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Abstract

In many classification tasks, the misclassification costs of
different categories usually vary significantly. Under such
circumstances, it is essential to identify the importance of
different categories and thus assign different misclassifica-
tion losses in many applications, such as medical diagno-
sis, saliency detection and software defect prediction. How-
ever, we note that it is infeasible to determine the accurate
cost value without great domain knowledge. In most common
cases, we may just have the information that which category
is more important than the other categories, i.e., the identifica-
tion of defect-prone softwares is more important than that of
defect-free. To tackle these issues, in this paper, we propose a
hypergraph learning method with cost interval optimization,
which is able to handle cost interval when data is formulated
using the high-order relationships. In this way, data correla-
tions are modeled by a hypergraph structure, which has the
merit to exploit the underlying relationships behind the data.
With a cost-sensitive hypergraph structure, in order to im-
prove the performance of the classifier without precise cost
value, we further introduce cost interval optimization to hy-
pergraph learning. In this process, the optimization on cost
interval achieves better performance instead of choosing un-
certain fixed cost in the learning process. To evaluate the ef-
fectiveness of the proposed method, we have conducted ex-
periments on two groups of dataset, i.e., the NASA Metrics
Data Program (NASA) dataset and UCI Machine Learning
Repository (UCI) dataset. Experimental results and compar-
isons with state-of-the-art methods have exhibited better per-
formance of our proposed method.

Introduction

In most real-world applications, different misclassifications
may lead to different losses. For example, misdiagnosing a
patient with deadly disease as a health case may cause more
serious losses than misdiagnosing a patient without disease
as an illness case. Another example is in the software defect
prediction field, where misclassifying a defect-prone soft-
ware module may destroy the software system and lead to
disaster consequences. However, more and more classifica-
tion works mainly focus on minimizing the number of errors
rather than the total cost.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In recent years, cost-sensitive learning has attracted more
attention (Wang et al. 2012; Kai 2002; Liu, Jun, and Ghosh
2009) from both the academia and industry. Although these
works concentrate on the cost related issue, these costs for
different categories are predefined and usually determined
by experts or obtained among a set of candidate values. We
note that in most cases, even with the deep domain knowl-
edge, it is still very challenging to determine an precise fixed
cost value for different categories. However, compared with
the precise cost, cost interval is more easier to obtain. The
cost intervals are estimated as ranges of cost and concluded
by the opinions from experts, transforming from confidence
intervals and the natural bounds (Liu and Zhou 2010). In ad-
dition, another challenging problem is that the correlations
among data are difficult to describe. Traditional relationship
formulations, such as graph structure linking two points at
one time, is difficult to explore the high-order correlations
among the data. To construct a robust classifier, a more pow-
erful data formulation should be employed to describe the
complex relationships.

To tackle these issues, in this paper, we propose a hy-
pergraph learning method with cost interval optimization
(CIHL). The main framework of our method is demon-
strated in Figure 1. In our method, the hypergraph struc-
ture is used to describe the high-order correlations among
training data. Comparing with traditional graph whose edge
can only links two points, the hyperedge in a hypergraph
can link more than two points, which can lead to a degree-
free connections among the data. Nowadays, hypergraph has
been widely used in many applications due to its superiority
on high-order correlations description. With this structure,
we conduct learning to estimate the labels for the testing
data. More specifically, the cost information is incorporated
in the data, and instead of determining a set of fixed costs,
we employ cost intervals to optimize the cost information
for improving accuracy of the classification results. We have
conducted experiments on two types of datasets, i.e., NASA
dataset and UCI dataset. Experimental results and compar-
isons with state-of-the-art methods show the superiority of
the proposed CIHL method.

The rest of this paper is organized as follows. Following
we briefly review related work. Then we introduce hyper-
graph learning and its applications. Experiments, compari-
son and discussions are provided in the following part and
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Figure 1: Illustration of the framework of our proposed method.

finally we conclude this paper.

Related Work

Most of traditional classification works assume that the mis-
classification of different categories are with the same cost.
However, in practice, the misclassification cost of different
categories may vary significantly. Most classification prob-
lems are naturally cost-sensitive, such as fraud detection,
medical diagnosis, and object detection. Therefore, instead
of minimizing the amount of misclassifications, it is mean-
ingful to decrease the total cost. In real-word applications,
there are many kinds of costs (Turney 2002), such as the
cost of misclassification errors, the cost of intervention, and
so on. The misclassification cost can be divided into two cat-
egories, i.e., the constant error cost and the conditional error
cost. For the conditional error cost, different types of errors
are based on different conditions, e.g., individual case and
feature value. As for the constant cost, the cost for all the
cases in the same category could be a constant value, and
this is also the focus of our paper.

In past few years, in order to minimize the total cost,
these kinds of learning methods attract more and more
attention (Domingos 1999; Liu, Miao, and Zhang 2014;
Bertoni, Frasca, and Valentini 2011). Cost-sensitive learn-
ing can be divided into two types, i.e., algorithm depen-
dent method and rescaling method. The first type modi-
fies the specific cost insensitive algorithm directly. For ex-
ample, Masnadi et al. (Masnadi-Shirazi and Vasconcelos
2010) produced a cost-sensitive hinge loss function, and a
cost-sensitive SVM was derived to minimize the associated
risk. Sheng et al. (Sheng and Ling 2005) proposed a hy-
brid cost-sensitive decision tree, which combined the advan-
tage of cost-sensitive decision tree and cost-sensitive naive
Bayes. The second type of cost-sensitive method is rescal-
ing. Some research on data distribution demonstrates that
natural distribution limits the performance of the classifier.
Thus, rescaling has become one of the most general ap-
proaches in cost-sensitive learning. Its working principle is
to adjust the weighting, threshold or rebalance the distribu-

tion of training data in the preprocessing step, so that the
classifier pay more attention to the important classes and im-
prove the detection rate of these classes. Usually, rescaling
can be further divided into three types, i.e., changing the de-
cision thresholds, assigning different weights to testing data
and resampling. In the type of changing the decision thresh-
olds, Domingos et al. (Domingos 1999) proposed MetaCost
which treated the classifier as a black box and required no
domain knowledge. It rescaled the data base on minimiz-
ing the total cost. Wu et al. (Wu and Chang 2003) proposed
a method to adjust the class boundary by transforming the
kernel function or modifying the kernel matrix. Chan et al.
(Chan and Stolfo 1998) presented a multi-classifier meta-
learning method, which can reduce the loss by immediate
transactions. In the type of assigning different weights to
testing data, the cost of different classes can be determined
by the domain knowledge or suggestions from the experts.
Liu et al. (Liu, Miao, and Zhang 2014) proposed a two-stage
cost-sensitive learning method for software defect predic-
tion, and this algorithm utilized the cost information for fea-
ture selection and classification. Moreover, Kai (Kai 2002)
proposed an instance-weighting method to construct cost-
sensitive trees. Bertoni et al. (Bertoni, Frasca, and Valentini
2011) proposed a hopfield-based cost-sensitive neural net-
work algorithm (COSNet), which assigned different weights
to different nodes and adopted a cost-sensitive methodology
to manage the unbalance between positive and negative la-
bels. The last kind of rescaling is resampling. In this method,
many scholars adopt over-sampling the minority class exam-
ples, under-sampling the majority class examples or combin-
ing the two sampling methods to assign different importance
to different classes. For example, Liu et al.(Liu, Jun, and
Ghosh 2009) used an uncertain sampling approach to reduce
the total cost of misclassifications. Wang et al.(Wang et al.
2012) proposed a adaptive over-sampling technique based
on the data density, which adaptively adjusted the number
of the minority samples according to its level of learning
difficulty.

Although there are many works taking cost-sensitive into
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account, most of existing methods use uncertain fixed cost
value as the true cost. The true cost is the most effective cost
to guide the classifier to minimize the total cost. Uncertain
cost value may limit the development of the cost-sensitive
learning. Comparing with accurate cost value, cost intervals
are more available. Therefore, some researchers focus on
constructing a learning method with cost interval, such as the
excellent work in (Liu and Zhou 2010), Liu et al. proposed
a method working with cost interval. In the learning proce-
dure, this method achieved the optimization by minimizing
the worst and mean case risks in meanwhile. Specifically,
this method included two steps: (1) minimizing the total cost
with the maximum cost of the cost interval and learning a
variation of SVMs; and (2) minimizing the mean risk by
parameter value selection on the variation of SVMs. More-
over, Zhou et al.(Zhou and Zhou 2016) proposed cisLDM,
which aimed to optimize the margin distribution on testing
data when minimizing the worst-case and the mean total cost
simultaneously using the cost interval.

Introduction of Hypergraph Learning

Hypergraph has been widely used in many fields. Here, we
briefly introduce hypergraph learning and its applications.
Nowadays, there are many learning methods based on graph
structure (Yang et al. 2015; Kapoor et al. 2005; Zhang et al.
2016). However, the pairwise connections limit the ability
of the classifier to mine the deep relationships among data.
Different from traditional graph structure, hypergraph can
explore the high-order correlations among the data by the
flexibility of hyperedges.

Generally, a hypergraph G = (V, E ,W) contains three
components, i.e., a vertex set V , an hyperedge set E , and
weights of hyperedges W. The hypergraph can be repre-
sented as a |V|× |E| incidence matric H, and the entry of H
is defined as

h(v, e) =

{
1 if v ∈ e

0 if v /∈ e
, (1)

which represents the relationships between the vertices and
the hyperedges.

The degree of each vertex in the hypergraph is defined
by d (v) =

∑
e∈E ω (e)h (v, e), and for each hyperedge, its

degree is defined by δ(e) =
∑

v∈V h(v, e).
Then, two diagonal matrices Dv and De can be used to

denote the degrees of vertices and hyperedges. Moreover,
the diagonal matrix W denotes the weights of the hyper-
edges.

Zhou et al. (Zhou, Huang, and Schölkopf 2006) pro-
posed a regularizer on hypergraph, which was defined as
argmin

F
{λRemp(F) + Ω(F)}. In this framework, the trade-

off parameter λ > 0 balances the weights between Remp(F)
and Ω(F). F is the to-be-learned relevance matrix, Ω(F) is
a hypergraph structure regularizer, and Remp(F) is the em-
pirical loss based on the labeled data.

Usually, the empirical loss Remp(F) is defined as
Remp(F) = ‖F−Y‖2F, where Y is the label matrix of sam-
ples. As for Ω(F), the regularizer on hypergraph is defined

by

Ω(F)=
1

2

∑
e∈E

∑
u,v∈V

C∑
k=1

w (e)H (u, e)H (v, e)

δ (e)

(
F (u, k)√

d (u)
−F (v, k)√

d (v)

)2

,

(2)

which aims to smooth the relationships among the data,
based on the principle that the more connections between
two vertices exist, the stronger similarity between their la-
bels will be.

Here, let Θ = D
− 1

2
v HWD−1

e HTD
− 1

2
v , and Δ = I −

Θ, then the normalized cost function can be rewritten as
Ω(F) = tr

(
FTΔF

)
, where Δ is called hypergraph Lapla-

cian.
Then, the learning function can be re-written as

argmin
F

{
tr
(
FTΔF

)
+ λ‖F−Y‖2F

}
.

Due to the superiority of hypergraph structure, it has been
used in many areas, such as image retrieval (Gao et al. 2012),
feature selection (Zhu et al. 2017), image classification (Gao
et al. 2014) and object classification (Su et al. 2017). Huang
et al.(Huang et al. 2010) proposed a transductive learning
method for image retrieval. In this method, the images were
regarded as vertices in the hypergraph structure, and then the
image retrieval problem can be transformed into the prob-
lem of hypergraph ranking. Regarding the multi-label clas-
sification task, Sun et al.(Sun, Ji, and Ye 2008) introduced
a hypergraph spectral learning formulation to mine the re-
lationships among different classes. Chen et al. (Chen et al.
2015) used the hypergraph to formulate textual, visual and
emotion information jointly for sentiment prediction.

Hypergraph Learning with Cost Interval

Optimization

Data Modeling for High-order Correlation

Hypergraph plays an important role in modeling high-order
correlations among the data. In this work, we regard each
sample as a vertex in a hypergraph. Given a set of testing
and training samples {Q1,Q2, . . . ,Qn}, our task is to ex-
plore the relationships among the samples and map the fea-
tures of {Q1,Q2, . . . ,Qn} to labels. In the following sec-
tions, in order to distinguish different variables, we denote
matrices as boldface upper-case letters, vectors as boldface
lower-case letters and scalars as normal italic letters.

In hypergraph G = (V, E ,W), the number of vertices Nv

is the same as the number of both the training and testing
data. Vertex i in the hypergraph is represented by a feature
vector si (si ∈ Rp), and then we let S = {s1, s2, . . . , sNv

}
denote features for all vertices. In the process of building hy-
peredges, we select one vertex in {Q1,Q2, . . . ,Qn} as the
centroid, and select K nearest neighbors according to the
distance between the centroid with other vertices, and then
the centroid vertex and the selected neighbors are connected
by the hyperedges. The process of hyperedge construction
is demonstrated in Figure 2. After all vertices have been se-
lected as the centroid vertex, we build Ne hyperedges.

In addition, we denote the weights of all hyperedges as a
diagonal matrix W, and for each hyperedge, Wii is initial-
ized as 1. Here, we utilize a probabilistic incidence matrix
H to represent the connections on the hypergraph. As for
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(a) A hyperedge example with
six nearest neighbors.

(b) A hyperedge example with
ten nearest neighbors.

Figure 2: Two hyperedge examples.

the entry in the matrix H, the connectivity between vertex
vi and hyperedge ej is displayed as the (i, j)-th entry in H,
and matrix H is defined as

H(i, p) =

{
exp

(
− d(vi,vcentroid)

2

αd̄2

)
if vi ∈ ep

0 if vi /∈ ep
, (3)

In equation (3), d(vi, vcentroid) is the distance between
vertex vi and vertex vcentroid. vcentroid is the centroid vertex
for the hyperedge ej , and d̄ is the average distance between
each pair of samples in the hypergraph.

According to matrix H, the degree of vertex vi is gener-
ated by d (vi) =

∑
e∈E ω (e)h (vi, e), and the degree of hy-

peredge ej is generated by δ(ej) =
∑

v∈V h(v, ej). Then,
the degrees of all vertices and hyperedges are represented
by diagonal matrices Dv and De.

In order to minimize total cost, the misclassification costs
of different classes are introduced into hypergraph frame-
work. As for the regularization framework of cost-sensitive
hypergraph, there are mainly three components, i.e., the em-
pirical loss with cost information Remp(ω), the hypergraph
Laplacian regularizer Ω(ω), and the optimal cost-sensitive
hypergraph regularization Ψ(W).

As for the cost-sensitive empirical loss Remp(ω), it is de-
fined as

Remp(ω) = ‖Φ(Sω − y)‖22 =
∑Nv

i=1 (Φi,i(siω − yi))
2,

(4)
here, ω is the to-be learned mapping vector, which translates
the features of the data to correlation labels. si is the feature
vector for the i-th sample. Sω is the classification results
and the diagonal matrix Φ represents the misclassification
cost information. The cost of the i-th sample is defined as
Φii.

In the learning process, some hyperedges can represent
the data correlations well and the others may be not. In or-
der to re-weight the hyperedges and improve the ability of
hypergraph in classification, the optimal cost-sensitive hy-
pergraph regularization is employed, which is defined as
Ψ(W) = ‖W‖2F. In this equation, ‖W‖F represents the
Frobenius norm of W and the diagonal matrix W is the
weights of all hyperedges.

As for the regularizer on the hypergraph, it is similar to
traditional hypergraph, which is defined as

Ω (ω) = 1
2

∑
e∈E

∑
vi,vj∈V

W(e)H(vi,e)H(vj,e)
δ(e)

(
ωsi√
d(vi)

− ωsj√
d(vj)

)2

= (Sω)�Δ(Sω).

(5)

Then, the cost-sensitive regularization framework can be
summarized into

arg min
ω,W

{
‖Φ(Sω)− y‖22 + μ(Sω)�Δ(Sω) + λ‖W‖2F

}

s.t.

Ne∑
j=1

Wj,j = 1, ∀ Wj,j ≥ 0,

(6)
in which the parameters μ and λ are tradeoffs among the
three components.

Cost Interval Optimization on Hypergraph
Structure

Since the accurate cost value is difficult to obtain, we uti-
lize the cost interval to optimize the hypergraph structure
and present our proposed CIHL method. Here, we take the
binary classification as the example. In binary classification,
we fix the cost of the less important class as 1, and then we
just consider the cost interval of the more important class.
In the above section, cost-sensitive hypergraph learning as-
sumes the true cost value is known in advance, but generally
the true cost is in the cost interval [Cmax, Cmin], so the cost-
sensitive hypergraph cannot work directly. Here, we select
surrogate cost to guide the learning on hypergraph structure
with cost interval optimization.

Since the true cost is hard to determine, we need to find
the surrogate cost c∗ to guide the optimization, and the sur-
rogate classifier h∗ is expected to as effective as the classifier
ht, which is constructed with true cost. However, ct and ht

are not available. So it is a difficult work to find the surro-
gate cost c∗ and classifier h∗. It is noted that the true cost is
between the Cmax and Cmin. Then the most direct way is to
try all the value in the cost interval and minimize the value
of all total cost, which is inefficient. In order to find a surro-
gate cost to match the condition, we formulate the problem
as

min
h,c∗

L(h, c∗)

s.t. p(L(h, c) < θ) > 1− ϕ, ∀ c ∈ [cmin, cmax],

cmin ≤ c∗ ≤ cmax,

(7)

where L(h, c) represents the empirical risk, and is defined

as L(h, c) =
Nv∑
i=1

l(c, ρi, y). ρi is the label of testing data i,

which can be calculated by ρi = siω. ω is calculated by the
cost-sensitive hypergraph h with equation (6). The loss of
misclassifying sample si is defined as l(c, ρi, y) = cI(ρi �=
y ∧ y = +) + I(ρi �= y ∧ y = −), + is the label of the
more important class and − is the label of the less important
class. The equation (7) guarantees that all of the possible
total costs are small enough with a high probability.

But according to the infinite constraints, it is difficult to
get the optimal solutions. To overcome this problem, accord-
ing to (Liu and Zhou 2010), we utilize the worst-case risk
to promise all of the constraints can be obeyed. This is be-
cause if the surrogate classifier h∗ is the worst-case classifier
and it meet the constraints in the (7), and then it should sat-
isfy the following equation: h∗ = argmin

h
sup
c

L(h, c), and
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p(sup
c

L(h∗, c) < θ) > 1 − ϕ, so for any c, p(L(h∗, c) <

θ) > 1 − ϕ. It can be proved (Liu and Zhou 2010) that the
worst-case risk can be achieved when the surrogate cost c∗
is equal to Cmax.

Considering that the true cost may be far from Cmax, for
example, ct = Cmin, so just optimizing the surrogate cost
Cmax is unable to make the true cost small enough. As ex-
plained in (Liu and Zhou 2010), the mean cost Cmean =
0.5(Cmax+Cmin) is the smallest maximal distortion of the
true risk, so it is another best choice to guide the learning
process.

After selecting the surrogate costs Cmax and Cmean, we
can use these to guide the optimization of cost-sensitive hy-
pergraph simultaneously. This procedure can be summarized
in two steps. In the first step, we utilize Cmax as the surro-
gate cost to optimize the objective function and learn a set
of cost-sensitive hypergraph structures with different param-
eter values. In the second step, we utilize the Cmean as the
surrogate cost to select the smallest total cost on the valid
dataset, and then the corresponding hypergraph structure is
selected as the unique solution.

Algorithm 1 The workflow of our proposed CIHL method.
The training data Strain = {strain1

, strain2
, · · · , strainn

}.
The testing data Stest = {stest1 , stest2 , · · · , stestn}.
The valid data Svalid = {svalid1

, svalid2
, · · · , svalidn

}.
Cost interval: {Cmin, Cmax}
A set of parameters: {λ, μ}
Output:

1: For each λ, μ, construct a cost-sensitive hypergraph-
based classifier with Cmax.

2: Obtain a set of mapping vectors ω(k) by minimizing the
worst case total cost.

3: Calculate the label ρk on valid data by ρki = svalidi ×
ω(k) with each mapping vector.

4: Use Cmean to evaluate h(k) by calculating the
L(ρk, Cmean).

5: return the classifier h(k) = argmin
hk

L(hk, Cmean)

Experiment
In this section, we introduce the testing datasets, compared
methods, experimental results and discussions.

The Testing Datasets

In our experiments, we employ the widely used eight
data from NASA Metrics Data Program (NASA) dataset
(Menzies, Greenwald, and Frank 2007), including CM1,
KC3, MC2, MW1, PC1, PC3, PC4, PC5 and seven data
from binary UCI Machine Learning Repository (UCI)(Lich-
man 2013), including haberman, heartstatlog, sonar, SPET,
SPECTF, wdbc, wpbc to evaluate the performance of our
method.

Compared Methods

To evaluate the performance of our method, we compare
CIHL with several state-of-the-art methods in the latest three

Table 1: Cost Intervals in Our Experiments.

[1,5], [1,10], [1,15], [6,10], [5,15], [5,20], [11,15],
[10,20], [10,25], [15,25], [15,30], [16,20], [20,30]

years, which are introduced as follow:

1. Non-negative Sparse Graph Based Label Propagation
(NSGLP) (Zhang, Jing, and Wang 2017). In this graph-
based learning method, the Laplacian score sampling
strategy was used to label the defect-free samples and
solve the imbalance problem between the data. Then, it
employed a nonnegative sparse algorithm to calculate the
weight of the relationship graph and guide the learning
process. At last, it utilized the label propagation method
to predict the label of testing samples.

2. Cost-sensitive Discriminative Dictionary Learning
(CDDL) (Jing et al. 2014). This method utilized mul-
tiple dictionaries, sparse representation coefficients
and misclassification cost to construct a cost-sensitive
discriminative dictionary learning (CDDL) method.

3. Our proposed method with three fixed cost values, i.e.,
Cmax, Cmean, Cmin, which is named as CSHLMAX ,
CSHLMEAN , CSHLMIN .

In order to prove the effectiveness of hypergraph structure,
we compare our method with two learning methods with
cost interval optimization.

1. CISVM (Liu and Zhou 2010). In this method, the author
constructed a SVM with cost intervals optimization.

2. cisLDM (Zhou and Zhou 2016). cisLDM optimized the
margin distribution on labeled and unlabeled data with
cost interval information.

Experimental Settings

In experiments, we randomly divide the data into three parts,
i.e., 1/3 data for training, 1/3 data for testing, and 1/3 data
for validation. The data partition process repeats 30 times
and the average performances are used for comparison. Both
of the two parameters, i.e., λ, μ, are selected for each cost in-
terval from the set of 0.01, 0.1, 1, 10, 100. α in equation (3)
is set as 0.05 in our experiments.

Since the true cost is unknown, we need to evaluate the
performance of all compared methods in different situa-
tions. So quadrisection points of an interval are consid-
ered in turn as the true cost: Cmin + (Cmax − Cmin) ×
0, 0.25, 0.5, 0.75, 1. We call them test points P1-P5. The cost
intervals with different widths used in our experiments are
shown in Table 1.

Experimental Results

Experimental results are shown in Table 2 and Table 3. In our
experiment, we have evaluated each method on 15 data from
two datasets. For each data, we have used 13 cost intervals
and each with 5 test points, and then we have conducted 975
tests. In Table 2 and Table 3, for result of two compared
methods at each test point, the sum of win, tie and loss is
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(a) On the MC2 data from NASA dataset.

(b) On the MW1 data from NASA dataset.

(c) On the australian data from UCI dataset.

(d) On the LiverDisorders data from UCI dataset.

Figure 3: The experimental results with different cost inter-
vals. X-axis shows cost intervals, Y -axis is the ratio of the
total cost of each method against that of hypergraph-based
classifier without cost

equal to 195, and the methods with more number of bold
results are more competitive.

Due to the page limit, in Figure 3, we show the detailed
results between our method and other state-of-the-art meth-
ods on four data from NASA and UCI dataset. In Figure 4,
we provide the comparison between our method and cost-
sensitive hypergraph classifier optimization with different
fixed costs on the other four data from NASA and UCI
dataset, respectively.

From the results, we can notice that our method always
performs better than all compared methods. More specifi-
cally, we can have the following observations.

1. At P1, the true cost is Cmin. In this test point,
CSHLMIN uses the true cost to guide the learning pro-
cess, and its results are better than CSHLMAX and
CSHLMEAN . Although we use the Cmax to optimize
the learning process in the first step of our method, we
can find our method is also better than CSHLMIN . The
similar results can be found when compared with other
state-of-the-art methods.

2. At P2, the true cost is 0.5(Cmin + Cmean). In this test
point, no methods use the true cost, and our method
beats all compared methods in the two comparisons.
We can find that the performances of CSHLMIN and
CSHLMEAN are better than CSHLMAX . The reason
is that the true cost is between Cmin and Cmean, and the
cost of CSHLMAX is little far from the true cost. Appar-
ently, the uncertain cost value will affect the performance
of classifier.

Table 2: Win/tie/loss counts of method-in-row compare
with method-in-colum after t-test at 95 percent significant
level on NASA and UCI dataset.

CSHLMIN CSHLMEAN CSHLMAX

p1

CIHL 98/13/84 110/9/76 118/9/68

CSHLMAX 36/47/112 73/40/82

CSHLMEAN 65/23/107

p2

CIHL 135/24/36 132/10/53 125/38/32

CSHLMAX 66/42/87 73/40/82

CSHLMEAN 111/23/61

p3

CIHL 127/33/35 132/11/52 128/39/28

CSHLMAX 121/47/27 57/35/103

CSHLMEAN 126/7/62

p4

CIHL 132/14/49 129/29/37 126/22/47

CSHLMAX 126/34/35 77/40/78

CSHLMEAN 122/23/50

p5

CIHL 111/9/75 115/5/71 123/19/53

CSHLMAX 102/47/46 61/93/41

CSHLMEAN 125/23/47

3. At P3, the true cost is Cmean. The performance
of CSHLMEAN is better than CSHLMIN and
CSHLMAX , and in this test point, our method is sightly
better than CSHLMEAN and significantly better than
other methods.

4. At P4, the true cost is 0.5(Cmean + Cmax), in this point,
we can find CSHLMIN is significantly worse than other
methods, while CSHLMEAN and CSHLMAX are com-
parable. Our proposed method CIHL is significantly bet-
ter than other state-of-the-art methods.

5. At P5, the true cost is Cmax. The performance of
CSHLMEAN , CSHLMAX , CIHL are all significantly
better than CSHLMIN . Additionally, CIHL shows bet-
ter performance compared with CSHLMAX . The results
prove the effectiveness of cost interval optimization.

Discussion

Compared with state-of-the-art methods, i.e., NGSLP,
CDDL, cisLDM, CISVM, our method CIHL achieves the
best performances. The results can be contributed to two
advantages of CIHL. First, we utilize cost intervals to opti-
mize our learning method. During the optimization process,
we aim to minimize the total cost instead of decreasing the
amount of misclassifications. So when compared with the
methods without cost-sensitive learning, i.e., NGSLP, the su-
periority of our method is obvious. We can also notice that
all learning methods with cost interval optimization, includ-
ing CISVM, cisLDM, and our method, outperform NGSLP
and CDDL.

Second, CIHL constructs a hypergarph structure to for-
mulate the correlations among the data. As shown in the
experimental results, our proposed method CIHL has better
performances than graph-based method, i.e., NGSLP. The
reason for these phenomenons can be concluded as follows.
In our method, we use the hypergraph structure, which can
adequately describe the high-order correlations under the
dataset. In the hypergraph structure, each hyperedge can
connect more than two vertices, so it can model the com-
plex relationships between the features and the labels. Af-
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(a) On the CM1 data from NASA dataset.

(b) On the KC3 data from NASA dataset.

(c) On the SPECT data from UCI dataset.

(d) On the wpbc data from UCI dataset.

Figure 4: The experimental results with different cost inter-
vals. X-axis shows cost intervals, Y -axis is the ratio of the
total cost of each method against that of hypergraph-based
classifier without cost

ter the hypergraph is constructed, we can use the structure
to explore the relationships among testing data and utilize
the hypergraph manifold to determined the label in a semi-
supervised way. As for traditional graph structure, the pair-
wise connection is inability to explore the complex informa-
tion adequately. The similar results also can be found in the
comparison with CISVM and cisLDM, which also use the
cost interval in the learning process. In these two methods,
even though they used the cost interval to guide the learning
process, our method can still achieve much better perfor-
mance due to the advantage of hypergraph structure.

Moreover, as shown in the Figure 4, we notice that our
method also performs the best compared with cost-sensitive
hypergraph learning with fixed cost values. In this compar-
ison, we find that the methods learning with true cost value
perform better than other methods. This phenomenon shows
that the uncertain cost value will limit the performance of
the classifier. Additionally, without precise cost value, our
method is better than or comparable to the classifier learn-
ing with true cost, and the contrast results indicate that our
method is effective and more practical. The better results can
be dedicated to that we utilize Cmax as the surrogate cost
to guide the learning process to satisfy the constraints, and
then use the smallest maximal distortion Cmean to select the
classifier.

Table 3: Win/tie/loss counts of method-in-row compare
with method-in-colum after t-test at 95 percent significant
level on NASA and UCI dataset.

CDDL NGSLP CISVM cisLDM

p1

CIHL 140/49/5 137/52/6 95/52/48 128/51/16

cisLDM 89/50/56 91/52/10 23/50/122

CISVM 132/62/1 133/19/43

NGSLP 56/52/87

p2

CIHL 144/50/1 133/51/11 90/51/54 130/51/14

cisLDM 86/41/68 89/49/57 123/50/22

CISVM 140/54/1 124/61/10

NGSLP 60/55/80

p3

CIHL 123/46/261 115/39/41 123/51/21 116/50/29

cisLDM 97/50/48 101/52/33 89/30/76

CISVM 127/38/30 120/32/43

NGSLP 100/52/43

p4

CIHL 144/51/0 131/39/25 101/40/54 141/41/13

cisLDM 88/50/60 86/71/38 123/39/33

CISVM 122/43/30 120/52/23

NGSLP 71/36/88

p5

CIHL 142/49/4 129/51/15 98/41/56 123/39/33

cisLDM 72/41/82 86/51/58 101/51/23

CISVM 124/32/35 113/32/50

NGSLP 62/52/81

Conclusion

In real-world classification tasks, the costs for different clas-
sification errors vary a lot while the precise cost of differ-
ent categories is still challenging to obtain, which requires
rich domain knowledge. In this paper, we propose a hyper-
graph learning method with cost interval optimization. In
this method, the hypergraph structure is used to formulate
the high-order correlations among the data, and the cost-
sensitive learning with cost interval optimization is con-
ducted to estimate the cost-oriented data labels. We have
conducted experiments on two groups of datasets and exper-
imental results have demonstrated better performance com-
pared with the state-of-the-art methods.

Although the performance of the CIHL shows its ad-
vantage in classification, there are still several limitations.
One important limitation is that how to incorporate domain
knowledge in the cost related formulation, which is very es-
sential on modelling the data correlations, has not been in-
vestigated.

Acknowledgments. This work was supported in part by
the National Key R and D Program of China under Grant
2017YFC011300, in part by the National Natural Sci-
ence Funds of China under Grant 61671267 and Grant
61527812, in part by National Science and Technology Ma-
jor Project (No. 2016ZX01038101), MIIT IT funds (Re-
search and application of TCN key technologies ) of China,
and The National Key Technology R and D Program (No.
2015BAG14B01-02).

References

Bertoni, A.; Frasca, M.; and Valentini, G. 2011. Cosnet: A
cost sensitive neural network for semi-supervised learning
in graphs. In Proceedings of Machine Learning and Knowl-
edge Discovery in Databases, 219–234.

4528



Chan, P. K., and Stolfo, S. J. 1998. Toward scalable learn-
ing with non-uniform class and cost distributions: A case
study in credit card fraud detection. In Proceedings of the
Fourth International Conference on Knowledge Discovery
and Data Mining, 164–168.
Chen, F.; Gao, Y.; Cao, D.; and Ji, R. 2015. Multimodal
hypergraph learning for microblog sentiment prediction. In
2015 IEEE International Conference on Multimedia and
Expo, 1–6.
Domingos, P. M. 1999. Metacost: A general method for
making classifiers cost-sensitive. In Proceedings of Associ-
ation for Computing Machinery’s Special Interest Group on
Knowledge Discovery and Data Mining, 155–164.
Gao, Y.; Wang, M.; Tao, D.; Ji, R.; and Dai, Q. 2012. 3-
d object retrieval and recognition with hypergraph analysis.
IEEE Transactions on Image Processing 21(9):4290–4303.
Gao, Y.; Ji, R.; Cui, P.; Dai, Q.; and Hua, G. 2014.
Hyperspectral image classification through bilayer graph-
based learning. IEEE Transactions on Image Processing
23(7):2769–2778.
Huang, Y.; Liu, Q.; Zhang, S.; and Metaxas, D. N. 2010. Im-
age retrieval via probabilistic hypergraph ranking. In CVPR
2010, San Francisco, CA, USA, 13-18 June 2010, 3376–
3383.
Jing, X.; Ying, S.; Zhang, Z.; Wu, S.; and Liu, J. 2014. Dic-
tionary learning based software defect prediction. In Pro-
ceedings of the 36th International Conference on Software
Engineering, 414–423.
Kai, M. T. 2002. An instance-weighting method to induce
cost-sensitive trees. IEEE Transactions on Knowledge and
Data Engineering 14(3):659–665.
Kapoor, A.; Qi, Y. A.; Ahn, H.; and Picard, R. W. 2005.
Hyperparameter and kernel learning for graph based semi-
supervised classification. In Proceedings of Advances in
Neural Information Processing Systems, 627–634.
Lichman, M. 2013. UCI machine learning repository.
Liu, X., and Zhou, Z. 2010. Learning with cost intervals. In
Proceedings of the 16th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 403–
412.
Liu, A.; Jun, G.; and Ghosh, J. 2009. A self-training
approach to cost sensitive uncertainty sampling. Machine
Learning 76(2-3):257–270.
Liu, M.; Miao, L.; and Zhang, D. 2014. Two-stage cost-
sensitive learning for software defect prediction. IEEE
Transactions on Reliability 63(2):676–686.
Masnadi-Shirazi, H., and Vasconcelos, N. 2010. Risk mini-
mization, probability elicitation, and cost-sensitive svms. In
Proceedings of International Conference on Machine Learn-
ing, 759–766.
Menzies, T.; Greenwald, J.; and Frank, A. 2007. Data min-
ing static code attributes to learn defect predictors. IEEE
Transactions on Software Engineering 33(1):2–13.
Sheng, S., and Ling, C. X. 2005. Hybrid cost-sensitive de-
cision tree. In Proceedings of The European Conference on

Machine Learning & Principles and Practice of Knowledge
Discovery in Databases, 274–284.
Su, L.; Gao, Y.; Zhao, X.; Wan, H.; Gu, M.; and Sun, J. 2017.
Vertex-weighted hypergraph learning for multi-view object
classification. In Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence, 2779–
2785.
Sun, L.; Ji, S.; and Ye, J. 2008. Hypergraph spectral learn-
ing for multi-label classification. In Proceedings of the
14th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 668–676.
Turney, P. D. 2002. Types of cost in inductive concept learn-
ing. Computing Research Repository cs.LG/0212034.
Wang, S.; Li, Z.; Chao, W.; and Cao, Q. 2012. Applying
adaptive over-sampling technique based on data density and
cost-sensitive SVM to imbalanced learning. In Proceedings
of The 2012 International Joint Conference on Neural Net-
works, 1–8.
Wu, G., and Chang, E. Y. 2003. Class-boundary alignment
for imbalanced dataset learning. Proceedings of Interna-
tional Conference on Machine Learning 49–56.
Yang, P.; Zhao, P.; Zheng, V. W.; and Li, X. 2015. An aggres-
sive graph-based selective sampling algorithm for classifica-
tion. In Proceedings of 2015 IEEE International Conference
on Data Mining, 509–518.
Zhang, Y.; Zhang, X.; Yuan, X.; and Liu, C. 2016. Large-
scale graph-based semi-supervised learning via tree lapla-
cian solver. In Proceedings of The Association for the Ad-
vancement of Artificial Intelligence, 2344–2350.
Zhang, Z.; Jing, X.; and Wang, T. 2017. Label propagation
based semi-supervised learning for software defect predic-
tion. Automated Software Engineering 24(1):47–69.
Zhou, Y., and Zhou, Z. 2016. Large margin distribution
learning with cost interval and unlabeled data. IEEE Trans-
actions on Knowledge and Data Engineering 28(7):1749–
1763.
Zhou, D.; Huang, J.; and Schölkopf, B. 2006. Learn-
ing with hypergraphs: Clustering, classification, and embed-
ding. In Proceedings of Neural Information Processing Sys-
tems, 1601–1608.
Zhu, X.; Zhu, Y.; Zhang, S.; Hu, R.; and He, W. 2017. Adap-
tive hypergraph learning for unsupervised feature selection.
In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, 3581–3587.

4529


