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Abstract

The clustering methods have absorbed even-increasing atten-
tion in machine learning and computer vision communities
in recent years. Exploring manifold information in multi-way
graph cut clustering, such as ratio cut clustering, has shown
its promising performance. However, traditional multi-way
ratio cut clustering method is NP-hard and thus the spec-
tral solution may deviate from the optimal one. In this pa-
per, we propose a new relaxed multi-way graph cut cluster-
ing method, where �2,1-norm distance instead of squared dis-
tance is utilized to preserve the solution having much more
clearer cluster structures. Furthermore, the resulting solution
is constrained with normalization to obtain more sparse rep-
resentation, which can encourage the solution to contain more
discrete values with many zeros. For the objective function,
it is very difficult to optimize due to minimizing the ratio of
two non-smooth items. To address this problem, we transform
the objective function into a quadratic problem on the Stiefel
manifold (QPSM), and introduce a novel yet efficient iterative
algorithm to solve it. Experimental results on several bench-
mark datasets show that our method significantly outperforms
several state-of-the-art clustering approaches.

Introduction

As an important task in machine learning and computer vi-
sion communities, clustering has been widely used in im-
age segmentation (Shi and Malik 2000), image categoriza-
tion (Grauman and Darrell 2006), and digital media analysis
(An et al. 2012). The goal of clustering is to find a parti-
tion in order to keep similar data vectors in the same cluster
while those dissimilar ones in different clusters. In recent
years, many clustering methods have been proposed, such
as K-means clustering, spectral clustering, support vector
clustering (Ben-Hur et al. 2001), and non-negative matrix
factorization clustering (Xu, Liu, and Gong 2003). Among
these methods, exploring manifold information in spectral
clustering can greatly promote the clustering performance,
whose basic idea is to transform the clustering problem into
the optimal partition problem of a graph via spectral the-
ory. The graph-based learning aims at capturing the intrinsic
manifold structure underlying the images (Deng et al. 2013;
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2014) and the relationship of features (Liu, Tsang, and
Müller 2017) to obtain better results. The clustering meth-
ods based on graph cut exploit a weighted undirected graph
to represent the similarities of the data, and try to find the
best cuts of the graph to produce the ideal clustering re-
sults. However, finding such optimal graph cut is a NP-hard
problem. To address this problem, the graph cut clustering
problem is generally relaxed into the eigenvector space of
continuous Laplace matrix, and different segmentations cor-
responds to different eigenvector spaces.

The graph cut clustering mainly contains two-way par-
titioning and multi-way partitioning. Two-way partitioning
divides a graph into exactly two subgraphs, while multi-
way partitioning divides a graph into multiple vertex dis-
joint subgraphs. Any two-way method can be applied to
generate multiple partitions, but the quality of the solution
may be unsatisfied due to the inherent limitation of the re-
sult. Hence, many multi-way clustering methods have been
successively proposed by using the multi-dimensional spec-
tral embedding. The ratio cut clustering (Chan, Schlag, and
Zien 1994) and the normalized cut clustering (Ng, Jordan,
and Weiss 2002) are the two most common multi-way spec-
tral clustering methods, in which Laplacian embedding and
the generalized eigenvectors of Laplace matrix are respec-
tively used to produce the optimal solution. Practically, these
solutions can not be directly regarded as clustering results,
and a further clustering algorithm such as K-means has to
be adopted to obtain the final clustering results. However,
this traditional relaxation strategy is more likely to cause the
results deviating from the optimal solution. More recently,
tight relaxation of balanced graph clustering method was
proposed (Nie et al. 2016a), where the solution is a vector
to partition the data affinity graph into two disjoint sets. It
requires to recursively run the clustering method to obtain
the desired number of partitions, which can only get low-
quality approximated multi-way clustering results and also
leads to the high computational cost.

In this paper, we propose a new relaxation for the multi-
way graph cut clustering method to obtain much clearer
cluster structures which solve the multi-way clustering task
without approximation. Different from traditional ratio cut
graph clustering method, we constrain the normalized so-
lution with the �2,1-norm to enforce each element to have
equal chance to be zero. Thus, the solution of our new
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relaxed graph clustering method can obtain discrete val-
ues with many zeros, which approximates the ideal solu-
tion. However, our proposed clustering method is difficult
to optimize because of including two non-smooth propor-
tional items. To deal with it, two different treatments are
composted in our optimization, and we then transform the
objective function into a quadratic problem on the Stiefel
manifold (QPSM) (Nie, Zhang, and Li 2017), which takes
much less time for the convergence. Empirical experiments
demonstrate our method consistently achieves better cluster-
ing results than several state-of-the-art clustering methods in
both synthetic data and nine real datasets.

Related Work

Suppose we have n data points X = [x1, x2, ..., xn] ∈ Rn×d

and weight matric W . Our main propose is to divide these
data points into different disjoint clusters and the data points
within each cluster are adjacent.

Ratio Cut in Two-Way Clustering

The ratio cut in two-way clustering (Cheng and Wei 1991;
Hagen and Kahng 1992) is defined as:

Rcut =
cut(A,B)

|A| +
cut(A,B)

|B| , (1)

where |A| represents the number of data points in A, simi-
larly in B. cut(A,B) =

∑
i∈A,j∈B Wij .

Denote an indictor vector y ∈ Rn×1 as follows:

y = [1, ..., 1︸ ︷︷ ︸
n1

, r, ..., r︸ ︷︷ ︸
n2

]�,

where n1 + n2 = n, yi = 1 if data point i is in A, otherwise
yi = r.

As suggested in (Shi and Malik 2000), we can know that
when r = −n1

n2
, the ratio cut can be written as:

Rcut =
1
2

∑
i,jWij |yi − yj |2∑

i |yi|2
=

y�Ly
y�y

, (2)

where L = D − W is the Laplacian matrix, and D is the
diagonal matrix with Dii =

∑
j Wij . When we need to min-

imize the normalized cut to obtain an ideal partition, Eq. (2)
can be devised as:

min
y=[1,...,1,−n1

n2
,...,−n1

n2
]�

1
2

∑
i,jWij |yi − yj |2∑

i |yi|2
. (3)

This is a NP-hard problem when we want to obtain the best
cut value, so we can write constraints as y�1 = 0, where
1 is used to denote a column vector with all elements being
one. Then, Eq. (3) can be formulated as:

min
y�1=0

1
2

∑
i,jWij |yi − yj |2∑

i |yi|2
. (4)

The optimal solution y is formed by the eigenvector of L
corresponding to the second smallest eigenvector. In order to
avoid the solution y deviating from the constraint y�1 = 0,
we can take 0 or the median value as the splitting point to
obtain the best normalized cut value (Shi and Malik 2000).

Ratio Cut in Multi-Way Clustering

A two-way partitioning divides a graph into exactly two sub-
graphs, whereas multi-way partitioning divides the graph
into multiple vertex disjoint subgraphs. We convert the two-
way ratio-cut indictor vector to a multi-way ratio-cut indic-
tor metric F ∈ Rn×c, where fk is the k-th column of F and
c is the number of clusters. The multi-way graph ratio cut
clustering based on the multi-dimensional spectral embed-
ding (Chan, Schlag, and Zien 1994) is defined as:

min
F�F=I

n∑
i,j

Wij‖fi − fj‖22. (5)

It is obvious that minimizing Eq. (5) is NP-hard, and tradi-
tional method solve the ratio clustering with relaxation:

min
F�F=I

Tr(F�LF ). (6)

The optimal solution F is formed by the c eigenvectors
of L corresponding to the c smallest eigenvalues. The solu-
tion F of the relaxed problems can not be directly used as
clustering results, and a further clustering algorithm such as
K-means has to be utilized on F to obtain the final cluster-
ing results.

New �2,1-Norm Relaxation of Multi-Way

Graph Cut for Clustering

The obtained solution of traditional spectral relaxation in
multi-way graph cut may deviate from the ideal solution.
In this section, we propose a new relaxation for ratio cut in
multi-way clustering to make the solution are approximate
to optimal ones. We constrain the normalized solution with
the �2,1-norm to obtain much clear cluster structures. More-
over, a new iterative optimization algorithm is adopted to
address our proposed method.

Under the constraints y�y = 1, we can prove that Eq. (4)
is equivalent to:

min
y�y=1,y�1=0

1
2

∑
i,jWij |yi − yj |2∑
i,j |yi − yj |2

, (7)

where yi =
√

n2

n2
1+n1n2

if data point i is in A, otherwise yi =

−
√

n1

n2
2+n1n2

. It shows that clustering keeps similar vectors

in the same cluster while those dissimilar ones in different
clusters. Thus, it naturally extends to multi-way situations:

min
F�F=I,F�1=0

∑
i,jWij‖fi − fj‖22∑

i,j ‖fi − fj‖22
, (8)

where fi ∈ R1×c is the indictor vector of the data xi. In the
actual process, the feature vectors of the Laplacian matrix is
adopted to complete the segmentation. Hence, Eq. (8) can
be converted to:

min
F�F=I,F�1=0

Tr(F�LF )

Tr(F�HF )
, (9)

4375



where H = I − 1
n11�. Under the constraint F�1 = 0, it

can be easily proved that:

Tr(F�HF ) = Tr(F�(I − 1

n
11�)F )

= Tr(F�F )− 1

n
Tr(F�(11�)F ) = c.

(10)

Therefore, when the loss function is a square loss, Eq. (9)
is equivalent to the traditional multi-way ratio cut clustering
algorithm:

min
F�F=I,F�1=0

Tr(F�LF ). (11)

Denote ‖F‖2,1 =
∑

i ‖fi‖2 as the �2,1-norm of matrix F .
The best solution F for clustering is that fi = fj if xi and xj

belong to the same cluster. That is to say, ‖fi − fj‖2 = 0 for
many pairs of (i, j) in same cluster. In addition, the square
loss function is very sensitive to outliers. Hence, the robust
�2,1-norm based loss function is adopted in our method to
obtain the ideal solution. The objective of our method can
be formulated as:

min
F�F=I,F�1=0

∑
i,jWij‖fi − fj‖2∑

i,j ‖fi − fj‖2
. (12)

It is widely known that minimizing �2,1-norm usually
generates sparse solutions (Nie et al. 2010; 2011). That is
to say, the solution F will take on discrete values and have
more zero elements. Moreover, Eq. (12) can keep the dis-
tance of indicator vectors similar if data belongs to the same
cluster, even make them equal. The distance of indicator vec-
tors as separated as possible if data belongs to the different
clusters. Thus, the proposed problem will provide a more
ideal solution of F as clustering results. F�1 = 0 forces
each element has an equal chance to be zeros. We use K-
means to refine the final results when we obtain the solution
F . This non-smooth objective function is very hard to op-
timize. Thus, in next section, we will introduce an iterative
algorithm to solve the problem. Different treatments are uti-
lized for numerator and denominator to ensure that the nu-
merator is reduced while increasing the denominator.

Optimization Algorithm

The �2,1-norm relaxation of multi-way graph cut clustering
is very difficult to optimize because we need to minimize the
ratio of non-smooth terms. The existing optimization meth-
ods cannot solve this problem effectively. To address this
problem, we introduce a new iterative algorithm to get the
ideal solution. We change it into a quadratic problem on the
Stiefel manifold (QPSM) to optimize.

The first step of optimization is to minimize:

min
F�F=I,F�1=0

∑
i,j

Wij‖fi − fj‖2. (13)

The re-weighted weight matrix is used to obtain clear cluster
structures (Nie et al. 2011). On the basis of similarity matrix
W , the re-weighted weight matrix is constructed, defined as:

W̃ij =
Wij

2‖fi − fj‖2 . (14)

Then, we have:

min
F�F=I,F�1=0

∑
i,j

W̃ij‖fi − fj‖22. (15)

It is very similar to traditional multi-way ratio cut cluster-
ing method. We redefine the Laplace matrix L̃ = D̃ − W̃ ,
where D̃ is a diagonal matrix with D̃ii =

∑
j W̃ij . Then the

numerator of Eq. (12) can be formulated as:

min
F�F=I,F�1=0

Tr(F�L̃F ). (16)

The second step of optimization is to solve the following
problem while increasing Eq. (13):

max
F�F=I,F�1=0

∑
i,j

‖fi − fj‖2. (17)

As suggested in Nie, Yuan, and Huang (2014), we can first
solve the following problem:

max
x

∑
i

hi(gi(x)). (18)

If we want to maximize the objective in Eq. (18), we only
need to guarantee hi(x) is a convex function in the range of
gi(x). And then, Eq. (18) can be changed to:

max
x

∑
i

Tr(D�
i (gi(x)), (19)

where Di is any subgradient of hi at point gi(x). The con-
vergence has been proved in Nie, Yuan, and Huang (2014).
In Eq. (17), we let gi,j = fi − fj and h = ‖•‖2 is an con-
vex function in the domain of gi,j . Hence, Eq. (17) can be
formulated as:

max
F�F=I,F�1=0

∑
i,j

Tr(D�
i,j(fi − fj)), (20)

where Di,j =
fi−fj

‖fi−fj‖2
, and then it can be further converted

into:
max

F�F=I,F�1=0
Tr(F�B), (21)

where B = LcF is calculated with current solution F and
Lc(i,j) =

∑
j

1
‖fi−fj‖2

− 1
‖fi−fj‖2

.
Based on the above derivation, the optimization method

can be translated into the following problem:

min
F�F=I,F�1=0

Tr(F�L̃F )

Tr(F�B)
. (22)

During each iteration, we calculate λ =
∑

i,jWij‖fi−fj‖2∑
i,j ‖fi−fj‖2

, L̃
and B with the current solution F , and then we can try to
update F by minimizing:

min
F�F=I,F�1=0

Tr(F�L̃F )− λTr(F�B), (23)

where the constraint F�1 = 0 can be changed to:

min
F�F=I

Tr(F�(L̃+∞11�)F )− λTr(F�B). (24)
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When we minimize Eq. (24), Tr(F�11�F ) must be
zero because of the parameter is infinity. That is to say,
Tr((F�1)(F�1)�) = 0. Eq. (24) is a quadratic problem
on the Stiefel manifold (QPSM). Motivated by Nie, Zhang,
and Li (2017), it can be relaxed into:

max
F�F=I

Tr(F�ÃF ) + λTr(F�B), (25)

where Ã = αIm − (L̃ +∞11�) and the relaxation param-
eter α is an arbitrary constant to guarantee that L̃ is a posi-
tive definite (pd) matrix. Hence, the Lagrangian function for
Eq. (25) can be formulated as:

L1(W,Λ) = Tr(F�ÃF )+λTr(F�B)−Tr(Λ(F�F−I)),
(26)

the KKT condition for the problem Eq. (26) can be calcu-
lated as:

∂L1

∂F
= 2ÃF + λB − 2FΛ. (27)

The orthogonal iteration is utilized to solve this problem by
finding the first k dominant eigenvalues and their associated
eigenvectors, we first construct matrix M = 2ÃF + λB
and then calculate F via the compact QR factorization of
M . The following iterative algorithm is used to solve this
problem:

Algorithm 1 Algorithm to solve the problem (25)
Initialize F satisfying F�F = I
while not converge do

1: Update M ← 2ÃF + λB
2: Calculate USV � = M via the campact SVD method

of M
3: Update F ← UV �

end while

To sum up, the overall framework of our algorithm is:

Algorithm 2 Algorithm to solve the problem (12)
Initialize F satisfying F�F = I
while not converge do

1: Calculate λ =
∑

i,jWij‖fi−fj‖2∑
i,j ‖fi−fj‖2

and the matrix S,B,

where Si,j = 1
2‖fi−fj‖2

, B = LcF and Lc(i,j) =∑
j

1
‖fi−fj‖2

− 1
‖fi−fj‖2

2: Update F with the Eq. (23), where L̃ = D̃ − W̃ ,W̃ =
W ◦ S and D̃ is a diagonal matrix with D̃ii =

∑
j W̃ij

end while

Complexity and Convergence Analysis

Our method is composed of two sub-problems. The com-
plete algorithm is shown in Algorithm 2. The complexity of
first step is O(n2 + nc), c and n is the number of clusters
and the number of data. Under the condition c � n, the to-
tal complexity is basically O(n2), and the complexity of the
second step O(tn2c) (Nie, Zhang, and Li 2017), where t is

the number of iteration of the QPSM when we update the so-
lution. So our method doesn’t have high computational cost
and the total complexity is O(kn2 + kn2ct), where k is the
number of iterations of Algorithm 2.

The converges of Algorithm 1 has been proved in Nie,
Zhang, and Li (2017), and in the following, we will prove
that the algorithm 2 will monotonically decrease until con-
vergence.

Proof. According to the Algorithm 1, we can know that:

Ft+1 = min
F�F=I,FT 1=0

Tr(F�L̃tF )− λTr(F�Bt). (28)

That is to say:

Tr(F�
t+1L̃tFt+1)− λTr(F�

t+1Bt)

≤ Tr(F�L̃tF )− λTr(F�Bt).
(29)

According to the property of trace , we have:

Tr(F�
t+1L̃tFt+1)− λTr(BtF

�
t+1)

≤ Tr(F�L̃tF )− λTr(BtF
�).

(30)

From Eq. (30), we can easily know that:
n∑
i,j

Wij‖f i
t+1 − f j

t+1‖22
2‖f i

t − f j
t ‖2

− λ
n∑
i,j

(f i
t+1 − f j

t+1)(f
i
t − f j

t )
T

‖f i
t − f j

t ‖2

≤
n∑
i,j

Wij‖f i
t − f j

t ‖22
2‖f i

t − f j
t ‖2

− λ
n∑
i,j

(f i
t − f j

t )(f
i
t − f j

t )
T

‖f i
t − f j

t ‖2
.

(31)
Nie et al. (2011) proved that if we have any nonzero vectors
f and ft, the following inequality holds:

(
√

f −
√

ft)
2 ≥ 0 ⇒ f − 2

√
fft + ft ≥ 0

⇒
√
f − f

2
√
ft

≤
√

ft − ft

2
√
ft
.

(32)

According to Eq. (31), we have:
n∑
i,j

Wij(‖f i
t+1 − f j

t+1‖2 −
‖f i

t+1 − f j
t+1‖22

2‖f i
t − f j

t ‖2
)

≤
n∑
i,j

Wij(‖f i
t − f j

t ‖2 −
‖f i

t − f j
t ‖22

2‖f i
t − f j

t ‖2
).

(33)

Adding the above two inequalities in Eq. (31) and (33), we
can know that:
n∑
i,j

Wij‖f i
t+1 − f j

t+1‖2 − λ
n∑
i,j

(f i
t+1 − f j

t+1)(f
i
t − f j

t )
�

‖f i
t − f j

t ‖2

≤
n∑
i,j

Wij‖f i
t − f j

t ‖2 − λ
n∑
i,j

(f i
t − f j

t )(f
i
t − f j

t )
�

‖f i
t − f j

t ‖2
.

(34)

Notice the definition of λ =
∑n

i,jWij‖fi
t−fj

t ‖2∑n
i,j ‖fi

t−fj
t ‖2

, we can easily

know that:
n∑
i,j

Wij‖f i
t − f j

t ‖2 − λ

n∑
i,j

(f i
t − f j

t )(f
i
t − f j

t )
�

‖f i
t − f j

t ‖2
≤ 0.

(35)
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Then we have:

∑n
i,j Wij‖f i

t+1 − f j
t+1‖2∑n

i,j ‖f i
t+1 − f j

t+1‖2
≤ λ

∑n
i,j

(fi
t+1−fj

t+1)(f
i
t−fj

t )
�

‖fi
t−fj

t ‖2∑n
i,j ‖f i

t+1 − f j
t+1‖2

≤ λ =

∑n
i,jWij‖f i

t − f j
t ‖2∑

i,jn ‖f i
t − f j

t ‖2
.

(36)

Therefore, the algorithm will monotonically decrease the
Eq. (12) in each iteration until convergence.

Experimental Results

In this section, we evaluate the effectiveness of proposed
graph clustering method in both synthetic data and real
datasets, and then compare the performance with several
state-of-art clustering methods.

To evaluate the clustering results, we adopt two stan-
dard evaluation metrics: Accuracy (ACC) and Normalized
Mutual Information (NMI) (Cai et al. 2008). We construct
the original weight matrix W with probabilistic K-nearest
neighbors for each datasets. The weight Wij is calculated as
nearest-neighbor graph (Gu and Zhou 2009), and the num-
ber of neighbors is set to 5. We adopt K-means to refine the
final results, and repeat K-means for 50 times with random
initializations.

Baselines

We compared the performance of our clustering method with
Ratio Cut (RCut) (Chan, Schlag, and Zien 1994), Normal-
ized Cut (NCut) (Ng, Jordan, and Weiss 2002), �1-norm Re-
laxations for Graph Clustering (NR-RC) (Nie et al. 2016a),
which recursively run the clustering method to obtain the
desired number of partitions, Large Scale Spectral Cluster-
ing (LSC) (Chen and Cai 2011), Self-tuning spectral clus-
tering (RLS) (Zelnik-Manor and Perona 2005), Agglomer-
ative clustering on a directed graph (GAC) (Zhang et al.
2012) and the constrained Laplacian rank (CLR) (Nie et al.
2016b) method, which learn a new data graph with exactly
c connected components (where c is the number of clus-
ters). Specifically, CLR denotes the method using �1-norm
distance clustering. Some algorithms are based on K-means
and depend on the initialization. Without losing generality,
we repeat K-means for 50 times with random initializations,
and then we report the results corresponding to the best ob-
jective values.

Evaluations in Synthetic Data

In this experiment, we first evaluate the proposed method in
the synthetic data, including randomly generated data points
distributed on three ring shapes with noise. In Figure 2, we
set the color of the three clusters to be red, black and blue,
respectively. Figure 2(a) is the original data where different
colors represent different clusters. Figure 2(b) shows the re-
sults of RCut (Chan, Schlag, and Zien 1994) and Figure 2(c)
shows the results of NCut (Ng, Jordan, and Weiss 2002). The
last three figures are the results of our method with iterating,
where t is the number of iterations. From these figures, we

(a) YaleB

(b) COIL20

(c) UMIST

Figure 1: The image samples from the three benchmark
datasets used in our experiments

Table 1: Description of Datasets
Datasets #Size #Dimensions #Classes

COIL20 1440 1024 20
Yale 165 1024 15

YaleB 2414 1024 38
COIL100 7200 1024 100

Yeast 1484 1470 10
UMIST 575 1024 20
MSRA 1799 256 12

BINALPHA 1404 320 36
DERMATOL 366 34 6

can observe that the solution of RCut and NCut may deviate
from the ideal ones, even though these data are not difficult
to split, and our algorithm can gradually revise the clustering
results in the iterative process.

Evaluations in Real Image Datasets

In this experiment, we evaluate our proposed method on nine
benchmark datasets as follows. Two UCI datasets are Der-
matol and Yeast (Asuncion and Newman 2007). Two object
datasets COIL20 and COIL100 (Nene et al. 1996) contain
different objects imaged at every angle in a 360 rotation and
the backgrounds have been discarded. One digit and char-
acter dataset BINALPHA contains 26 binary hand-written
alphabets and 10 numbers. Then the four face datasets are
adopted. Yale contains 165 gray-scale images in 15 indi-
viduals, one per different facial expression or configura-
tion. YaleB (Georghiades, Belhumeur, and Kriegman 2001)
has 38 individuals and around 64 near frontal images un-
der different illuminations per individual. We simply use the
cropped images and resize them to 32 × 32 pixels. Umist
(Graham and Allinson 1998) consists of 20 individuals, sub-
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(a) Groundtruth (b) Clustering result of RCut (c) Clustering result of NCut

(d) Clustering result of our method,
t = 1, ACC = 0.9132

(e) Clustering result of our method,
t = 3, ACC = 0.9232

(f) Clustering result of our method,
t = 5, ACC = 1

Figure 2: Clustering result in synthetic data

Table 2: Clustering accuracy (%) comparison of multi-way clustering on the nine datasets
DATA SET RCut CLR LSC RLS GCA NR-RC Our Method

COIL20 81.64(2.29) 86.39(0.58) 79.82(3.15) 82.50(0.00) 83.26(0.00) 81.32(2.18) 92.27(2.12)
Yale 64.84(2.15) 59.39(0.34) 60.09(2.23) 61.87(0.13) 48.48(0.00) 55.76(1.25) 68.12(0.74)

YaleB 28.91(0.67) 29.08(0.54) 18.27(0.94) 28.67(0.68) 25.60(0.00) 29.80(0.79) 42.05(0.96)
COIL100 70.78(1.73) 76.38(1.71) 58.38(1.16) 69.90(1.19) 74.33(0.00) 71.56(1.77) 77.31(1.25)

Yeast 46.05(0.14) 46.67(0.03) 32.68(3.40) 40.23(0.00) 42.92(0.00) 40.66(1.25) 50.13(2.02)
UMIST 66.04(1.35) 74.61(1.92) 64.78(2.96) 66.22(2.96) 61.39(0.02) 73.91(3.25) 80.48(3.08)
MSRA 60.03(1.18) 60.08(2.11) 57.70(3.26) 56.03(0.00) 45.14(0.00) 61.42(1.78) 64.15(1.45)

BINALPHA 47.42(0.98) 45.73(1.10) 47.08(1.76) 47.08(1.12) 48.79(0.00) 46.75(1.02) 51.85(0.70)
DERMATOL 77.32(0.00) 77.60(0.00) 84.07(4.21) 77.32(0.00) 84.32(0.00) 78.95(0.82) 85.79(0.00)

Table 3: NMI (%) comparison of multi-way clustering on the nine datasets
DATA SET RCut CLR LSC RLS GCA NR-RC Our Method

COIL20 90.54(1.27) 94.50(0.89) 88.55(1.09) 91.02(0.00) 92.29(0.00) 89.64(2.12) 95.76(1.25)
Yale 62.02(0.41) 58.94(0.39) 63.86(1.63) 60.25(0.11) 58.69(0.00) 59.67(0.82) 69.74(1.02)

YaleB 34.27(0.83) 33.88(0.58) 26.44(0.85) 31.81(0.51) 34.77(0.00) 38.70(0.72) 52.23(0.43)
COIL100 87.31(1.31) 91.98(1.32) 81.47(0.69) 88.24(0.47) 91.78(0.00) 90.35(1.39) 92.18(1.24)

Yeast 31.34(0.08) 30.45(0.08) 21.66(2.17) 27.41(0.00) 27.56(0.00) 23.85(0.47) 30.22(0.20)
UMIST 86.31(0.98) 88.17(1.36) 82.31(1.86) 86.24(2.30) 82.19(4.09) 85.96(1.39) 89.80(1.75)
MSRA 70.60(2.17) 70.67(2.42) 72.65(4.47) 66.03(0.76) 49.52(0.00) 75.01(2.08) 75.94(1.69)

BINALPHA 63.64(0.68) 62.70(0.63) 60.18(0.81) 61.81(0.37) 64.06(0.00) 61.90(0.52) 66.11(0.41)
DERMATOL 86.83(0.00) 87.75(0.00) 83.19(2.83) 86.83(0.00) 86.83(0.00) 80.83(0.76) 79.71(0.00)

jects covering a range of race, sex and appearance, and each
individual is shown in a range of poses from profile to frontal
views. MSRA (Liu et al. 2007) contains 12 individuals with
different background and illumination conditions. Some im-

age samples are shown in Figure 1. The brief descriptions of
these nine datasets are given in Table 1.

The clustering results are shown in Table 2 and Table 3.
We run 20 times for each method and report the mean val-
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(a) Clustering accuracy vs. iter-
ation on COIL20 dataset

(b) Objective value vs. iteration (c) Objective value vs. iteration (d) Objective value vs. iteration

Figure 3: Convergence analysis on COIL20 dataset

(a) Clustering accuracy vs. iter-
ation on DERMATOL dataset

(b) Objective value vs. iteration (c) Objective value vs. iteration (d) Objective value vs. iteration

Figure 4: Convergence analysis on DERMATOL dataset

ues and standard deviations. In these tables, we can observe
that our proposed method outperforms the competing meth-
ods on these real-world datasets. We find that the proposed
method can improve the clustering performance whether in
face datasets or in other object datasets. Especially when
performing on the object dataset COIL20, the clustering ac-
curacy is over 92%. Note that even though all clustering
methods work well on UMIST dataset, our proposed method
still outperforms two of the best methods, CLR and RCut.
The COIL100 dataset is very difficult to deal with due to
the complexity of classes, but our method still harvests a
good result. To sum up, the performance of these baselines in
different datasets are inconsistent. For instance, LSC works
better on Yale and CLR works better on UMIST. Yet the
performances of our method increase significantly in all the
datasets.

In addition, we need to investigate the convergence prop-
erties and some details of our algorithm because our method
is an iterative algorithm. We verify the convergence of the
algorithm in three datasets, and the change of the cluster-
ing accuracy with each iteration. The change of accuracy
with each iteration of COIL20 data is shown in Figure 3(a),
and DERMATOL data in Figure 4(a). The objective value is
computed by Eq. (12) for our proposed method, which are
plotted in Figure 3(b) for COIL20 data, and Figure 4(b) for
DERMATOL data. In order to better understand some of the
details of the algorithm in the iterative process, the change
of Eq. (13) and Eq. (17) with each iteration are plotted in
Figure 3(c) and Figure 3(d) for COIL20 data, Figure 4(c)
and Figure 4(d) for DERMATOL data. From these figures,
we can find out that our algorithms can effectively increase
the similarity within the cluster, increasing the difference be-

tween different clusters, which can obtain a better clustering
performance. However, the K-means algorithm converges to
local optimum and causes the clustering results fluctuate up
and down sometimes while the performance of our method
is steady growth on the whole.

Conclusion

This work proposed a novel relaxation for the multi-way ra-
tio graph cut clustering method. Specifically, the �2,1-norm
distances instead of the squared distance are adopted for the
normalized clustering solution, which can guarantee the so-
lution to being optimal. That is to say, our method can obtain
the discrete and sparse indicator vectors with many zeros to
make the cluster structures more clear. Furthermore, to effi-
ciently optimize the ratio of two non-smooth items, we con-
vert the optimization problem into a quadratic problem on
the Stiefel manifold (QPSM), which takes much less times
for the convergence. Extensive experiments demonstrate our
method consistently achieves better clustering results than
several traditional clustering methods.
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