
Learning Multi-Way Relations via Tensor
Decomposition with Neural Networks

Koji Maruhashi, Masaru Todoriki, Takuya Ohwa, Keisuke Goto,
Yu Hasegawa, Hiroya Inakoshi, Hirokazu Anai

Fujitsu Laboratories Ltd.
4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa, Japan

{maruhashi.koji, todoriki.masaru, takuyaohwa, goto.keisuke, latente, inakoshi.hiroya, anai}@jp.fujitsu.com

Abstract

How can we classify multi-way data such as network traffic
logs with multi-way relations between source IPs, destination
IPs, and ports? Multi-way data can be represented as a tensor,
and there have been several studies on classification of tensors
to date. One critical issue in the classification of multi-way re-
lations is how to extract important features for classification
when objects in different multi-way data, i.e., in different ten-
sors, are not necessarily in correspondence. In such situations,
we aim to extract features that do not depend on how we allo-
cate indices to an object such as a specific source IP; we are
interested in only the structures of the multi-way relations.
However, this issue has not been considered in previous stud-
ies on classification of multi-way data. We propose a novel
method which can learn and classify multi-way data using
neural networks. Our method leverages a novel type of tensor
decomposition that utilizes a target core tensor expressing the
important features whose indices are independent of those of
the multi-way data. The target core tensor guides the tensor
decomposition into more effective results and is optimized in
a supervised manner. Our experiments on three different do-
mains show that our method is highly accurate, especially on
higher order data. It also enables us to interpret the classifica-
tion results along with the matrices calculated with the novel
tensor decomposition.

Introduction

Given a set of multi-way data, how can we classify such data
based on the structures of the multi-way relations? Some
typical examples are network traffic logs with relations be-
tween source IPs (sIPs), destination IPs (dIPs), and ports
or transactions of online banking with relations between
senders, receivers, and branches. The major problem is ob-
taining a predictive model to classify logs and transactions,
i.e., multi-way data, according to whether they have been
subject to attacks and/or frauds (Fig. 1). Multi-way data are
represented as a tensor, and several studies on the classifi-
cation of tensors have been conducted such as image clas-
sification (Tao et al. 2007; He et al. 2014). They uniquely
determined the allocation of indices, i.e., allocation of in-
dices in the tensor to a specific pixel, thanks to an implicit
spatial order of the pixels in images, i.e., from top-left to
bottom-right.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

���������	

��� ��� ����

�	
	 �	

��
	 �	

��
	 �	

��

��

��

��

�
�
�
�

�
�
�
�

��
��
��
��

�������	
��	�	

����		��	����������

�������

�����

�	��

��� ��� ����

�	
	 �	

��
� �	

��
� ��

��

��

��

��

�
�
�
�

�
�
�
�

��
��
��
��

�������

�����

��	 �������������

��	 �������������

����������������

Figure 1: Classification of multi-way data. A tensor repre-
senting a multi-way data is classified by a classifier.

However, these methods cannot be applied to situations in
which the objects in two tensors, such as sIPs, are not in cor-
respondence; these methods assume each tensor shares the
common indices of objects with each other. Our aim is to
extract structures of multi-way relations that are both impor-
tant for classification and that are independent of the indices
of objects. Let us illustrate this problem using an example.
A typical pattern of network attack is as follows: scan many
ports with a fixed sIP and dIP, and when finding an appropri-
ate port, conduct attacks by accessing to many dIPs with the
port and a sIP. It does not matter what IPs/Ports are actually
used; in fact, different IPs, ports, and accounts are typically
used in every attacks and frauds in many cases, so as not
to be easily recognized. We want to extract abstract patterns
of this kind of multi-relational connectivity. That is, classi-
fication should be done based on the structure of multi-way
relations, not based on IPs, ports, and accounts themselves.
Therefore, we want to extract features that do not depend on
how we allocate indices to an object such as a specific sIP. In
fact, this is a common issue in the classification of graphs.

In addition, interpretability as well as prediction per-
formance is becoming more important nowadays with the
widening of machine-learning applications (Rudin 2014;
Lipton 2016). We desire not only to achieve high predictive
performance, but also to know the reason for the classifica-
tion results in order to make decisions in a real-world situa-
tion or gain more understandings of the target phenomenon.
For example, security engineers are required not only to
alarm the occurrence of cyber-attacks based on intrusion de-
tection system (IDS) logs, but also to spot corresponding

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3770

logs in order to investigate them.
To the best of our knowledge, this is the first study that

provides a method of learning and classifying multi-way
data by taking into account the structure of multi-way re-
lations independent of the indices of the input tensor while
retaining the ability to interpret the prediction results. Our
intuition is that we can extract such structure as a core tensor
calculated by tensor decomposition (Kolda and Bader 2009)
which decomposes a tensor into a core tensor and factor ma-
trices, in which the indices of the input tensor only affect the
factor matrices. However, a core tensor calculated with con-
ventional tensor decompositions only expresses structures
learnt in an unsupervised manner, and they are not necessar-
ily the important structures for the classification of data. To
tackle this problem, we propose DeepTensor leveraged by
Structure Restricted Tensor Decomposition (SRTD), a novel
type of tensor decomposition. SRTD uses a tensor called
the target core tensor, which contains the aggregated struc-
tures that are important for classification and guides the ten-
sor decomposition into more effective results. We also intro-
duce the extended backpropagation (EBP) algorithm, which
learns the optimal target core tensor along with the param-
eters of the neural network. Moreover, once we know the
indices of the core tensor important for the classification re-
sults, we can interpret them in terms of the indices of the
input tensor by using the factor matrices, which can connect
between the indices of the input tensor and those of the core
tensor. We report on the experimental results on three differ-
ent domains: intrusion detection, peer-to-peer (P2P) lending,
and bioinformatics. We empirically show that our method is
highly accurate, especially on higher order data, while en-
abling us to interpret the classification results.

Related Work
Several studies on the classification of tensors have been
reported (Tao et al. 2007; He et al. 2014; Zhou, Li, and
Zhu 2013; Imaizumi and Hayashi 2016). They assumed
that the important features for classification share simi-
lar indices of objects among all multi-way data; however,
this assumption is not satisfied in the problem we tackle
in this paper. Our idea is to use tensor decomposition to
extract features that are independent of the indices. We
focus on Tucker decomposition (Kolda and Bader 2009;
Acar and Yener 2009), a well-known tensor decomposition,
which is most often calculated using the alternating least
squares (ALS) method (Lathauwer, Moor, and Vandewalle
2000). However, Tucker decomposition is not unique, that
is, we can modify the core tensor without affecting the fit so
long as we apply the inverse modification to the factor matri-
ces (Kolda and Bader 2009). This is a serious problem when
we need to classify tensors by using tensor decomposition.
Several solutions using a set of orthogonal rotations (Kiers
1998) or a Jacobi-type algorithm (Martin and Loan 2008)
have been proposed. Unlike these unsupervised approaches,
our approach constructs core tensors to maximize the classi-
fication accuracy in a supervised manner.

One possible way to handle multi-way data is to repre-
sent it as a graph, although it often involves loss of original
information contained in the multi-way relations. Several

graph kernels have been proposed for graph classification.
They count the co-occurrence of walks (Kashima, Tsuda,
and Inokuchi 2003), paths (Borgwardt and Kriegel 2005),
subgraphs called graphlets (Shervashidze et al. 2009), or
subtrees (Shervashidze et al. 2011) in two graphs. Methods
for graph classification based on the idea of deep neural net-
works have been proposed. Deep Graph Kernels (Yanardag
and Vishwanathan 2015) treat the list of sub-structures used
in graph kernels as a sentence and learn latent representa-
tions of sub-structures. Another direction that has been ea-
gerly explored recently is graph convolutional neural net-
works. The method proposed by Niepert et al. (Niepert,
Ahmed, and Kutzkov 2016) first selects node sequence for
which receptive fields are constructed then assembles a
neighborhood graph for each node, which is finally normal-
ized to construct a fixed size receptive field. Accordingly, we
are likely to face difficulties in determining nodes to be in-
cluded in the receptive fields when there are hubs connected
to a large number of nodes. The method based on spectral
graph theory (Defferrard, Bresson, and Vandergheynst 2016)
makes considerable assumptions about the target graph and
it is not trivial to extend it to such graphs that have labels for
edges. In the first place, none of these graph classification
methods directly handle the complicated structures of multi-
way relations, in contrast to our method that directly handles
them. Moreover, it is difficult to infer the reason for their
classification results because these methods convert graph
data by using nonlinear modification.

Prediction interpretation and justification is one of the
most important topics in recent machine learning re-
search (Rudin 2014; Lipton 2016). One effective approach
is to produce interpretable models. Lake et al. learned a
generative model of linguistic character images from sparse
data (Lake, Salakhutdinov, and Tenenbaum 2015). Si et al.
learned compositional models of objects in images (Si and
Zhu 2013). Ribeiro et al. introduced a model-agnostic ap-
proach that provides explanation to blackbox models by
learning interpretable models based on the interpretable rep-
resentations (Ribeiro, Singh, and Guestrin 2016). We show
that the approach of Ribeiro et al. can be applied to our
method by regarding the core tensors as the interpretable
representations, and we can interpret the prediction results
in terms of the input tensor thanks to the factor matrices.

Preliminaries

Notations

We refer to the dimensionality of a tensor and multi-way
data as order, and to each dimension as a mode. Scalars are
denoted by lowercase letters (a), vectors by boldface low-
ercase letters (a), matrices by boldface capital letters (A),
and tensors by boldface Euler script letters (A). A trans-
verse matrix of A is AT . I is an identity matrix, and 1 is
a square matrix in which all values are one. Indices typ-
ically range from 1 to their capitalized version, e.g., i =
1, . . . , I . |A| is the number of elements of A, and ‖A‖2 is
the square root of the sum of the squared values in A. The
inner product is denoted by 〈·, ·〉. The element-wise mul-
tiplication is denoted by ∗, and the element-wise division

3771

is denoted by �. The mode-k matricization of A of size
I1×. . .×IK creates A(k) of size I1 . . . Ik−1Ik+1 . . . IK×Ik.
If the (i1, . . . , iK)-th element of A is one otherwise zero,
A(k) is a1 ⊗ · · · ⊗ ak−1 ⊗ aTk ⊗ ak+1 ⊗ · · · ⊗ aK by
using a Kronecker product ⊗, where the ik′ -th element of
ak′ is one otherwise zero. A k-mode product of A with
W of size Ik × I ′k is A′ = A ×k W of size I1 × . . .
×Ik−1 × I ′k × Ik+1 × . . . × IK , where A′(k) = A(k)W.
In case W is a vector w of length Ik, we remove the mode
and resize A′ to I1 × . . .× Ik−1 × Ik+1 × . . .× IK . We de-
note A×1 W1 . . .×K WK as A∏

k ×kWk. A Khatri-Rao
product between A of size I1 × R and B of size I2 × R is
A � B = [a1 ⊗ b1 · · ·aR ⊗ bR] of size I1I2 × R, where
ar and br are the column vectors of A and B. We define a
tensor A �k W of size I1 × . . . × IK × J by using W of
size Ik×J , where (A�kW)(k) = A(k)�WT . We denote
A �1 W1 . . . �K WK as A∏

k �kWk. A vector, matrix,
and tensor whose elements are differentials of F over the
elements of a, A, and A are ∂F

∂a , ∂F
∂A , and ∂F

∂A , respectively.

Problem Definition

Problem 1 Given a set of pairs of multi-way data and
classes {(X (1),y(1)), · · · , (X (N),y(N))}, learn a predic-
tive model μ(X) that can predict classes y accurately.

The n-th data can be written as X (n) = (E
(n)
1 , · · · , E(n)

K ,

R(n), L
(n)
1 , · · · , L(n)

K), where E(n)
k is a set of objects of k-th

mode, R(n) is relation between objects, i.e., R(n) : E
(n)
1 ×

· · · × E
(n)
K → R, and L

(n)
k is a projection to a set of labels

Λk, i.e., L(n)
k : E

(n)
k → Λk. For example, a network traffic

log is 3rd-order data in which (E
(n)
1 , E

(n)
2 , E

(n)
3) is (sIP, dIP,

ports), R(n) is communication using them, and Λ3 is { ‘http’
, ‘ftp’ , . . .}. We omit the superscripts indicating the indices
of data if they are not required.

Tensor Decomposition

Tucker decomposition (Kolda and Bader 2009) approxi-
mates a tensor X of size I1 × . . . × IK by a core tensor
X of size J1 × · · · × JK multiplied by factor matrices, so
as to minimize ‖X − X ∏

k ×kC
T
k ‖2, where the size of a

factor matrix Ck is size Ik × Jk. With most fitting algo-
rithms (Kolda and Bader 2009), it is assumed that the factor
matrices are column-wise orthonormal.

Neural Network

Our method uses a fully connected neural network with D
layers, in which the d-th layer contains Ud neurons. This
is the same as a multi-layer perceptron with D layers. The
input of the n-th sample into the d-th layer is indicated by
r
(n)
d , and activation is a(n)d = h(r

(n)
d) where h() is an acti-

vation function. In the input layer, a(n)0 = r
(n)
0 . The input

of the (d + 1)-th layer (0 ≤ d < D) is calculated by for-
ward propagation, i.e., r(n)d+1 = Wda

(n)
d + bd, where Wd

is a matrix of size Ud+1 × Ud and bd is a bias. The pa-
rameters Wd and bd are optimized so as to minimize the
loss function F =

∑
n loss(y

′(n),y(n)), where y′(n) is a

�����������	
��

����
�
��	
��
������

������
��	�

�
������

��������	�	
��

��������	�
����

�

��������
��	
���������

�����������
������������

�����

�

�����

�

�����

�

����	�����������	���
��������	�������

�����	
�����	�����

��������

��������

�����	�����

���	��
��	�
���

�

�

�

�′

����
�	
��
������

	�

Figure 2: Overview of DeepTensor. In predictive model, ten-
sor is approximated as core tensor multiplied by factor ma-
trices, and core tensor is used for classification.

vector indicating the probability of each class calculated by
softmax function y

′(n)
c = er

(n)
Dc /

∑
c′ e

r
(n)

Dc′ where y
′(n)
c , r

(n)
Dc

are c-th elements of y′(n), r(n)D . In this paper, we use cross
entropy −∑

n

∑
c y

(n)
c log y

′(n)
c as the loss function. These

parameters are typically optimized using stochastic gradient
descent (SGD), which updates parameters into the opposite
direction of ∂F

∂Wd
=

∑
n

∂F

∂r
(n)
d+1

a
(n)T
d , ∂F

∂bd
=

∑
n

∂F

∂r
(n)
d+1

,

which can be calculated using the backpropagation algo-

rithm ∂F

∂r
(n)
d+1

=

(
WT

d+1
∂F

∂r
(n)
d+2

)
∗ h′(r(n)d+1), where h′() is

the first differential of the activation function.
If we use a tensor X of size J1 × . . . × JK as the input

of a neural network, the parameters between the input layer
and 1st layer is a tensor W0 of size U1 × J1 × . . .× JK .

Proposed Method

DeepTensor Overview

Predictive Model Figure 2 shows an overview DeepTen-
sor, which can learn and classify multi-way data. The in-
put of the predictive model is multi-way data that can be
regarded as a tensor X , and the output is a vector y′ indi-
cating the probability of prediction for each class. Our basic
idea is to use the core tensor X calculated by Tucker decom-
position as input of a neural network. However, the result
of Tucker decomposition is not unique (Kolda and Bader
2009), and we do not know which core tensor we should use
for classification. To tackle this problem, we propose Struc-
ture Restricted Tensor Decomposition (SRTD), explained in
more detail in a later section. SRTD not only approximates
the input tensor, but also calculates the core tensor as closely
as possible to the target core tensor V so that the important
structures for classification should be located in similar in-
dices of the core tensor. V is an “abstract” tensor that ex-
presses important structures for classification, that is, it con-
tains essential structures for each class. By making a core
tensor of an instance close to V , the instance is expected
to be accurately discriminated; if an instance has an attack-
like structure, its core tensor is expected to be similar to the
attack-like structure contained in V , and vice versa. The pre-
diction process is shown in Algorithm 1, Test().

3772

Algorithm 1: DeepTensor
1 Function Test (X , V ,{Wd},{bd}):
2 X , {Ck} ← SRTD(X , V);
3 y′ ← forwardprop(X , {Wd},{bd});
4 return y′;
5 Function Train ({(X (n),y(n))}, size of V , {Wd}, {bd}):
6 V, {Wd}, {bd} ← init random(size of V ,

{Wd},{bd});
7 for epoch ← 1 to maxepoch do
8 for i ← mini batch indices do

9 set ∂F
∂V , { ∂F

∂Wd
}, { ∂F

∂bd
} to zero ;

10 for n ← i do

11 X (n)
, {C(n)

k } ← SRTD(X (n), V);

12 y′(n) ← forwardprop(X (n)
,

{Wd},{bd});
13

∂F
∂V , { ∂F

∂Wd
}, { ∂F

∂bd
} ←

∂F
∂V , { ∂F

∂Wd
}, { ∂F

∂bd
}+ backprop(X (n)

,

y(n), y′(n), V , {Wd}, {bd});
14 V, {Wd}, {bd} ←

SGD(V ,{Wd},{bd}, ∂F
∂V ,{ ∂F

∂Wd
},{ ∂F

∂bd
});

15 return V ,{Wd},{bd};
16 Function SRTD(X , V):
17 {Ck} ← init matrices(size of X ,V);
18 for iter ← 1 to maxiter do
19 for k ← 1 to K do
20 Zk ← calcZ(X ,{Ck},V ,k) ; �eq. 7
21 Pk,Sk,Qk ← SVD(Zk);
22 Ck ← PkQ

T
k ;

23 X ← X ∏
k ×kC

T
k ;

24 return X ,{Ck};

Learning Algorithm The training procedure is shown in
Algorithm 1, Train(). DeepTensor randomly initialize V ,
{Wd}, and {bd} (init random() in Train()), and opti-
mize them to minimize the loss function F via SGD. SRTDs
are conducted for tensors of all mini-batches and the re-
sulting core tensors are applied to the forward propagation
of the neural network. DeepTensor calculates the differen-
tials { ∂F

∂Wd
} and { ∂F

∂bd
} by using the backpropagation al-

gorithm. The question here is: what is the optimal V that
maximizes the classification accuracy? To answer this ques-
tion, we introduce the extended backpropagation (EBP) al-
gorithm, which calculates the differentials ∂F

∂V . DeepTensor
updates V along with the parameters {Wd} and {bd} via
SGD. EBP is explained in detail in a later section.

Details of Algorithms

Structure Restricted Tensor Decomposition (SRTD) To
get the core tensor as close to V as possible, SRTD calculates
it by using the factor matrices that can approximate the input
tensor with V . In case the size of a mode of the input tensor
is smaller than that of V , we should multiply the input tensor
by the factor matrix to make the core tensor the same size as
V . Specifically, the problem of SRTD is:

Problem 2 Given a tensor X of size I1 × . . . × IK and a

target core tensor V of size J1× . . .×JK , calculate the core
tensor X that minimizes

‖X
∏

k|Ik<Jk

×kCk −X
∏

k|Ik≥Jk

×kC
T
k ‖2, (1)

by using the factor matrices {Ck} that minimize

‖X
∏

k|Ik<Jk

×kCk − V
∏

k|Ik≥Jk

×kC
T
k ‖2, (2)

under the column-wise or row-wise orthonormal condition{
CT

kCk = I (Ik ≥ Jk),

CkC
T
k = I (Ik < Jk).

(3)

We can get the optimal X for Eq. 1 for the given {Ck} as

X = X
∏
k

×kCk, (4)

by setting the partial differentials as zero, using Eq. 3. Be-
cause calculating the optimal {Ck} is a non-convex opti-
mization problem, we apply the ALS method that alternately
optimizes Ck using the following lemma:

Lemma 1 By fixing Ck′(k′ �= k), we can calculate a Ck

that minimizes Eq. 2 under the constraints of Eq. 3 as

Ck = PkQ
T
k , (5)

by using singular value decomposition (SVD) as

Zk = PkSkQ
T
k , (6)

where PT
kPk = I, QT

kQk = I, and Sk is a diagonal matrix
with non-negative values, and

Zk =

⎛
⎝X

∏
k′|k′ �=k

×k′Ck′

⎞
⎠

T

(k)

V(k). (7)

Proof 1 To minimize Eq. 2 under the constraints of Eq. 3,
we set the partial differentials of the Lagrange function as
zero and obtain

Zk = CkZ
T
kCk, (8){

CT
kZk = ZT

kCk (Ik ≥ Jk),

CkZ
T
k = ZkC

T
k (Ik < Jk).

(9)

We can obtain Eq. 5 by using Eqs. 8 and 9.

Algorithm 1, SRTD() gives the algorithm of SRTD. The
value of maxiter in SRTD means the maximum number of
iteration of the ALS method; if the difference of the value
of objective function from that of the previous iteration is
below threshold, the iterations stop even before reaching the
maxiter. We set the maxiter to 5 on all the experiments.

Extended Backpropagation (EBP) The purpose of EBP
is to calculate the differentials of the loss function F over
the elements of the target core tensor V . We can calculate
∂F
∂V using the following lemma:

3773

Lemma 2 The differentials ∂F
∂V can be calculated as

∂F

∂V =
∑
n

∑
k

X (n) ×k f (n)(Δ
(n)T
k)

∏
k′|k′ �=k

×k′C
(n)
k′ ,

(10)
where

f(E) = ΨkEΩk

+Pk

[(
PT

kEQk −QT
kE

TPk

)� (Sk1+ 1Sk)
]
QT

k ,{
Ψk = (I−PkP

T
k), Ωk = QkS

−1
k QT

k (Ik ≥ Jk),

Ψk = PkS
−1
k PT

k , Ωk = (I−QkQ
T
k) (Ik < Jk),

Δk =

⎛
⎝W0 ×1

∂F

∂r1

∏
k′|k′ �=k

×k′CT
k′

⎞
⎠

T

(k)

X(k),

under the assumption{
QkQ

T
k = I (Ik ≥ Jk),

PkP
T
k = I (Ik < Jk).

(11)

Proof 2 The differential of F over an element v of V
is ∂F

∂v =
∑

n〈 ∂F

∂X (n) ,
∂X (n)

∂v 〉, which can be written as
∑

n

∑
k〈 ∂F

∂X (n) ,X (n)×k
∂C

(n)
k

∂v

∏
k′|k′ �=k ×k′C

(n)
k′ 〉 because

of Eq. 4. We can obtain ∂Ck

∂v = f(∂Zk

∂v) by differentiating
both sides of Eqs. 8 and 9 over v, using Eqs. 5 and 6 under
the assumption of Eq. 11. We can calculate ∂Z

∂v by differen-
tiating both sides of Eq. 7 over v. Equation 10 is obtained
using ∂F

∂v , ∂Ck

∂v , and ∂F
∂X = W0 ×1

∂F
∂r1

, which can be calcu-
lated using the backpropagation algorithm.

Parameter Reduction The labels of objects can be simply
regarded as additional modes; i.e., an input tensor is written
as X ∏

k �kLk, where Lk are matrices of size Ik × I ′k in
which the (i, j)-th element is one if the i-th object in the k-
th mode has a j-th label and is zero otherwise. However, the
size of V becomes multiplicatively too large to avoid over-
fitting. To remedy this, we propose to write the target core
tensor as V∏

k �kMk by using matrices Mk of size Jk×I ′k,
the size of which increases additively in the size of labels.

The tensor W0 of size U1 × J1 × . . .× JK × I ′1 × . . .×
I ′K is still too large to prevent overfitting. To overcome this
problem, we set W0 multi-linear parameters as W0 = G1�1

. . .�1 GK �1 G
′
1 �1 . . .�1 G

′
K , where Gk and G′k are

matrices of size U1 × Jk and U1 × I ′k respectively.

Computational Complexity DeepTensor scales linearly
to the number of samples; thus we describe the complexity
for each sample. The bottleneck part of SRTD is computa-
tion of Z (eq. 7) in O(|X ||V|maxiter) time and O(|X ||V|)
space. The forward propagation (FP) and backpropagation
(BP) in neural networks (NN) between the first layer and
the last layer can be done in O(W) time and space for
an epoch, where W is the number of edges in NN. The
FP from X to the first layer of NN and the BP from the
layer to V , i.e. EBP, have the time and space complexity of
O(|X |((∑k Jk +

∑
k I
′
k)U1 +

∑
k J

2
k + |V|+∑

k |Mk|))
for an epoch. Because X is sparse practically, we can reduce
|X | to the number of non-zeros of X .

Interpreting Prediction Results

We now discuss how to determine the reason for the pre-
diction results of DeepTensor, which involves a blackbox
model, i.e., neural networks. A core tensor is interpretable
because we can interpret it in terms of its original tensor by
using the factor matrices. Thus, we apply LIME (Ribeiro,
Singh, and Guestrin 2016), which tells us the reason for the
prediction of blackbox models by using the interpretable
representation of data. In short, LIME can explain the re-
sult of a predictive model f for a sample x by learning an
interpretable model g valid locally around x that minimizes
L(f, g, πx) =

∑
z,z′∈Z πx(z) (f(z)− g(z′))2, where Z is

perturbed samples around x and πx(z) is a proximity mea-
sure between z and x. The input z′ of g is an interpretable
representation of z such as a binary vector.

In our case, f is the predictive model of DeepTen-
sor, and x is a tensor X (n). We use training data {X (p)}
as the perturbed samples Z and core tensors {X (p)} as
the interpretable representations {z′}. A proximity mea-
sure between X (p) and X (n) is calculated by πn(p) =

exp(−‖X (n) −X (p)‖22/σ2) where σ is a parameter. We de-
cide the value of σ by observing the interpretation results,
however, a certain criteria should be devised in the future.
We define g as multiple regression analysis gc(X (p)

) =

〈X (p)
,W(n)

c 〉 + b
(n)
c that optimizes W(n)

c and b
(n)
c so as to

minimize
∑

p πn(p)
∥∥∥y′(p)c − gc(X (p)

)
∥∥∥2
2
, where y

′(p)
c is the

probability of predicting class c calculated using DeepTen-
sor. We can set W(n)

c to multi-linear parameters and opti-
mize it by SGD, the same as W0 of DeepTensor.

Because the prediction value 〈X (n)
,W(n)

c 〉+ b
(n)
c can be

written as 〈X (n),W(n)
c

∏
k ×kC

T
k 〉+ b

(n)
c , we can calculate

the contribution scores (CSs) of the non-zero elements of
X (n) on the prediction of class c as corresponding values
of X (n) ∗ W(n)

c
∏

k ×kC
T
k . The higher the CS is, the more

likely the non-zero element contributes to the high proba-
bility of predicting the class. Note that Ribeiro et al. used
sparse linear models, which can highlight elements of the
binary vectors. Instead, we use non-sparse linear models be-
cause our aim is to calculate the CSs; however, we leave
finding better models for future work.

Empirical Results

We evaluate our method from several points of view: classi-
fication accuracy, effectivity of SRTD and EBP, scalability,
and interpretability.

Datasets

We use multi-way data of various orders from three different
domains. A summary of these datasets is shown in Table 1.

Intrusion Detection (IDS) We have downloaded DARPA
Intrusion Detection Data Sets1 and use a 1998 dataset con-
taining logs from seven weeks of training data and two

1http://www.ll.mit.edu/ideval/data/

3774

Table 1: Summary of datasets. ‘# of data’: number of data. ‘# of data in classes’: number of data within each class (IDS and
LEND have a ‘positive’ class). ‘# of avg. relations’: average number of relations. ‘modes (labels)’: name of each mode and its
label. ‘# of avg. objects (# of labels)’: average number of objects of each mode and its label.

dataset # of data # of data in classes # of avg. relations modes (labels) # of avg. objects (# of labels)
IDS train(DOS) 112 56(positive); 56 408.4 sIP / dIP / sPort / 16.8 / 35.3 / 304.1 / 52.6 (47)

train(probing) 1136 568(positive); 568 287.1 dPort (service) 12.6 / 25.9 / 208.2 / 59.5 (47)
test 1224 DOS:506(positive); 718 1241.9 15.3 / 36.3 / 819.1 / 165.9 (47)

probing:483(positive); 741
LEND train 756 378(positive); 378 4438.8 lender (location) / 266.8 (12) / 70.7 (12) / 72.5

test 1683 9(positive); 1674 4082.5 borrower (location) / 205.8 (12) / 60.8 (12) / 62.3
lending ID

BIO ENZYMES 600 100; 100; 100; 100; 100; 100 62.1 node 1 (label 1) / 32.5 (3) / 32.5 (3)
NCI1 4110 2057;2053 64.6 node 2 (label 2) 29.8 (37) / 29.8 (37)

NCI109 4127 2079;2048 64.3 29.6 (38) / 29.6 (38)
CHEM 128404 64202;64202 57.4 26.5 (31) / 26.5 (31)

weeks of test data, which consist of the extensive exam-
ples of attacks and background traffic. We use the sIP, dIP,
source port (sPort), and destination port (dPort), and de-
scriptions of services such as ‘http’ or ‘ftp’ as the label of the
dPort. We apply our method to predict whether any attacks
occurred in each 10 minute period. The predictive models
are learned separately for attacks in two categories that in-
volve the largest number of logs: DOS and probing. Note
that we remove attacks with more than 10, 000 relations that
occurred within 10 minutes. We randomly select the same
number of periods without attacks as those with attacks to
overcome the class-imbalance problem. We repeat these ran-
dom selections five times and take their average accuracy.

P2P Lending (LEND) P2P lending services enable peo-
ple to borrow and lend money by matching them directly. We
have downloaded transactions from the Show Me the Money
website2, which are collected from the three largest P2P
lending services in the UK. A lending ID identifies trans-
actions resulting from a lending request from a borrower.
We regard lending IDs with interest rates higher than 10.0%
as high-risk lendings and set our problem to predict them
by using the relations between lender, borrower, and lend-
ing ID of the related transactions. The related transactions
are chosen as a combination of transactions of the lending
ID and transactions in which the same lenders lent within
the past one day. We use locations of lenders and borrowers
as their labels. If we can identify the high-risk lendings by
using very limited information, we can expand the possibili-
ties for new FinTech services. We randomly select the same
number of low-risk lendings as high-risk lendings and repeat
five times, just as with the IDS.

Bioinformatics (BIO) Note that the primary target of our
method is multi-way relations. Yet, we additionally con-
ducted experiments on data representing dyadic relations
to gain more understanding of our method. We use EN-
ZYMES, NCI1, and NCI109, downloaded from the ETH
zürich website 3. ENZYMES is a dataset of protein ter-
tiary structures with the 6 EC top-level classes (Borgwardt
et al. 2005). NCI1 and NCI109 are datasets of chemical

2http://smtm.labs.theodi.org/
3https://www.bsse.ethz.ch/mlcb/research/machine-

learning/graph-kernels/weisfeiler-lehman-graph-kernels.html

compounds screened for activity against human tumor cell
lines (Wale and Karypis 2006). CHEM is provided by the
PubChem BioAssay 4 and the task is to predict active com-
pounds which promote or inhibit the activity of a protein,
which could lead to drug discovery. We use the AID686978
assay containing the largest number of actives, and randomly
selected the same number of inactives as actives.

Evaluation Settings

Compared Methods We abbreviate DeepTensor as DT.
5 We choose the best parameters by using the validation
datasets. The best size of the core tensor is mainly 10×10×
10 × 10 for IDS, 10 × 10 × 10 for LEND, and 50 × 50
for BIO, chosen out of {10, 25, 50} for each mode. The best
number of hidden layers is mainly 4 for IDS, 3 for LEND,
4 for ENZYMES, and 4 for NCI1 and NCI109, chosen out
of various numbers of hidden layers; up to 7, with 1, 000
neurons in each layer. The number of epochs for training is
200 and the mini-batch size is 100. We use ReLU (Glorot,
Bordes, and Bengio 2011) as the activation function and use
it with or without dropout (Srivastava et al. 2014) and batch
normalization (Ioffe and Szegedy 2015) techniques.

We compare DT with TuckerNN, a method using the same
settings as those of DT, except those using Tucker decompo-
sition instead of SRTD. We use the higher-order orthogonal
iteration (HOOI) (Lathauwer, Moor, and Vandewalle 2000),
and align the elements of the core tensor according to the
top-Jk singular values. When Ikn < Jk, the remaining ele-
ments of the core tensor are set to zero. Moreover, we evalu-
ate DeepTensor without EBP (noEBP), in which SGD never
updates the target core tensor. We also test our method using
neural networks without hidden layers (noHL), in which a
core tensor is directly connected to the softmax layer, which
is almost the same as a logistic regression.

We also compare DT with SVMs with graphlet ker-
nel (GK) (Shervashidze et al. 2009), shortest path kernel
(SP) (Borgwardt and Kriegel 2005), and Weisfeiler-Lehman

4https://www.ncbi.nlm.nih.gov/pcassay
5DeepTensor and TuckerNN are implemented in Python 2.7,

using Chainer 1.24 (http://chainer.org/). All the experiments were
conducted on an Intel(R) Xeon(R) CPU E5-2630 v3 2.40GHz with
132GB of memory and a Tesla P100 GPU, running Linux.

3775

Table 2: Average precision values (%) (IDS and LEND) and classification accuracies (%) (BIO)
data GK SP WL TuckerNN noHL noEBP DT

IDS DOS N/A N/A 45.05±7.14 48.75±2.59 43.39±3.03 61.00±5.27 62.18±3.56
probing N/A N/A 40.13±2.57 62.10±5.05 36.03±5.72 66.16±10.84 78.52±3.65

LEND N/A N/A 0.67±0.19 4.99±1.15 10.10±8.51 4.78±3.42 12.07±1.40

BIO ENZYMES 30.60±1.64 39.53±1.34 50.90±2.19 21.93±0.44 25.17±1.94 47.07±0.76 47.17±1.46
NCI1 65.86±0.31 73.32±0.64 79.98±0.48 63.25±0.81 70.42±0.62 75.15±0.41 75.22±0.30

Table 3: Accuracy of interpretation (IDS)
DOS probing

TuckerNN DT TuckerNN DT
sIP 19.96±4.79 33.49±4.90 24.96±3.26 51.54±9.65

dIP 9.54±0.20 22.93±3.65 24.12±1.74 51.38±9.92

sPort 13.16±4.66 28.44±10.68 26.47±0.00 49.46±10.03

dPort 20.60±4.89 41.92±5.24 27.43±2.53 51.89±10.21

Table 4: Example interpretation (IDS probing). ‘# of rels.’:
number of relations corresponding to the objects. (σ = 10.0)

Jul 29 18:50 - 19:00 (612 relations)
sIP (total 10) dIP (total 15)

objects # of rels. CS objects # of rels. CS
� 207.253.084.013 6 0.636 � 172.016.118.020 6 0.636

172.016.114.207 66 0.207 207.037.252.205 66 0.207
207.230.054.203 117 0.001 206.132.025.051 27 0.005

sPort (total 371) dPort (total 246)
objects # of rels. CS objects # of rels. CS

� 49724 6 0.636 � 584 3 0.410
8739 1 0.003 80 (http) 130 0.186
8328 1 0.003 � 410 2 0.181

subtree kernel (WL) (Shervashidze et al. 2011) by convert-
ing the higher order data into graph data, in which nodes
representing relations are connected to the nodes represent-
ing objects. The labels are added to the nodes of objects,
and we assume an object without a label has a label indicat-
ing the mode. BIO is simply evaluated as graph data. We use
the Matlab code downloaded from the ETH zürich website 3.
The parameters are selected by grid search. Note that both
GK and SP are infeasible on our higher order data because
of enormous calculation quantity and memory space.

Evaluation Metrics Since intrusion detection (IDS) and
high-risk detection (LEND) are anomaly detection tasks, we
use the classification probabilities as anomaly scores. For
SVMs, we use the distances from hyperplanes as anomaly
scores. We use average precision as a measure of accuracy,
that is, the average of the precision values (# of true posi-
tives divided by # of predicted positives) among all the lev-
els of the recall (# of true positives divided by # of all pos-
itives). The average precision is one commonly used eval-
uation measure for anomaly detection tasks (Akoglu et al.
2012). We plot the precision against the recall by varying
the threshold on each anomaly score, and calculate the area
under the precision-recall curve as the average precision. On
BIO, we evaluate the methods based on 10-fold cross vali-
dation repeated five times and take their average accuracy.

Experimental Results

Prediction Accuracy The results are summarized in Ta-
ble 2. The results of NCI109 are omitted because they are

Figure 3: Example interpretation (CHEM). Bonds with high
absolute CSs are colored: red (positive) or blue (negative);
the stronger color indicates higher absolute value. (σ = 5.0)

almost the same as those of NCI1. DT is more accurate than
other methods on IDS and LEND, which strongly suggests
that our method works better than conventional methods on
these higher-order data. The accuracies of DT on LEND
(about 12%) might seem very low. However, DT success-
fully detects more than half of the 9 high-risk lendings by
picking up only less than 2% of all 1, 683 lendings in the
test data. On the other hand, WL exhibits the highest accu-
racies on BIO, which suggests that this graph kernel is well-
designed to classify chemical compounds or proteins. That
said, the accuracies of DT on BIO are generally in the mid-
dle among all of the results, which is fairly good. Overall,
DT performs far better than TuckerNN, which suggests that
SRTD works much more effectively than Tucker decompo-
sition in our problems. Moreover, the accuracies of DT are
better than those of noEBP, which suggests that EBP can im-
prove the prediction of our method. However, the results of
DT are almost the same as those of noEBP on BIO, possibly
because the target core tensor is so large that the important
structures can be obtained even after random initialization.
In addition, we show that DT performs far better than noHL
on all datasets, which indicates that the hidden layers of the
neural networks are essential for our method.

As a scalability test, we used various numbers of com-
pounds from CHEM and confirmed that a training time
scales almost linearly to the number of compounds. The
accuracy is about 75% after learning 128, 404 compounds,
whereas it is about 66% when learning 1, 286 compounds.

Interpretability We also report the interpretability of DT
by showing how accurately the interpretable models can spot
the true attacks on the IDS dataset. We select samples of a
test dataset with more than 0.9 probability of prediction for
attacks and calculate the CSs on the prediction. We sum up
the CSs by the objects of each mode and calculate the ratio
of samples in which the objects involving attacks are suc-
cessfully spotted within the objects with top-3 highest CSs
(Table 3). We also calculate the CSs of TuckerNN the same

3776

as with DT. DT spots attacks much more accurately than
TuckerNN on both DOS and probing. Table 4 shows an ex-
ample of interpretation on probing, which has the highest
probability of involving attacks. The objects with the high-
est CSs successfully spot the true attacks (stars in Table 4).
DT can also report the reason for prediction results on graph
data such as chemical compounds. Figure 3 shows an exam-
ple on CHEM with the highest probability of active com-
pounds, summing up two CSs corresponding to each bond
(node1 - node2, node2 - node1). Bonds with the high CSs
possibly play an important role in protein binding and can
be modified to fit better to the target, which should be eval-
uated based on the biological experiments in the future.

Conclusion

We proposed DeepTensor to tackle the problem of classify-
ing multi-way data by leveraging a novel tensor decomposi-
tion called SRTD. SRTD calculates the core tensors, which
express the important structures for classification, by mak-
ing these core tensors close to a target core tensor. We also
introduced EBP, which learns the optimal target core tensor
along with the parameters of the neural network. We empir-
ically show that DeepTensor is highly accurate on a wide
variety of multi-way data, especially on higher order data.
In addition, DeepTensor provides us with a way to investi-
gate the reason for the prediction by interpreting the core
tensor using the factor matrices, which could enable us to
gain more understandings of the target phenomenon.

Acknowledgements

We would like to thank Prof. Yasushi Okuno, Prof. Hisashi
Kashima, and Ken Kobayashi for their useful comments.

References

Acar, E., and Yener, B. 2009. Unsupervised multiway data
analysis: A literature survey. IEEE Trans. Knowl. Data Eng.
21(1):6–20.
Akoglu, L.; Tong, H.; Vreeken, J.; and Faloutsos, C. 2012.
Fast and reliable anomaly detection in categorical data. In
CIKM, 415–424.
Borgwardt, K. M., and Kriegel, H. 2005. Shortest-path ker-
nels on graphs. In ICDM, 74–81.
Borgwardt, K. M.; Ong, C. S.; Schönauer, S.; Vishwanathan,
S. V. N.; Smola, A. J.; and Kriegel, H. 2005. Protein function
prediction via graph kernels. Bioinformatics 21(1):47–56.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In NIPS, 3837–3845.
Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Deep sparse
rectifier neural networks. In AISTATS, 315–323.
He, L.; Kong, X.; Yu, P. S.; Yang, X.; Ragin, A. B.; and Hao,
Z. 2014. Dusk: A dual structure-preserving kernel for super-
vised tensor learning with applications to neuroimages. In
SDM, 127–135.
Imaizumi, M., and Hayashi, K. 2016. Doubly decomposing
nonparametric tensor regression. In ICML, 727–736.

Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In ICML, 448–456.
Kashima, H.; Tsuda, K.; and Inokuchi, A. 2003. Marginal-
ized kernels between labeled graphs. In ICML, 321–328.
Kiers, H. A. 1998. Joint orthomax rotation of the core
and component matrices resulting from three-mode principal
components analysis. Journal of Classification 15(2):245–
263.
Kolda, T. G., and Bader, B. W. 2009. Tensor decompositions
and applications. SIAM Review 51(3):455–500.
Lake, B. M.; Salakhutdinov, R.; and Tenenbaum, J. B. 2015.
Human-level concept learning through probabilistic program
induction. Science 350(6266):1332–1338.
Lathauwer, L. D.; Moor, B. D.; and Vandewalle, J. 2000. On
the best rank-1 and rank-(R1 , R2, ... , RN) approximation of
higher-order tensors. SIAM J. Matrix Analysis Applications
21(4):1324–1342.
Lipton, Z. C. 2016. The mythos of model interpretability.
CoRR abs/1606.03490.
Martin, C. D. M., and Loan, C. F. V. 2008. A jacobi-
type method for computing orthogonal tensor decomposi-
tions. SIAM J. Matrix Analysis Applications 30(3):1219–
1232.
Niepert, M.; Ahmed, M.; and Kutzkov, K. 2016. Learning
convolutional neural networks for graphs. In ICML, 2014–
2023.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ”Why
should I trust you?”: Explaining the predictions of any clas-
sifier. In KDD, 1135–1144.
Rudin, C. 2014. Algorithms for interpretable machine learn-
ing. In KDD, 1519.
Shervashidze, N.; Vishwanathan, S. V. N.; Petri, T.;
Mehlhorn, K.; and Borgwardt, K. M. 2009. Efficient graphlet
kernels for large graph comparison. In AISTATS, 488–495.
Shervashidze, N.; Schweitzer, P.; van Leeuwen, E. J.;
Mehlhorn, K.; and Borgwardt, K. M. 2011. Weisfeiler-
lehman graph kernels. Journal of Machine Learning Re-
search 12:2539–2561.
Si, Z., and Zhu, S. 2013. Learning AND-OR templates for
object recognition and detection. IEEE Trans. Pattern Anal.
Mach. Intell. 35(9):2189–2205.
Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.;
and Salakhutdinov, R. 2014. Dropout: a simple way to pre-
vent neural networks from overfitting. Journal of Machine
Learning Research 15(1):1929–1958.
Tao, D.; Li, X.; Wu, X.; Hu, W.; and Maybank, S. J. 2007.
Supervised tensor learning. Knowl. Inf. Syst. 13(1):1–42.
Wale, N., and Karypis, G. 2006. Comparison of descriptor
spaces for chemical compound retrieval and classification. In
ICDM, 678–689.
Yanardag, P., and Vishwanathan, S. V. N. 2015. Deep graph
kernels. In KDD, 1365–1374.
Zhou, H.; Li, L.; and Zhu, H. 2013. Tensor regression with
applications in neuroimaging data analysis. Journal of the
American Statistical Association 108(502):540–552.

3777

