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Abstract

We consider a new setting of online clustering of contextual
cascading bandits, an online learning problem where the un-
derlying cluster structure over users is unknown and needs to
be learned from a random prefix feedback. More precisely, a
learning agent recommends an ordered list of items to a user,
who checks the list and stops at the first satisfactory item,
if any. We propose an algorithm of CLUB-cascade for this
setting and prove an n-step regret bound of order Õ(

√
n).

Previous work (Li et al. 2016) corresponds to the degenerate
case of only one cluster, and our general regret bound in this
special case also significantly improves theirs. We conduct
experiments on both synthetic and real data, and demonstrate
the effectiveness of our algorithm and the advantage of incor-
porating online clustering method.

Introduction

Most recommendation systems nowadays display
items in an ordered list. Examples include typical ho-
tels/restaurants/goods recommendation, search engines,
etc. This is especially the case for apps or games recom-
mendations on mobile devices due to the limited size of
screen. Click behaviors and feedback in such ordered lists
have their distinctive features, and a cascade model was
recently developed for studying feedback of user click
behaviors (Craswell et al. 2008). In the model, after a
user receives a list of items, she checks the items in the
given order and clicks the first satisfactory one. After
the click, she stops checking the rest items in the list.
The learning agent receives the feedback of the click and
knows that the items before the clicked one have been
checked and are unsatisfactory, but whether the user likes
any items after the clicked one is unknown. The cascade
model is straightforward but effective in characterizing user
behaviors (Chuklin, Markov, and Rijke 2015).

In this paper, we consider an online learning variant of
cascading bandits (Kveton et al. 2015a; 2015b). In our
model, the learning agent uses exploration-exploitation tech-
niques to learn the preferences of users over items by in-
teractions with users. At each time step, the learning agent
recommends a list of items to the current user, observes the
click feedback, and receives a reward of 1 if the user clicks
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on an item (and receives reward 0 otherwise). The learn-
ing agent aims to maximize its cumulative rewards after n
rounds. Previous work (Li et al. 2016; Zong et al. 2016)
considered a setting of linear cascading bandits to deal with
ever-changing set of items. Roughly speaking, the learning
agent adaptively learns a linear mapping between expected
rewards and features of items and users.

One important limit of the linear cascading bandit al-
gorithms is that they mainly work in a content-dependent
regime, discarding the often useful method of collaborative
filtering. One way to utilize the collaborative effect of users
is to consider their clustering structure. In this paper, we for-
mulate the problem of online clustering of contextual cas-
cading bandits, and design an algorithm to learn the cluster-
ing information and extract user feature vectors adaptively
with low cumulative regret. Following the approach in (Gen-
tile, Li, and Zappella 2014), we use a dynamic graph on all
users to represent clustering structure, where an edge indi-
cates the similarity between the two users. Edges between
different clusters are gradually removed as the algorithms
learns from the feedback that the pairs of users are not sim-
ilar. We prove an upper bound of O(d

√
mnK ln(n)) for the

cumulative regret, where m is the number of clusters, d is
the dimension of feature space, n is the number of rounds,
and K is the number of recommended items. This extends
and improves the existing results in the degenerate setting of
only one cluster (m = 1). Finally we experiment on both
synthetic and real datasets to demonstrate the advantage of
the model and algorithm.

The organization of this paper is as follows. We first in-
troduce previous work related to our setting, then formu-
lates the setting of Online Clustering of Contextual Cas-
cading Bandits with some appropriate assumptions. Next we
give our UCB-like algorithm CLUB-cascade and the cumu-
lative regret bound, which is better than the existing results
in the degenerate case. Then we report experimental results
on both synthetic data and real data to demonstrate the ad-
vantage of incorporating online clustering. Last is the con-
clusion of the paper.

Related Work

(Kveton et al. 2015a; Katariya et al. 2016) introduced the
click model with cascading feedback and DCM feedback to
the MAB framework, which describes the random feedback
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dependent on the display order of items. In the cascading
feedback, a user clicks the first satisfying items and stops
checking further, while in the DCM feedback, after a user
clicks an item, there is a chance that she is not satisfied and
continues checking. (Kveton et al. 2015b) considered the
problem where the random feedback stops at the first default
position (reward 0), in comparison with the first success po-
sition (reward 1) in the cascade setting. Even though the set-
tings are similar, the techniques are totally different because
of the asymmetry of the binary OR function and binary AND
function. (Zoghi et al. 2017) brought up an online elimina-
tion algorithm to deal with different click models. All the
above works focused on the setting of fixed item set.

(Li et al. 2016) generalized both the cascade setting and
combinatorial cascade setting with contextual information,
position discounts and more general reward functions. For
the binary OR case, they provided a regret bound for n
rounds with order O( d

p∗
√
nK ln(n)) where p∗ is probabil-

ity to check all recommended items and could be small. At
the same time, (Zong et al. 2016) also generalized the cas-
cade setting with linear payoff and brought up a UCB-like
algorithm, CascadeLinUCB, as well as a Thompson sam-
pling (TS) algorithm without a proof. They proved a re-
gret bound of n rounds for the CascadeLinUCB algorithm
of order O(dK

√
n ln(n)). In this paper, we consider the

basic cascade setting, where the random feedback stops at
the first click position, together with the online clustering
to explore user structure. We provide a regret bound of or-
der O(d

√
mnK ln(n)). Cast in this framework, the existing

results studied the degenerate case of m = 1.
The work (Gentile, Li, and Zappella 2014) first consid-

ered online clustering of linear bandits, and maintained a
graph among users and used connected components to de-
note user clusters. A follow-up (Li, Karatzoglou, and Gentile
2016) explored item structures to help cluster users and to
improve recommendation performance. (Gentile et al. 2017)
considered a variant where the clusters over users are depen-
dent on the current context. In this paper, we employ some
idea of the first paper, and manage to make it to work with
random feedback in click models. (Combes et al. 2015) con-
sidered a similar setting of clustered users with cascade feed-
back, but in their paper, the clusters are fixed and known to
the learning agent. In our paper, the cluster structure is un-
known and has to be learned by the learning agent.

Problem Setup

In this section, we formulate the problem of “Online Clus-
tering of Contextual Cascading Bandits”. In this problem,
there are u users, denoted by set [u] = {1, . . . , u}. At each
time step t, a user it comes to be served with contents and
the learning agent receives the user index with a finite feasi-
ble content set Dt ⊂ R

d×1, where ‖x‖2 ≤ 1 for all x ∈ Dt.
Then the learning agent recommends a ranked list of dis-
tinct K items Xt = (x1, ..., xK) ∈ ΠK(Dt) to the user. The
user checks the items in the order from the first one to the
last one, clicks the first attractive item, and stops checking
after the click. We use the Bernoulli random variable yt,k
to indicate whether the item xt,k has been clicked or not.

The learning agent receives the feedback of the index of the
clicked item, that is

Ct = inf{k : yt,k = 1}. (1)

Note that inf(∅) = ∞ and Ct = ∞ represents that the user
does not click on any given item. Let Kt = min{Ct,K}.
The user checks the first Kt items and the learning agent
receives the feedback {yt,k, k = 1, . . . ,Kt}.

Let Ht be the entire history information until the end
of round t. Then the action Xt is Ht−1-adaptive. We will
write Et[·] for E[·|Ht−1] for convenience of notation, use
the boldface symbols to denote random variables, and de-
note [m] = {1, . . . ,m}.

We assume the probability of clicking on an item to be
a linear function of item feature vector. Specifically there
exists a vector θit ∈ R

d×1, ‖θit‖2 ≤ 1 for user it, such
that the expectation of the binary click feedback y on the
checking item x is given by the inner product of x with θit ,
i.e.,

Et[y|x] = θ�itx, (2)
independently of any other given item.

We assume that there are m clusters among the users,
where m 	 u, and the partition of the clusters is fixed but
unknown. Specifically we use I1, . . . , Im to denote the true
clusters and a mapping function j : [u] → [m] to map user i
to its true cluster index j(i) (user i belongs to cluster Ij(i)).
We assume the order of user appearance and the set of fea-
sible items are not under the control of the learning agent.
In addition, we assume clusters, users, and items satisfy the
following assumptions.

Cluster regularity All users in the same cluster Ij share
the same θ, denoted as θj . Users in different clusters have a
gap between their θ’s, that is

‖θj − θj′‖ ≥ γ > 0

for any j �= j′.

User uniformness At each time step t, the user is drawn
uniformly from the set of all users [u], independently over
past.

Item regularity At each time step t, given the size of
Dt, the items in Dt are drawn independently from a fixed
distribution x with ‖x‖2 ≤ 1, and E[xx�] is full rank
with minimal eigenvalue λx > 0. Also at all time t,
for any fixed unit vector θ ∈ R

d, given the size of Dt,
(θ�X)2 has sub-Gaussian tail with variance parameter σ2 ≤
λ2
x/(8 log(4|Dt|)).
Note that the above assumptions follow the settings from

previous work (Gentile, Li, and Zappella 2014). We will
have more discussions on these in later section.

At each time step t, the reward of X = (x1, . . . , xK) ∈
ΠK(Dt) under the random click result yt = (yt(x))x∈D (if
known) is

f(X,yt) = 1−
K∏

k=1

(1− yt(xk)).
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By independence assumption, it is easily verified that the
expectation of f(X,yt) is

f(X, yt) = 1−
K∏

k=1

(1− yt(xk)),

where yt(x) = θ�j(it)x and yt = (yt(x))x∈Dt
. Let

X∗
t = argmaxX∈ΠK(Dt)ft(X, yt)

be the optimal action in round t. Then the regret in time step
t is

Rt(X,yt) = f(X∗
t ,yt)− f(X,yt).

The goal for the learning agent is to minimize the expected
cumulative regret

R(n) = E

[ n∑
t=1

Rt(Xt,yt)
]
. (3)

Algorithm and Results

Notations

Our main algorithm is given in Algorithm 1. Before diving
into details, let us define some useful notations used in later
analysis. For any time step t and user i, define

Si,t =
∑
s≤t
is=i

Ks∑
k=1

xs,kx
�
s,k, bi,t =

∑
s≤t
is=i

Ks∑
k=1

ys,kxs,k,

Ti,t =
∑

s≤t, is=i

Ks

to be the Gramian matrix, the moment matrix of regressand
by regressors, and the number of effective feedbacks for user
i up to time t, respectively. Let ∅ �= I ⊂ [u] be any nonempty
user index subset and

M I,t = λId +
∑
i∈I

Si,t, bI,t =
∑
i∈I

bi,t,

θ̂I,t = M−1
I,tbI,t, TI,t =

∑
i∈I

Ti,t

(5)

be the regularized Gramian matrix, the moment matrix of
regressand, the estimate by ridge regressors, and the fre-
quency associated with user set I and regularization param-
eter λ > 0 up to time t, respectively.

Algorithm

The algorithm maintains an undirected graph structure on all
users Gt = ([u], Et), where an edge exists between a pair
of users if they are similar. The collection of the connected
components represents a partition of the users.

The learning agent starts with a complete graph over all
users and initializes Gramian matrix and the moment ma-
trix of regressand for each user i (Line 2). At each time
step t, the learning agent receives a user index it and a
feasible finite content set Dt (Line 4), where ‖x‖2 ≤ 1
for all x ∈ Dt. From the current graph structure on users

Algorithm 1 CLUB-cascade
1: Input: λ, α, β > 0
2: Initialize: G0 = ([u], E0) is a complete graph over all

users, Si,0 = 0d×d, bi,0 = 0d×1, Ti,0 = 0 for all i ∈
[u].

3: for all t = 1, 2, . . . , n do
4: Receive user index it, and the feasible context set

Dt ⊂ R
d×1;

5: Find the connected component Vt for user it in the
current graph Gt−1 = ([u], Et−1), and compute

MVt,t−1 = λI +
∑
i∈Vt

Si,t−1,

bVt,t−1 =
∑
i∈Vt

bi,t−1,

θ̂Vt,t−1 = M−1
t bt;

6: For all x ∈ Dt, compute

U t(x) = min{θ̂�
Vt,t−1x+ β

√
x�M−1

Vt,t−1x, 1};
(4)

7: Recommend a list of K items Xt = (xt,1, . . . ,xt,K)
with largest U t(·) values and receive feedback Ct ∈
{1, . . . ,K,∞};

8: Update statistics

Sit,t = Sit,t−1 +

Kt∑
k=1

xt,kx
�
t,k,

bit,t = bit,t−1 +

Kt∑
k=1

xt,k1{Ct = k},

Tit,t = Tit,t−1 +Kt,

where Kt = min{Ct,K} and update

θ̂it,t = (λI + Sit,t)
−1bit,t;

9: Update S�,t = S�,t−1, b�,t = b�,t−1, T�,t =

T�,t−1, θ̂�,t = θ̂�,t−1 for all � �= it;
10: Delete the edge (it, �) ∈ Et−1, if

∥∥∥θ̂it,t − θ̂�,t

∥∥∥
2
≥α

(√1 + ln(1 + Tit,t)

1 + Tit,t

+

√
1 + ln(1 + T�,t)

1 + T�,t

)
and obtain a new graph Gt = ([u], Et);

11: end for t

3556



Gt−1 = ([u], Et−1), the agent finds the connected compo-
nent Vt containing user it and computes the Gramian matrix,
the moment matrix of regressand, and the estimates θ̂Vt,t−1

by ridge regressor associated with set Vt up to time t − 1

(Line 5). Then it uses this θ̂Vt,t−1 as the estimate for the true
weight vector θj(it) to compute the upper confidence bound
of the expected reward θ�j(it)x for each item x ∈ Dt (Line
6). This step relies on the following lemma, which gives the
theoretical guarantee of the ridge regression estimate for the
true weight vector.

Lemma 1 Suppose (x1, y1), . . . , (xt, yt), . . . are generated
sequentially from a linear model such that ‖xt‖ ≤ 1 for all
t, E[yt|xt] = θ�∗ xt for fixed but unknown θ∗ with norm at
most 1, and {yt− θ�∗ xt}t=1,2,... have R-sub-Gaussian tails.
Let Mt = λI +

∑t
s=1 xsx

�
s , bt =

∑t
s=1 xsys, and δ > 0.

If θ̂t = M−1
t bt is the ridge regression estimator of θ∗, then

with probability at least 1− δ, for all t ≥ 0,

∥∥∥θ̂t − θ∗
∥∥∥
Mt

≤ R

√
d ln

(
1 +

t

λd

)
+ 2 ln

1

δ
+

√
λ

=: β(t, δ).

This Lemma is by Theorem 2 of (Abbasi-Yadkori, Pál, and
Szepesvári 2011).

When the current cluster is correct (which is guaranteed
after O(ln(n)) rounds and to be proved later), i.e. Vt =
Ij(it),∥∥∥θj(it) − θ̂Vt,t−1

∥∥∥
MVt,t−1

≤ β(TVt,t−1, δ) ≤ β(n, δ).

(Here for a positive-definite matrix M , define the norm
‖x‖M =

√
xTMx. It is not hard to verify that if M  0,

the dual norm ‖x‖M is ‖x‖M−1 .) Then by Cauchy-Schwarz
inequality, we have
∣
∣
∣θ̂
�
Vt,t−1x− θ�j(it)x

∣
∣
∣ ≤

∥
∥
∥θ̂Vt,t−1 − θj(it)

∥
∥
∥
MVt,t−1

‖x‖
M−1

Vt,t−1

≤ β(n, δ) ‖x‖
M−1

Vt,t−1
,

which results in a confidence interval for the expected re-
ward θ�j(it)x on each item x ∈ Dt.

Next the learning agent recommends a list of K items
Xt = (x1, . . . ,xK) which have the largest upper confi-
dence bounds. The user it checks the recommended items
from the first one, clicks on the first satisfactory item, and
stops checking anymore. Then the learning agent receives
feedback Ct ∈ {1, . . . ,K,∞} (Line 7). Ct ∈ {1, . . . ,K}
means that the user clicks Ct-th item and the first Ct − 1
items are not satisfactory, while the items after Ct-th po-
sition are not checked by the user. Ct = ∞ means that the
user has checked all recommended items but none of them is
satisfactory. Based on the feedbacks, the learning agent up-
dates its statistics on user it (Line 8) but not on other users
(Line 9).

Based on the updates, the weight vector estimate for the
user it might change and the similarity with other users
might be verified false. The learning agent checks the edge

of (it, �) ∈ Et−1 for any user � that is linked to user it and
deletes it if the distance between the two estimated weight
vectors is large enough (Line 10).

Analysis

The following theorem gives a bound on the cumulative re-
gret achieved by our algorithm CLUB-cascade.

Theorem 2 Suppose the cluster structure on the users, user
appearance, and items satisfy the assumptions stated in
the section of Problem Setup with gap parameter γ >
0 and item regularity parameter 0 < λx ≤ 1. Let
λ,K be the regularization constant and the number of
recommended items in each round. Let λ ≥ K,β =√

d ln
(
1 + n

λd

)
+ 2 ln(4mn) +

√
λ and α = 4

√
d/λx,

where d,m, u denotes the feature dimension, the number
of clusters and the number of users, respectively. Then the
cumulative regret of CLUB-cascade algorithm for n rounds
satisfies

R(n) ≤2β

√
2dmnK ln

(
1 +

nK

λd

)

+O

(
(u+

1

λ2
x

) ln(n) +

√
d

γλx

√
ln(n)

)
(6)

≤O
(
d
√
mnK ln(n)

)
.

For the degenerate case when m = 1, our result improves
the existing regret bounds.

Corollary 3 When the number of clusters m = 1, that
is all users are treated as one, let λ = K and β =√

d ln
(
1 + n

λd

)
+ 2 ln(4n) +

√
λ. Then the cumulative re-

gret of CLUB-cascade after n rounds satisfies

R(n) ≤2

(√
dn ln(1 +

n

λd
) + 2 ln(4n) +

√
λ

)

·
√
2dK ln

(
1 +

nK

λd

)

≤O(d
√
nK ln(K)). (7)

Note this result improves the existing results(Li et al.
2016; Zong et al. 2016). Discussions about the results, prob-
lem assumptions and implementations are given later.

Next we give a proof sketch for the Theorem 2.
Proof. [Sketch for Theorem 2] The proof for the main the-
orem is mainly based on two parts. The first part proves the
exploration rounds needed to guarantee the clusters parti-
tioned correctly. And the second part is to estimate regret
bounds for linear cascading bandits after the clusters are par-
titioned correctly.

Under the assumption of item regularity, we prove when
Ti,t ≥ O

(
1

γλx

√
d ln(n)

)
, the ‖·‖2 confidence radius for

weight vector associated with user i will be smaller than
γ/2, where the γ is the gap constant raised in the assump-
tion of cluster regularity. Suppose user i and user � belong
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to different clusters and the effective number of feedbacks
associated to both user i and � meet the requirements. Then
the condition in the Algorithm 1 of deleting an edge (i, �)
(Line 10) will be satisfied, thus the edge between user i and
� will be deleted under our algorithm with high probability.
On the other hand, if the condition of deleting an edge (i, �)
is satisfied, then the ‖·‖2 difference between the weight vec-
tors is greater than 0, thus the two users belong to different
clusters, by the assumption of cluster regularity.

By the assumption of item regularity and Bernstein’s
inequality, after t ≥ O

(
(u+ 1

λ2
x
) ln(n) +

√
d

γλx

√
ln(n)

)
rounds, we could gather enough information for every user,
thus resulting a correct clustering with high probability.

After the clusters are correctly partitioned, the recommen-
dation is based on the estimates of cluster weight vector
with the cascade feedback collected so far. After decom-
posing, the instaneous regret can be bounded by the indi-
vidual difference between expected rewards of best items
and checked items, which can be bounded with 2β ‖x‖M ,
by the definition of U t(x). Then it remains to bound the
sum of self-normalized sequence

∑n
t=1 ‖xt‖M−1

t−1
, where

Mt = Mt−1 + xx�. �

Extensions to Generalized Linear Rewards

In this section, we consider a general case that the expected
reward of recommending item x to user it at round t is

Et[y|x] = μ(θ�itx),

where μ is a strictly increasing link function, continuously
differentiable, and Lipschitz with constant κμ. This defini-
tion arises from exponential family distributions (Filippi et
al. 2010) and incorporates a large class of problems, like
Poisson or logistic regression. Let cμ = infa∈[−2,2] μ

′(a)
and assume cμ > 0.

In this setting, let the estimator θ̂I,t−1 for the set of users
I be maximum likelihood estimator, or equivalently (Filippi
et al. 2010; Li, Lu, and Zhou 2017) the unique solution of

t−1∑
s=1

1{is ∈ I}
Ks∑
k=1

(
ys,k − μ(θ�xs,k)

)
xs,k = 0, (8)

which can be found efficiently using Newton’s algorithm.
Note that the original samples (xs,k,ys,k) are stored instead
of only aggregation S, b in the linear case. With a slightly
modified version of Algorithm 1, a result of the cumulative
regret bound is obtained and provided in the following theo-
rem.

Theorem 4 Under the same assumptions and notations in
linear setting, let β = 1

cμ

√
8
λx

+ d ln(n/d) + 2 ln(4mn)

and α = 16
√
d/(λxcμ), where d,m, u denotes the feature

dimension, the number of clusters, and the number of users,
respectively. Then the cumulative regret of CLUB-cascade
with generalized linear rewards, after n rounds, satisfies

R(n) ≤2κμβ

√
2dmnK ln

(
1 +

nK

λd

)

+O

(
(u+

1

λ2
x

) ln(n) +

√
d

γλx

√
ln(n)

)
(9)

≤O

(
κμd

cμ

√
mnK ln(n)

)
.

Discussions

The degenerate case where the number of clusters m = 1,
or equivalently all users are treated as the same type, has the
same setting with Section 4.2.2 of (Li et al. 2016) and the
setting in (Zong et al. 2016). The regret proved in the first pa-
per is O( d

p∗
√
nK ln(n)), which has an additional term 1/p∗

compared to ours. The parameter p∗ denotes the minimal
probability that a user has checked all items, which could be
quite small. The reason that we can get rid of such a 1/p∗
term is because we have a better regret decomposition for-
mula than theirs. The regret presented in the second paper
has the bound of O(dK

√
n ln(n)), which has an additional

term
√
K than ours. This reason is that we have a tighter

bound for the sum of self-normalized sequence.
For the assumption on the true cluster structure over users,

we assume there is a gap γ > 0 between the weight vec-
tors associated with different clusters. The parameter γ is
a trade-off between personalization and collaborative filter-
ing, where γ = 2 corresponds to the case of only one cluster
containing all users and γ taking the value of minimal dis-
tance between different user weight vectors corresponds to
the case that each user is one cluster. Also, the assumption
of γ can be further relaxed by modifying γ along running
the algorithm. Our algorithm explores clustering structures
adaptively: It starts with one cluster, then finds finer and finer
clustering until the cluster distance reaches γ. As more data
flows in, the parameter γ can be changed smaller and our
algorithm can continue working without the need to restart.
By a similar analysis, we could derive an asymptotic regret
bound (with parameters in the algorithm changed accord-
ingly). We omit this part and simply assume a γ > 0 gap
exists.

For the users, we assume the learning agent has no control
over user appearances and at each time step, a user is drawn
uniformly from all users, and independently from the past.
If the learning agent has the access to sample users, the set-
ting becomes active learning in online clustering and should
have a better regret bound because the learning agent does
not need to wait for collecting enough information. The uni-
form user appearance assumption means that the users we
take care of are on the same activity level, which is easier
for us to deal with. If there is some activity structure over
users, we might need further assumptions and correspond-
ing strategies on the activity structure. For example, if there
are a large amount of new users, or users who only come a
few time, additional assumptions like that those users share
the same prediction vectors θ might be brought up. We leave
the relaxations of the two assumptions as future work.

Experiments

In this section, we compare our algorithm with C3-UCB
(Li et al. 2016) and CascadeLinUCB (Zong et al. 2016),
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Figure 1: Synthetic Data Set, u = 40, L = 200, K =
4, d = 20

which are the most related works. In both synthetic and real
datasets, the results demonstrate the advantage of incorpo-
rating online clustering in the setting of online recommen-
dations with cascade model. We focus on linear rewards
for all experiments. To accelerate our algorithm, we use a
sparse initialization instead of the complete graph initializa-
tion, similar in (Gentile, Li, and Zappella 2014).

Synthetic Data

In this section, we compare our algorithm, CLUB-cascade,
with C3-UCB/CascadeLinUCB on the synthetic data. The
results are shown in Figure 1.

In all the four settings, we randomly choose a content set
with L = 200 items, each of which has a feature vector
x ∈ R

d with ‖x‖2 ≤ 1 and d = 20. We use u = 40
users and assign them randomly to m = 2, 5 clusters. For
each cluster j ∈ [m], we fix a weight vector θj with norm
1 and use it to generate Bernoulli random variable, whose
mean is the inner product of θj with the corresponding item
vector. In each round, a random user comes and the algo-
rithm recommends K = 4 items to the user. According to
the Bernoulli random variables, the algorithm receives the
cascading feedback and updates its statistics accordingly. In
the synthetic setting, since we know the true weight vector
θj , the best action can be computed and thus the cumulative
regret for algorithms. The vertical axis denotes the cumula-
tive regret and the horizontal axis denotes time step t.

In the four subfigures, we explore the distance gap γ be-
tween different θ’s and the number of clusters m. When the
gap γ between weight vectors θ is fixed, our algorithm has a
better advantage over theirs when the number of clusters m
is bigger. The θ’s in subfigures (a)(c) are orthogonal, that is,
the difference gap between them is γ =

√
2. The difference

gap γ in (b)(d) is set to be 0.2, thus the cosine similarity be-
tween the different θ’s is 0.98, which is quite high. Thus un-
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(c) u = 200, L = 200
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Figure 2: Cumulative clicks on Yelp dataset, d = 20,K = 4

der the same number of clusters, our algorithm needs more
time to learn well in the setting of a smaller γ. Because
γ = 0.2 means near-1 cosine similarity, to regard all users
as a whole might have advantages in early rounds. However,
after our algorithm learns out the true cluster structure, their
advantage depreciates very fast.

Although our algorithm needs more steps to achieve an
obvious advantage with a smaller gap γ, typically it is not re-
quired to differentiate θ’s with near-1 cosine similarity. The
purpose we use this setting is to demonstrate the extreme
case. In real applications, the estimated weight vectors will
not be too similar so that our algorithm can easily outper-
form theirs, which we will see in the next experiments.

Note that our algorithm is not as good as theirs in the be-
ginning. The reason is that we use a random sparse graph
initialization and this initialization might result in inaccu-
rate clustering for early rounds. However, after collecting
enough information, our algorithm can still learn out the cor-
rect clustering (which might be a little finer for true cluster-
ing).

Yelp Dataset

In this section, we compare our algorithm, CLUB-cascade,
with C3-UCB/CascadeLinUCB on restaurant recommenda-
tions with Yelp dataset1. The dataset contains user ratings
for several businesses. For restaurants, it contains 1579523
ratings of 26629 restaurants from 478841 users. We extract
1k restaurants with most reviews and 1k users who review
most for experiments.

Before we start, we randomly choose 100 users and for-
mulate a binary matrix H ∈ R

100×1k (stands for ‘history’)
where H(i, k) = 1 denotes the user i has rated restaurant
k and H(i, k) = 0 denotes otherwise. We want to con-
struct feature vectors for 1k restaurants from the records of
100 users and then use them to conduct experiments on the

1http : //www.yelp.com/dataset challenge
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(c) u = 200, L = 200
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Figure 3: Cumulative clicks on MovieLens, d = 20,K = 4

records of the remaining 900 users. Then, we perform SVD
on H to get a d = 20 feature vectors for each of the cho-
sen restaurants. The remaining ratings form another binary
matrix F ∈ R

900×1k (stands for ‘future’), which is used for
online experiments.

For each of the following settings, we randomly choose
L = 200 (or 1k) restaurants and u = 40 (or 200) users. At
each time step t, a user is selected uniformly and the learn-
ing agent recommends K = 4 restaurants to the user. By
referring the binary matrix F , the learning agent receives a
feedback Ct ∈ {1, ...,K,∞} and updates its statistics. The
objective is to maximize the cumulative clicks of the learn-
ing agent2. The results are shown in Figure 2, where the ver-
tical axis denotes the cumulative rewards and the horizontal
axis is the time step t. From the results, the performance of
our algorithm has a clear advantage over theirs.

MovieLens Dataset

In this experiment, we compare our algorithm, CLUB-
cascade, with C3-UCB/CascadeLinUCB on the real dataset
MovieLens (Harper and Konstan 2016). We use the pro-
cessed 20m dataset3, in which there are 20 million ratings
for 27k movies by 138k users.

Since the MovieLens dataset has been processed and all
users and movies have records with similar density, we ran-
domly draw 1k movies and 1k users for experiments. After
that, we randomly draw 100 users from the 1k users and for-
mulate a binary matrix H ∈ R

100×1k, where H(i, j) = 1
denotes the user i has rated movie j and H(i, j) = 0
denotes otherwise. Then we perform SVD on H to get a
d = 20 feature vectors for all the 1k chosen movies. The

2Since there is no universal truth about correct clustering and
choosing the gap parameter γ is quite subjective, to avoid disputes
and be consistent with previous works (Li et al. 2016), we adopt
the measure of cumulative rewards here.

3https : //grouplens.org/datasets/movielens/20m/
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Figure 4: Comparisons of CTR on Yelp and MovieLens, d =
20,K = 4, u = 200, L = 1000

records for the remaining 900 users form another binary ma-
trix F ∈ R

900×1k, which is used for online evaluations.
For each of the four settings, we randomly choose L =

200 (or 1k) movies and u = 40 (or 200) users. At each
time step t, a user is selected uniformly and the learning
agent recommends K = 4 movies to the user. By referring
to the binary matrix F , the learning agent receives a feed-
back Ct ∈ {1, ...,K,∞} and updates its statistics. The ob-
jective is to maximize the cumulative clicks of the learning
agent. The results are shown in Figure 3, where the vertical
axis denotes the cumulative rewards and the horizontal axis
is the time step t. From the results, the performance of our
algorithm has a clear advantage over theirs.

Comparing the performances on two datasets, our algo-
rithm seems to need more steps to obtain an obvious advan-
tage in the MovieLens dataset. This is because the Movie-
Lens dataset has been processed and the user-movie matrix
we are dealing with is quite dense, thus users are more sim-
ilar. To see this phenomenon more clearly, we draw the re-
sults on the average rewards, the cumulative rewards up to
time t divided by t, for both datasets in Figure 4. In earlier
rounds, their algorithm taking all users as one will have a
temporary advantage in MovieLens dataset since the users
are similar. At the same time, our algorithm pays the cost
of exploring clusters and starts with low average rewards.
However, as the explored cluster structure becomes more
and more accurate, our algorithm benefits from it and keeps
a high increasing rate. As time goes by, the cost for regarding
users as one is not negligible and our algorithm outperforms
theirs. In most real applications, the user-item matrix would
be very sparse and the users are tending to be dissimilar, re-
sulting in a more advantaged environment for our algorithm.

Conclusions

In this paper, we bring up a new problem of online clus-
tering of contextual cascading bandits, where the algorithm
has to explore the unknown cluster structure on users un-
der a prefix feedback of the recommended item list. We pro-
pose a CLUB-cascade algorithm based on the principle of
optimism in face of uncertainty and prove a cumulative re-
gret bound, whose degenerate case improves the existing re-
sults. The experiments conducted on both synthetic and real
dataset demonstrate the advantage of incorporating online
clustering.
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