non-negative data ma-
trix based on Nonnegative Matrix Tri-Factorization (NMTF)
(Long, Zhang, and Yu 2005), and its objective function is

minimize
W,T,H

‖X −WTH‖2F subject to W,T,H ≥ 0, (1)

where X is the data matrix defined in the previous section,
W is m× c, T is c× l, and H is l × n. T is called as block
value matrix which can be considered as a compact repre-
sentation of X . W and H are coefficient matrices for row
and column clusters, respectively. To solve Eqn (1), they de-
rived an algorithm that iteratively updates the decomposition
by using a set of multiplicative updating rules.

Wang et al., proposed Locality Preserved Fast Nonnega-
tive Matrix Tri-Factorization (LP-FNMTF) for co-clustering
which uses two undirected graphs GA of features and GB of
data points in addition to the bipartite graph of X (Wang
et al. 2011), where the undirected graphs GA and GB can
be either generated from X or obtained from prior knowl-
edge (Wang et al. 2011). Thus, the objective function of LP-
FNMTF in Eqn (2) has two terms in addition to Eqn (1)
to consider the manifold structures in both data and feature
space, and the constraints in Eqn (1) and Eqn (2) are differ-
ent.

minimize
W,S,H

‖X −WSH‖2F (2)

+α tr(WT (I − LA)W ) + β tr(H(I − LB)H
T )

subject to W ∈ Ψm×d, H ∈ Ψc×n,

where LA and LB are normalized graph Laplacians s.t.
LA = D

−1/2
A GAD

−1/2
A and LB = D

−1/2
B GBD

−1/2
B , and

Ψ is a cluster indicator matrix. Basically, LP-FNMTF com-
putes d× c co-clusters, but we can set d = c = k for finding
k clusters among data points.

So far, we have discussed spectral co-clustering and
NMF-based co-clustering including NBVD and LP-
FNMTF. All of them, except DI-SIM, use only undirected
relationships for constructing the objective function to com-
pute k co-clusters, and DI-SIM only considers the data set
consisting of sending and receiving relationships among the
nodes of the same kind of entities.

Co-clustering of Directed Graphs
Many data sets in the real world contain both undirected
and directed relationships. For example, research papers and
patents can be encoded with words as their features, but the
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DataFeature DataFeature

Figure 1: Previous co-clustering model uses undirected bi-
partite graph (left figure), and our co-clustering model uses
bipartite graph combined with directed subgraphs (right fig-
ure)

two data sets also have directed relationships as the citations
among the papers and the citations among the patents, re-
spectively. Fig 1 describes an example of dyadic data which
can be represented as combination of both an undirected
subgraph and directed subgraphs. Thus, unlike the cluster-
ing methods on the multiple undirected graphs (Tang, Lu,
and Dhillon 2009; Wang et al. 2011; Sun et al. 2015) and
multi-view graphs on the same entity (Nie, Li, and Li 2017),
we consider an extended (m+n)×(m+n) weight matrix M
by combining the weight matrices of undirected graph and
directed graphs to encode additional directed relationships
for the data set of two entities.

M =

[
Z X
X� S

]
(3)

where X ∈ R
m×n is a weight matrix of undirected graph,

Z ∈ R
m×m and S ∈ R

n×n can be weight matrices of di-
rected graphs shown on the right side in Fig 1. For a docu-
ment data set, Z can be a weight matrix of word-word graph,
X a weight matrix of word-document graph, S a weight ma-
trix of document-document graph.

More in general, we can assume that relationships be-
tween features and items are directed, then X1 and X2 in
Eqn (4) can be different, i.e., X1 �= X2.

M =

[
Z X1

X2
� S

]
. (4)

Since such data inherently have directional relationships
among the entities, we need to exploit them to enhance the
clustering quality and also to find directional relationships
among co-clusters. Our CoDiNMF was derived under the
condition of Eqn (4), and we discuss it in detail in the fol-
lowing section.

CoDiNMF: Co-clustering of Directed Graphs via
NMF
We first define a directional cut in directed graphs to derive
the objective function of CoDiNMF. Let M in Eqn (4) be
the extended weight matrix of directed graph, and Vi be a
set of i-th co-cluster which consists of both entities of set

Min-cut Problem

on Directed Graphs

Maximizing Differences 

of Direc�onal Flows

1.2

1

1

0.2

Figure 2: Illustrations of the objective function. Min-cut
problem of directed graphs can be derived by considering
the sum of all directional cuts between different co-clusters
(left figure). An additional term helps to control a net di-
rectional flow which is the sum of differences of directional
flows (right figure).

A and B. Then, the directional cut in directed graph for
cluster Vi and Vj is Cut(Vi, Vj) =

∑
s∈Vi,t∈Vj

Ms,t, where
Cut(Vi, Vj) �= Cut(Vj , Vi) since the cuts between Vi and
Vj can be different depending on directions. Based on the
notion of directional cut, we introduce two different aspects
which are cut minimization in directed graphs and control
of net directional flow to derive an objective function.

Edge cut minimization in directed graphs: Our first
criteria is minimizing cut which is a sum of all directional
cuts among k co-clusters. We assume that each co-cluster
indicator vector ui consists of 0 and 1 whereas usual spectral
clustering based methods consider -1 and 1 for the values of
cluster indicator vector. Specifically, the elements of ui are
1 for the members in the i-th cluster and 0 for the members
in the other clusters, and ui is non-negative and u�

i uj = 0
when i �= j. By using the defined ui, the directional cut
from Vi to Vj can be expressed as Cut(Vi, Vj) = u�

i Muj .
Then, the cut becomes∑

i �=j

Cut(Vi, Vj) =
∑
i<j

(u�
i Muj + u�

j Mui), (5)

and Lemma 1 provide its simplified form.

Lemma 1 Given M in Eqn (4), let ui ∈ R
(m+n)×1 be the

0− 1 co-co-cluster indicator vector of i-th cluster. Then, the
sum of directional cuts for k co-clusters is

1

2

(
e�(M +M�)e−

k∑
i=1

u�
i (M +M�)ui

)
, (6)

where e ∈ R
(m+n)×1 is a vector with all entries one, and M

is the weight matrix of directed graphs defined in Eqn (4).

Proof 1 By using co-cluster indicator vectors ui and uj ,
we have Cut(Vi, Vj) = u�

i Muj . Then, the sum of all
directional cuts among k co-clusters is

∑
i<j(u

�
i Muj +

u�
j Mui). Thus, we have

∑
i<j(u

�
i Muj + u�

j Mui) =
1
2

∑k
i=1

∑
i �=j(u

�
i (M + M�)uj) = 1

2 (e
�(M + M�)e −∑k

i=1 u
�
i (M +M�)ui), where e =

∑k
i=1 ui.

Thus, we can use Eqn (6) to minimize cut.
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Controlling the effect of the net directional flow: To
further incorporate directed relationship, we consider an
additional term which controls the sum of net directional
flows between different co-clusters as described in Fig 2.
where the net directional flow between two nodes can be
defined as |Ms,t − Mt,s|. Then, the sum of net directional
flows between co-clusters Vi and Vj can be defined as∑

s∈Vi,t∈Vj
|Ms,t −Mt,s|, and it has an equivalent form s.t.∑

s∈Vi,t∈Vj

|Ms,t −Mt,s| = u�
i |M −M�|uj , (7)

where |M −M�|s,t = |Ms,t −Mt,s|. Lemma 2 provides a
simplified form of sum of net directional flows, and we can
control its amount by using Eqn (8).
Lemma 2 The sum of net directional flows among k co-
clusters is

1

2
(e�|M −M�|e−

k∑
i=1

u�
i |M −M�|ui). (8)

Proof 2 By using co-cluster indicator vectors ui and uj ,
the sum of net directional flow between two co-clusters Vi

and Vj can be expressed as
∑

s∈Vi,t∈Vj
|Ms,t − Mt,s| =

u�
i |M−M�|uj , where |M−M�|s,t = |Ms,t−Mt,s|. Then,

the total sum of net directional flow among k co-clusters be-
comes

∑
i<j(u

�
i |M −M�|uj) =

1
2

∑k
i=1

∑
i �=j(u

�
i |M −

M�|uj) =
1
2 (e

�|M −M�|e−∑k
i=1 u

�
i |M −M�|ui).

Objective function: If we increase the sum of net direc-
tional flows, then we can find more directional patterns
among k co-clusters. Thus, we consider the sum of net di-
rectional flows (Eqn (5)) as an additional term to the min-
cut problem (Eqn (7)), then we have the following objective
function
minimize
u1,...,uk

∑
i<j

(
u�
i (M +M�)uj − λu�

i |M −M�|uj

)
,

(9)

where λ ∈ [0, 1] adjusts the effects of the term which con-
trols the sum of net directional flows.
Proposition 1 The objective function in Eqn (9) can be sim-
plified as follows

maximize
u1,...,uk

∑
ui

u�
i (M

′)ui, (10)

where M ′ = (M +M� −λ|M −M�|) is nonnegative and
symmetric, and ui is the 0− 1 co-cluster indicator vector.
Proof 3 The alternative forms of

∑
i<j u

�
i (M + M�)uj

and
∑

i<j u
�
i |M − M�|uj are Eqn (6) in Lemma 1 and

Eqn (8) in Lemma 2, respectively, and the equivalence be-
tween Eqn (9) and Eqn (10) can be shown by using them.
Although we use directional flows and cuts to find the direc-
tional patterns, the linear transformed matrix M ′ in Eqn (10)
becomes nonnegative and symmetric, since

M ′ =
[
Z ′ X ′

X ′� S′

]
, (11)

where Z ′ = Z+Z�−λ|Z−Z�|, S′ = S+S�−λ|S−S�|,
X ′ = X1 +X2 − λ|X1 −X2

�|, and λ ∈ [0, 1].
So far, we have assumed the generalized condition that Z

and S in Eqn (4) are asymmetric, and X1 �= X2. However, if
Z �= Z�, S �= S�, and X1 = X2 like Eqn (3), then we can
only apply λ parameter to the asymmetric weight matrices

Z and S, i.e., M ′ =
[

Z ′ 2X

2X� S′

]
, where X = X1 = X2.

The rest of the cases can be similarly defined, too.

CoDiNMF: We show that the objective function of
co-clustering (Eqn (10)) can be solved by using NMF with
some relaxation. We keep the non-negativity constraints of
M ′ and ui, and derive an alternative form of Eqn (10) with
the temporal constraint of unit norm for ui. We replace the 1
values in the ui as 1√

|Vi|
, then components of ui have 1√

|Vi|
for the members of the i-th cluster and 0 for the members
of the other clusters, and this condition helps to make the
size of clusters more balanced. As a result, the constraint
of ui becomes u�

i uj = δij and ui ≥ 0, where δij is the
Kronecker delta. With this condition, we have a modified
objective function

maximize
u1,...,uk

∑
ui

u�
i (M

′)ui s.t. u�
i uj = δij , ui ≥ 0. (12)

Proposition 2 provides an alternative form of Eqn (12) which
is related to nonnegative matrix factorization.

Proposition 2 Suppose that we have the modified objective
function as Eqn (12). Then, it is equivalent to Eqn (13)

minimize
U

‖M ′ − UUT ‖2F s.t. U�U = I, U ≥ 0, (13)

where the k columns of U ∈ R
(m+n)×k are the co-cluster

indicator vectors.

Proof 4 The constraint u�
i uj = δij and ui ≥ 0 can

be represented as U�U = I and U ≥ 0, respec-
tively. Then, maximizeu1,...,uk

∑
ui

u�
i (M

′)ui is equivalent
to minimizeU tr(M ′�M ′ − 2M ′�UU�) under the condi-
tion of U�U = I and U ≥ 0. Thus, we have Eqn (13).

We note that there are two approaches to solve the modified
objective function. If we discard the non-negativity con-
straint of ui, then the spectral approaches can be applied to
solve the objective function Eqn (12). Whereas we keep the
non-negativity constraint of ui, but discard the orthonormal
condition of ui to solve the objective function Eqn (13).
Then, we can apply SymNMF (Kuang, Yun, and Park 2015)
to Eqn (13), and compute the co-clusters by comparing the
entries in row vectors of U .

Normalization of directed subgraphs: Before we compute
M ′ in Eqn (13), we have to construct M in Eqn (3), and
we need directed graphs Z and S which can be given or
generated from X , e.g., k-nearest neighbors. Meanwhile,
we can use normalized graph Laplacian of Z and S instead
of original Z and S to more effectively represent the
inherent structures of directed graphs. For example, we can
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Section
Class

Group
Subclass 20/00 Main group

20/14 Subgroup

Figure 3: CPC scheme

Table 1: US Patent data sets. There are numbers of patents,
citations, and groups for the patent classes.

patent class # of patents # of citations # of groups

A22 4976 28746 230
B06 2938 11549 82
B68 790 2433 93
C14 583 1125 69

normalize S as LS = O
−1/2
S SP

−1/2
S , where OS , PS are

n × n diagonal matrices with OS(i, i) =
∑

j Si,j + τ and
PS(i, i) =

∑
j Sj,i + τ , and the regularization parameter

τ can be 0 or any nonnegative real value. We replace Z
and S in Eqn (3) as LZ and LS , respectively. Then, we

have M =

[
LZ X
X� LS

]
. We note that we can use other

asymmetric matrices instead of graph Laplacians or original
matrices, if they are suitable for finding directional flows.

The sizes and Frobenius norms of LZ , LS , and X are
usually different, and we can control their contributions by
adopting balance parameter α and β as in Eqn (2). Then, we
have

M =

[
αLZ X
X� βLS

]
. (14)

For Z and S, the balance parameters α and β can be set as
α = c1‖X‖F /‖Z‖F and β = c2‖X‖F /‖S‖F respectively,
where ci is a parameter which adjusts the contribution for
each directed graph.

Experiments
In this section, we compare CoDiNMF with Spectral co-
clustering (Sco) (Dhillon 2001), LP-FNMTF (Wang et al.
2011), and Co-clustering without directed graphs using
SymNMF (CoNMF) which is a degenerate version of CoD-
iNMF.

Clustering Quality on US Patent and BlogCatalog
Data Sets
We first apply our method to the US patent data set ob-
tained from PatentsView1 and BlogCatalog data set from
(Wang et al. 2010). For US patent data set, we use the co-
operative patent classification (CPC) info (as illustrated in
Fig 3) to generate the ground truth clusters. The subset of
US patent data sets which we used is displayed Table 1,
and they have the citation information among patents, the

1www.patentsview.org

Table 2: Average F1 scores of co-clustering results

A22 B06 B68 C14 BlogC

SCo 0.124 0.122 0.218 0.250 0.171
LP-FNMTF 0.234 0.165 0.285 0.285 0.144

CoNMF 0.242 0.205 0.307 0.303 0.249
CoDiNMF 0.367 0.250 0.374 0.364 0.262

Table 3: Rand index of co-clustering results

A22 B06 B68 C14 BlogC

SCo 0.910 0.895 0.889 0.880 0.760
LP-FNMTF 0.977 0.935 0.938 0.901 0.759

CoNMF 0.976 0.931 0.941 0.886 0.766
CoDiNMF 0.979 0.936 0.949 0.908 0.768

Table 4: Adjusted Rand index of co-clustering results

A22 B06 B68 C14 BlogC

SCo 0.028 0.098 0.124 0.110 0.063
LP-FNMTF 0.126 0.082 0.091 0.081 0.021

CoNMF 0.175 0.126 0.239 0.133 0.079
CoDiNMF 0.246 0.169 0.275 0.151 0.082

Table 5: Average number of co-clusters containing patents

patent class A22 B06 B68 C14

ground truth 230 82 93 69
LP-FNMTF 230 82 93 69

SCo 124.0 51.2 56.2 49.2
CoNMF 208.0 74.0 92.0 65.5

CoDiNMF 222.2 77.3 92.0 68.0

connections between patents and words, but no word-word
relationship information. The BlogCatalog data set also pro-
vides ground truth information, and it contains entity-entity,
entity-feature, and feature-feature relations.

To compare co-clusters with ground truth clusters, we
treat each co-cluster as a cluster of patents by ignoring the
terms in the co-cluster. We use average F1 score, Rand in-
dex and adjusted Rand index (ARI) which are well-known
measures for accuracy. Specifically, the average F1 score for
comparing clusters {V1, . . . , Vk} and {G1, . . . , Gk′} can be
computed as

F1 =
1

2k

k∑
i=1

max
j

F1(Vi, Gj) +
1

2k′

k′∑
j=1

max
i

F1(Gj , Vi),

where one of two cluster sets is the set of ground truth
clusters (Du et al. 2017b). For CoDiNMF, we set the ci
parameters for balance parameter α and β with ci =

3615



Figure 4: F1 score and ARI of CoDiNMF on C14 patent data
set. There are 11 points corresponding to λ ∈ {0, 0.1, ..., 1}.

Figure 5: The number of philosophers in 30 co-clusters com-
puted by CoDiNMF (the left upper figure), CoNMF (the
right upper figure), LP-FNMTF(the left bottom figure) and
SCo (the right bottom figure).

{1, 1.3, 1.7, 2, 3}. For CoNMF, we set S and Z as zero ma-
trices, since it is a degenerate version of CoDiNMF.

The accuracies of four methods are compared in terms of
F1 scores, Rand index, and adjusted Rand index in Table 2,
Table 3, and Table 4 respectively. For the experimental re-
sults of LP-FNMTF on the patent data sets, we display the
best scores between the results of LP-FNMTF using graph
generated by k-nearest neighbor and using the given citation
graph. The experimental results show that CoDiNMF con-
sistently outperform other co-clustering methods in terms of
three measures on the five data sets in Table 2, Table 3, and
Table 4. Furthermore, F1 score and ARI of CoDiNMF are
much better than CoNMF in Table 2 and Table 4. Thus, we
can conclude that CoDiNMF improves the clustering accu-
racy by using the additional directed subgraphs by consider-
ing Table 2, Table 3, and Table 4.

Table 5 displays the average numbers of co-clusters con-
taining patents for four methods. Comparing the ground
truth and the results, we notice that many co-clusters com-
puted by spectral co-clustering contain only the words. That
is, the number of computed patent clusters is much less than
the specified k. Although LP-FNMTF computes the same
number of co-clusters with the ground truth, the clustering

Figure 6: Distribution of maximum flow max{a, b} against
relative ratio of net flow |a−b|

max{a,b} between clusters of
philosophers computed by CoDiNMF (the left upper figure),
CoNMF (the right upper figure), LP-FNMTF (the left bot-
tom figure) and SCo (the right bottom figure), where a and
b are opposite directional flow between two co-clusters. The
color of each point represents the number of cluster pairs
that fall into the point. The higher proportion of cluster pairs
in the upper area in each figure, the more net directional flow
among computed co-clusters is.

Figure 7: The proportion of cluster pairs of philosophers
which are in the upper area above the threshold in Fig 6 is
computed and displayed.

accuracies of CoDiNMF are much higher than LP-FNMTF,
and the number of co-clusters computed by CoDiNMF is al-
most similar with the ground truth.

Finally, Fig 4 shows that F1 score and ARI of CoDiNMF
can be improved by using an additional term which controls
the sum of net directional flows among k co-clusters. Specif-
ically, λ ∈ {0, 0.1, ..., 1} in Eqn (13) adjusts the effects of
additional term, and F1 scores and ARI of CoDiNMF in
Fig 4 peak when λ is nonzero rather than λ = 0.

Case Study on Wikipedia Philosophers Data Set
We constructed the philosophers data set from a database
snapshot of English Wikipedia2 dumped on April 20th 2017.

2See the alphabetical index under https://en.wikipedia.org/wiki/
Lists of philosophers
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Figure 8: Influence network on the Wikipedia data set of philosophers. It is constructed by using net directional flows and topics
computed by CoDiNMF. Each circle represents a co-cluster, and the number in the circle is the co-cluster id. The words in the
circles are top keywords of the co-cluster, which are computed by CoDiNMF. The width of the arrows between co-clusters is
proportional to the amount of net influence flow computed by CoDiNMF. We use top keywords of co-clusters to guess the era
of philosophy of co-clusters, and we assign a color to each group of co-clusters by considering the era of philosophy.

Specifically, we define directed edges by using the influ-
ence relations among philosophers, which can be obtained
in the infobox of most philosopher wiki articles and it is de-
scribed in the supplementary information of (Ahn, Bagrow,
and Lehmann 2010). We also use the contents of Wikipedia
articles of each philosophers as the source of text informa-
tion. In our data set, there are 1,479 philosophers and 13,002
directed edges among them. We run SCo, LP-FNMTF,
CoNMF, and CoDiNMF to compute 30 co-clusters for this
data set, and set λ = 0.3 for CoDiNMF.

First, we estimate the sizes of the clusters of philosophers
given the computed co-clusters, and the corresponding re-
sults are displayed in Fig 5. We can observe that unlike CoD-
iNMF and LP-FNMTF, SCo generates about 20 empty or
almost-empty clusters of philosophers. That is, SCo com-
putes many co-clusters which contain only terms, and such
co-clusters are not meaningful.

Next, we measure the quality of net flow by consider-
ing the relative ratio of net flow which can be defined as
|a− b|/max{a, b}, where a and b are opposite directional
flow between two co-clusters. Intuitively, the larger the value
of |a− b|/max{a, b} is, the clearer the directional flow be-
tween the two clusters is. Suppose that a = 20 and b = 2,
then the relative ratio is 0.9 = (|20 − 2|)/20, and we can
think there is clear net directional flow. But, for a = 18 and

Table 6: Selected topics and philosophers of several co-
clusters among top 10 keywords

1 Frege Quine mathematics logic
3 Kant Fichte Kantian Germany

12 socialist Marx Engels revolutionary
19 Sartre Lacan structuralist psychoanalysis
29 Locke Hobbes England parliament

b = 20, then the relative ratio is 0.1 = (|18 − 20|)/20,
and the net flow is not clearly directed. Fig 6 displays the
distribution of the relative ratio of net flow between co-
clusters, and it shows that SCo hardly generates enough
number of clusters of philosophers, and also there are only
few directional relations among the co-clusters despite of
k = 30. Meanwhile, the distribution of LP-FNMTF dis-
played in Fig 6 is a little bit similar with the distribution
of random. We can also notice that many cluster pairs in
the results of CoDiNMF have high relative ratio of net flow
compared to other co-clustering methods. Furthermore, we
can observe that for CoDiNMF, no pair of clusters falls into
the right lower corner of the plot while LP-FNMTF have
several pairs of clusters very close to the right lower corner,
which stands for poor directional flow. These observations
demonstrate the effect of controlling term (Eqn (7)), which
means that CoDiNMF is able to computes the k co-clusters
which have many clear net directional flow among them. To
support this assertion with the quantitative analysis, we pro-
vide Fig 7, and it displays the proportion of cluster pairs of
philosophers which are in the upper area above the threshold
of |a− b|/max{a, b} in Fig 6. Since CoDiNMF has always
high proportion regardless of threshold, we can conclude
that CoDiNMF is superior to find clear net directional flow
among co-clusters compared to other co-clustering methods.

Finally, we provide a influence network in Fig 8, which
is constructed by using the net directional flow between co-
clusters and the topics of each co-cluster computed by CoD-
iNMF. The top topics and philosophers of co-clusters are
selected by finding entries which have high values in the co-
cluster indicator vector ui, and some of them are summa-
rized in Fig 8 and Table 6. To draw a graph, we ignore very
small net flow for visual aid, and also exclude co-clusters
with unusual sizes in the figure, since co-clusters with very
small sizes are probably outliers and co-clusters with very
large sizes are sometimes coarse. We notice that Fig 8 is
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consistent with real development of philosophy. For exam-
ple, it shows that the philosophies in Greece affect various
other philosophies; the philosophies in England and Ger-
many have important roles in the era of modern philosophy,
and they heavily affect contemporary philosophies; Espe-
cially, the structuralist and socialist are heavily influenced by
Kantian. Another interesting point is that we can hardly find
the meaningful net directional flow between the co-cluster
of Chinese philosophy and other co-clusters of western phi-
losophy. This is expected since Chinese philosophy were de-
veloped independently with western philosophy.

Conclusion
In this paper, we proposed a new co-clustering method,
called CoDiNMF, which computes co-clusters of directed
graphs. We designed the objective function of co-clustering
by using min-cut problem and an additional term which con-
trols net directional flow on directed subgraphs, and derived
CoDiNMF which solves the proposed objective function.
The experimental results showed that CoDiNMF improves
the clustering quality compared to the other co-clustering
method in terms of average F1 score, Rand index, and ad-
justed Rand index. Furthermore, we found directional flow
of influences among co-clusters of philosophers by using
CoDiNMF on the Wikipedia data set of philosophers. Our
future work includes extensions of this framework to ana-
lyze hierarchical structures of health care data sets and Kiva
data set which has many directed subgraphs among multiple
entities.
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