
Reinforced Multi-Label Image
Classification by Exploring Curriculum

Shiyi He,1,3 Chang Xu,2 Tianyu Guo,1,3 Chao Xu,1,3 Dacheng Tao2

1Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, China
2UBTECH Sydney AI Centre, SIT, FEIT, University of Sydney, Australia

3Cooperative Medianet Innovation Center, Peking University, China
shiyiHe@pku.edu.cn, c.xu@sydney.edu.au, tianyuguo@pku.edu.cn

xuchao@cis.pku.edu.cn, dacheng.tao@sydney.edu.au

Abstract

Humans and animals learn much better when the examples
are not randomly presented but organized in a meaningful
order which illustrates gradually more concepts, and gradu-
ally more complex ones. Inspired by this curriculum learning
mechanism, we propose a reinforced multi-label image clas-
sification approach imitating human behavior to label image
from easy to complex. This approach allows a reinforcement
learning agent to sequentially predict labels by fully exploit-
ing image feature and previously predicted labels. The agent
discovers the optimal policies through maximizing the long-
term reward which reflects prediction accuracies. Experimen-
tal results on PASCAL VOC2007 and 2012 demonstrate the
necessity of reinforcement multi-label learning and the algo-
rithm’s effectiveness in real-world multi-label image classifi-
cation tasks.

Introduction

Traditional single-label image classification deals with im-
ages that are associated with a single label from a finite set
of disjoint labels. However, real-world images often corre-
spond to more than one label. For example, an image can
belong to “table” as well as “bottle”. Recently, this multi-
label image classification problem has attracted significant
attention in various applications, such as semantic annota-
tion of images (Gong et al. 2013; Wang et al. 2017), and
videos (Oh et al. 2015; Wang et al. 2016b) and structured
prediction (Lampert 2011).

The most common approach to solve the problem is the
binary relevance method (BR) (Luaces et al. 2012). BR
transforms a multi-label problem into multiple binary clas-
sification problems. However, BR fails to model the depen-
dencies between multiple labels, which widely exist in real-
world multi-label data, e.g. one image containing “sky” has a
great probability containing “clouds”. One simple yet effec-
tive approach to handle label dependencies is the classifiers
chains (CC) method (Read et al. 2011). It incorporates label
correlations implicitly by training a chain of binary classi-
fiers in a given sequential order, with the feature set of each
binary classifier augmented by labels that have been previ-
ously trained. Besides CC, lots of different techniques have
been developed to discover label dependences in multi-label
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learning. For example, in the max-margin multi-label clas-
sifier (M3L) (Hariharan et al. 2010), label dependencies are
represented by pairwise label correlations that are computed
from the training set. CNN-RNN (Wang et al. 2016a) frame-
work was proposed to learn a joint image-label embedding
to characterize the semantic label dependencies.

Most existing algorithms simultaneously estimate all pos-
sible labels for an example. Though classifier chain method
makes sequential prediction but it requires the pre-defined
label sequence. In contrast, humans and animals learn much
better when the examples are not randomly presented but
organized in a meaningful order which illustrates gradually
more concepts, and gradually more complex ones. This idea
called curriculum learning (Bengio, Collobert, and Weston
2009) is inspired by the way children are taught: start with
easier concepts (for example, recognizing clearly visible ob-
jects) and build up to more complex ones (for example, rec-
ognizing partially occluded objects). This learning strategy
can be formalized into multi-label image classification tasks
as well where a series of objects are recognized in a se-
quential order from easy to complex. Moreover, the size and
location of objects influence the recognition difficulty and
complexity of images to a great extent. Thus the prediction
order should be designed related to each single image fol-
lowing its inter curriculums, instead of a simple pre-defined
one computed on the whole training set. Similar to our work,
ML-TLLT (Chen et al. 2016b), a multi-label propagation al-
gorithm, also employed the curriculum mechanism to ma-
nipulate the propagation sequence from simple examples to
more difficult ones. In other words, it tries to organize exam-
ples to learn each label. Instead, we organize labels to depict
each image.

Besides, real-world image tagging system used to recom-
mend labels for users to annotate their uploaded images.
Instead of accepting all the recommended labels, users are
more likely to select some labels from the recommended set
according to their understandings of the images. However,
the user feedbacks have rarely been investigated by tradi-
tional multi-label learning algorithms.

In this paper, we propose a novel Reinforced Multi-
label Image Classification (RMIC) by exploring curricu-
lum method to solve multi-label image classification prob-
lem. Consistent with curriculum learning mechanism, we
compose the image feature and previously predicted labels
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as a new state to predict the next label. The multi-label
system recommends labels to users and collects user feed-
backs as reward to update the multi-label model. Our RMIC
method allows an agent learning to label images from easy
to complex by taking user feedbacks as partial observation
of ground-truth labels. In particular, this agent aims to dis-
cover the optimal policy that maximizes the long-term re-
ward which reflects prediction accuracies. To transform the
original multi-label problem into Reinforcement Learning
(RL) framework, we propose a scheme that enables the agent
take actions (labels) without duplicates in an episode in both
training and testing stage. This scheme divides the complete
action (label) set into taken set and untaken set. At each step,
the agent takes action on untaken set following ε-greedy
policy and then updates the division. Unlike most existing
works, our method does not label image in a pre-defined or-
der, but learns a specific curricular sequence for each image
to predict from easy to complex. This means our proposed
RMIC method can discover the inter curricular label order
related to image context in reinforcement learning process
and it can be trained end-to-end based on Deep Q-learning
algorithm (Mnih et al. 2015).

Related Work
During the past few years, a large number of multi-label
image classification models have been developed. A popu-
lar baseline for multi-label classification is binary relevance
(BR) (Luaces et al. 2012) which simply treats each label as
a separate binary classification problem. However, its per-
formance can be poor when strong label dependencies ex-
ist. In some practical applications, label dependencies are
known as a priori or can be easily estimated, and thus var-
ious methods have been designed to improve performance
by exploiting label dependencies. For example, the classifier
chain algorithm (CC) (Read et al. 2011) learned a chain of
binary classifiers, where each classifier predicts whether the
current label exists given each input feature and the previ-
ously predicted labels. CC algorithm preserves inter label
dependencies but the results can vary for different orders
of chains. In order to solve this problem and increase ac-
curacy, CC-DP (Liu and Tsang 2015)searched the globally
optimal label order for CC and CC-Greedy (Liu and Tsang
2015) found a globally optimal CC. There are also many
multi-label learning methods that can automatically discov-
ery label dependencies from the training data. For example,
PrML (You et al. 2017) explored and exploited label rela-
tionships by inheriting all the merits of privileged informa-
tion and low-rank constraints. SLL (You et al. 2016) utilized
the label self-representation to model the label relationship.

Curriculum learning aims to improve the learning perfor-
mance by designing suitable curriculums from easy to com-
plex for the stepwise learner. This learning approach was
proposed by (Bengio, Collobert, and Weston 2009), which
hypothesized that curriculum learning had both an effect on
the speed of convergence of the training process as well as
finding a better local minima in the case of non-convex cri-
teria. Self-paced learning is a learning regime proposed by
Kumar et al (Kumar, Packer, and Koller 2010), which can be
regarded as an implementation of curriculum learning. This

regime determines its inner curriculum dynamically to ad-
just to the learning pace of the learner. Curriculum learning
and self-paced learning have been applied to various appli-
cations. For example, MMCL (Chen et al. 2016a) employed
the curriculum learning methodology by investigating the
difficulty of classifying every unlabeled image in the semi-
supervised image classification task. The method proposed
by (Svetlik et al. 2016) automatically generated a curricu-
lum as a directed acyclic graph to improve the performance
of the reinforcement learning agents.

Reinforcement Learning (RL) provides an appealing
framework for addressing a wide variety of planning and
control problems (Mnih et al. 2015). For example, a pol-
icy gradient RL approach was proposed for locomotion of
a four-legged robot (Kohl and Stone 2004). Obstacle de-
tection with a monocular camera can be formulated as a
RL problem as well (Michels, Saxena, and Ng 2005). Most
recently, deep Q-learning algorithm has been successfully
applied to make decisions in ATARI games (Mnih et al.
2015). Besides, Google DeepMind proposed a new search
algorithm by integrating Monte-Carlo tree search with deep
RL, and it beat the world’s best human player in the game
of Go (Silver et al. 2016). Since then, a number of deep
RL have been studied in various problems, e.g. optimal or
near-optimal policies to localize objects (Jie et al. 2016;
Caicedo and Lazebnik 2015), action-conditional video pre-
diction for Atari Games (Oh et al. 2015) and sequence to
sequence learning for text generation (Guo 2015).

Reinforced Multi-label Image Classification
We define X ∈ R

d as an input domain. Let Y =
{1, 2, · · · ,m} be a finite set of m possible labels. Consider
x ∈ X as an input data instance and y ⊆ Y as the tar-
get classes associated with this input. If there exists K la-
bels associated with x, then y = {y1, y2, · · · , yK}. yi cor-
responds to the i-th label belonging to x. Traditional su-
pervised methods used to be developed with well-annotated
data. Given examples accompanied with ground-truth labels,
{(x,y)}ni=1 pairs are already known. They train a model that
maps input X to output Y as in the ordinary classification
problems.

However, in the real-world image tagging task, an im-
age tagging system not only recommends labels for images,
but also collects feedbacks from users to update the labels.
We therefore in this paper consider the sequential image
annotation problem. In the i-th step of image annotation,
this system recommends a label zi and gets a feedback pi
from users, where pi ∈ {−1,+1}, indicates the goodness
of the recommended labels determined by users. If an im-
age x is associated with K labels, in the training stage, we
only consider recommendations z = {z1, z2, · · · , zK} and
feedbacks p = {p1, p2, · · · , pK} during k interactions. In
this sequential learning setting, the ground-truth labels are
not directly provided for examples, and the algorithm can
only get some feedbacks through the interaction with users
to know whether the current prediction is right or not, which
is completely different from the classical supervised setting
with paired example features and ground-truth labels. The
aim of the proposed algorithm is to exploit user feedbacks
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to learn a curricular model not only for accurately labeling
images from easy to complex, but to utilize previous predic-
tions for next label estimation.

Multi-label Image Classification as a Markov

Decision Process

Since ground-truth labels are not given in our problem, it is
difficult to adopt supervised methods for help. We cast the
whole sequential image annotation procedure as a Markov
Decision Process (MDP) since this setting provides a formal
framework to model a sequential decision making process
which can be solved by reinforcement learning algorithms.
The image tagging system is treated as an agent in reinforce-
ment learning, the process of an image is seen as an episode,
and feedbacks from users are reward to the agent. And then,
this procedure can be decomposed as the agent’s label pre-
diction process. This agent aims to learn a curricular policy
that maximizes the total discounted reward which reflects
the overall accuracies of labeling each image.

We adopt the formalism of this deterministic MDP
(X ,A,R, T , γ), where S is the state space, A is the set of
possible actions (i.e., |A| < ∞), R : S × A → [−1, 1] is
the reward of a state-action pair. T : S × A → T (S) is the
transition achieved by taking an action in a given state, and
γ ∈ (0, 1) is a discount factor. A deterministic curricular
policy π : S → A is a mapping from states to actions. The
actions A, state S , transitions T and reward R are detailed
as follows.

Action: Action of the agent is to select a label for an im-
age at each time step. The action set A is the same as the
label set Y , i.e. A = Y = {1, 2, · · · ,m}. During the train-
ing phase, the agent takes an action a, a ∈ A and receives
positive or negative reward r from the environment. For each
image, the number of acting steps depends on the number of
labels and the resulting labels of the image consist of the in-
dividual label predicted at each step. In the test phase, the
agent acts according to the learned curricular policy to se-
quentially predict labels from easy to complex for an unseen
test image.

State: The state is represented as a tuple of two ele-
ments: the image feature f and the action history h. This
tuple s = (f, h), s ∈ S summarizes the observed image
and the history of actions since the beginning of the curric-
ular prediction sequence. The image feature f is extracted
from layer “fc6” of a VGG-16 model (Simonyan and Zis-
serman 2014), which is pre-trained on ImageNet and fine-
tuned on the multi-label datasets in experiments. According
to the suggestions in (Wei et al. 2016), directly using fea-
tures extracted from networks pre-trained on ImageNet is
not appropriate, since object categories in ImageNet and the
multi-label datasets in hand are usually different. Compared
to single-label classification, there exist various and compli-
cated interactions among objects in term of the semantics
and spatial locations. It is therefore necessary to fine-tune
the feature extractor for a better investigation of the intrinsic
relationship between labels of an image.

The action history h is a real vector that tells which ac-
tions have been taken in the past. Moreover, it implies a sim-

ple yet powerful formulation of label dependencies, which
is beneficial for determining the next possible label. We en-
code the action vector following (Saberian and Vasconcelos
2011) by transforming an M -array (i.e. {1, · · · ,M}) into
M distinct unit codewords E = {e1, e2, · · · , eM} ∈ R

d that
are as dissimilar as possible.

⎧⎪⎨
⎪⎩

maxd,e1,··· ,eM [mini �=j ||ei − ej ||2]
s.t ||ek|| = 1 ∀k = 1, · · · ,M.

ek ∈ R
d ∀k = 1, · · · ,M.

Since M points e1, · · · , eM lie in an, at most, M − 1 di-
mensional subspace of Rd, thus min(d) = M − 1. Besides,
according to (Saberian and Vasconcelos 2011), there is no
benefit in increasing d beyond M−1. Thus, if the multi-label
dataset contains M categories, each action is represented by
a (M − 1) dimensional vector where all values are real and
the location of maximum absolute value corresponds to the
taken action. n past actions are encoded in the state, which
means h ∈ R

(n∗M−1). The value of n depends on the aver-
age number of labels for each image computed on the target
database.

Transitions. The transitions T denote next-state function
where every state is thought to be a possible consequence of
taking an action in a state. Our proposed MDP transitions T
are deterministic which means the new state is specified for
each state and action pair. In an episode, transitions do not
change the current image feature f but the action history h:

T (s, a) = T ((f, h), a) = (f, h′)

h′ denotes the action history modified by action a.
Reward: In the real-world life, feedbacks are diverse.

However, to simplify the problem and simulate the above
sequential image annotation procedure, we generate the user
feedbacks as follows. If the label recommended by the image
tagging system for an image is acceptable by users, a posi-
tive feedback (reward) is returned to the system, otherwise
the feedback (reward) is negative. In particular, we clipped
all positive reward r at 1 (i.e. r = 1, r ∈ R) and all negative
reward r at -1 (i.e. r = −1, r ∈ R). The system is supposed
to recommend labels without duplication for an image and
the implementation details will be given later. Fig.1 gives an
example of the sequential label prediction process. The pro-
cess starts with an initial default. Each decision corresponds
to predicting a unique label. The figure shows the possible
prediction path in continuous steps and the reward generated
in this process.

Deep Q-learning for Reinforced Multi-label Image
Classification

The optimal curricular policy of maximizing the summariza-
tion of discounted rewards over episodes (i.e. images) can
be discovered with reinforcement learning techniques. Con-
sidering the high-dimensional continuous features of images
and the model-free formulation of the user feedbacks, we
resort to the deep Q-learning algorithm (Mnih et al. 2015)
which has been demonstrated to discover optimal policies
that generalize well to unseen inputs. This deep Q-learning
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Figure 1: An example of sequential label prediction process. The ground-truth labels of the given image are “horse” and
“person”. In the first step, the agent takes the action “horse” or “person” and gets reward “+1”, otherwise the reward is “-1”.
This process repeats in the next step. And then, the optimal prediction sequence (policy) with “horse, person” or “person,horse”
would result in maximum total reward “+2”. Moreover, the agent takes no duplicated actions in an episode for example, if the
“horse” is taken in the first step, the agent would not take “horse” in the next steps.

sofa

Initial image
deep Q-network

pre-trained CNN

n

4096

FC

FC

M (labels)

. . . . . . 
224

224

3

512

7
7

28

28

512

RESIZE

VGG

action history

3

image
feature

person

. . . 

cat

bike

Figure 2: Illustration of our deep Q-network. There exist M
categories in the target database and we decode n past ac-
tions as action history. The pre-trained CNN is employed as
the image representation, and the previously predicted labels
are encoded into action history. Then the two parts compose
the current state as the input of Q-network and the output
of the Q-network returns as the current label to update the
model.

algorithm (Mnih et al. 2015) utilizes a deep neural network
as a function approximator to estimate the value for each
state-action pair. Besides, we use the pre-trained CNN on the
ImageNet dataset as the feature extractor instead of learn-
ing the full feature hierarchy of the convolutional network
similar to (Jie et al. 2016). Note that the pre-trained CNN
has been fine-tuned on the multi-label datasets in experi-
ments. During the training stage, we only need to update the
parameters of the Q-Network, which makes the Q learning
faster and more stable. The detailed architecture of our deep
Q-network is illustrated in Fig. 2. In typical reinforcement
learning model, starting from an episode, the agent takes one
action from the whole action set at each step. There is often
no constraint on actions to be taken and the agent can repeat
the same actions in an episode. However, in original multi-
label image classification problem, the label set for an image
contains no duplicate elements. Thus when transforming this
problem into the RL framework, the agent is supposed to
take actions without duplicates in an episode no matter in
the training phase or the test stage.

In the proposed reinforced multi-label image classifica-
tion task, the agent’s behavior is ε-greedy during the train-
ing process. Let B be the action set consisting of the actions
that have been taken before for the current image, and de-
fine C = A \ B. Different from deep Q-learning algorithm
(Mnih et al. 2015), the ε-greedy policy of our algorithm is
conducted on the action sub-set C, instead of the complete
action set A. Specifically, the agent follows the greedy pol-
icy a = argmaxa′∈CQ(s, a′) with probability 1 − ε and
selects a random action from C with probability ε. At the
beginning of each episode (i.e. image), B is set as ∅ and
C = A. The agent takes action following the ε-greedy pol-
icy for the current state s, and then gets the next state s′
and the reward r. After the reward has been received by the
agent, one interaction is ended and the algorithm updates
the current state s = s′, taken action set B = B ∪ {a} and
untaken action set C = C \ {a}. The agent acts follows
this process over episodes. The constraint on action sub-sets
B and C is consistent with the multi-label image classifi-
cation problem, where the predicted labels are requested to
be unique. While in policy learning, we also incorporate a
replay memory D following (Mnih et al. 2015) to store ex-
periences of the past episodes, which allows one transition
to be used in multiple model updates and breaks the short-
time strong correlations between training samples. The deep
Q-learning algorithm is off-policy and the untaken action set
C is different in agent’s learning and acting stage. Thus, the
next action a′ is recorded and used directly for policy update.
We represent each experience as (s, a, r, s′, a′) as (Mnih et
al. 2015), which has additionally include the next action a′
into the original four tuple (s, a, r, s′) as (Mnih et al. 2015).
Each time Q learning update is applied, a mini batch ran-
domly sampled from the replay memory D is used for train-
ing. The loss function is the expectations of mean-squared
error between approximated target value r + γQ̂(s′, a′; θ)
and Q network output value Q(s, a).

L(θ) = E(s,a,r,s′,a′)∼D[(r + Q̂(s′, a′; θ)−Q(s, a; θ))2]

θ represents the weights of the proposed deep Q-network
and the update of these weights at the i-th iteration θi is de-
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scirbed as follows:

θi+1 = θi + α(r + γQ̂(s′, a′; θi)−Q(s, a; θi))�θi Q(s, a; θi)

where α is the learning rate and γ is the discount factor.
The deep Q-learning for reinforced multi-label image

classification algorithm is shown as Algorithm 1.

Algorithm 1 Deep Q-learning for RMIC
Initialize replay memory D, the whole action set A

for episode = 1,M do
for each image do

initialize a state s1 with the image and empty the taken
action set B and untaken action set C.
for t = 1, T do

Compute untaken action set C = A \B
Select action at from C on ε-greedy policy
Execute at, observe reward rt, next state st+1

Put at into taken action set B
Re-compute C = A \B
Select next action at+1 from C on ε-greedy policy
Store transition (st, at, rt, st+1, at+1) in D
Sample random minibatch of transitions
(sj , aj , rj , sj+1, aj+1) from D
Update Q based on current and next state-action pair.

yj =

{
rj if episode terminates at step j + 1

rj + γQ̂(sj+1, aj+1; θ) otherwise

Update network weights θ following the gradient
(yj −Q(sj , aj ; θ)) · �Q(sj , aj ; θ)

Update st+1 ← st and target network Q̂ ← Q
end for

end for
end for

Implementation Details

The proposed algorithm was evaluated on the PASCAL
VOC2007 and PASCAL VOC2012 datasets (Everingham et
al. 2010). The output layer of Q-network is a linear layer
with a single output for each valid action or label. Since
there are 20 categories in VOC database, the three fully-
connected layers’ neurons of deep Q-network were set as
512, 128 and 20, respectively. Each action was represented
by a 19-dimensional vector and the action history h encoded
2 past actions. We trained the network for 3 epochs and each
epoch was ended after the agent had interacted with all train-
ing images. During the ε-greedy training, was annealed lin-
early set from 1 to 0.2 over the first 2 epochs to progressively
allow the agent to use its own learned model. Then ε was
fixed to 0.2 in the last epoch, so the agent further adjusted
its network parameters. We assumed that the number of la-
bels presenting in an image was given in the training phase.
While in the test stage, the label numbers were unknown and
we limited the number of steps to obtain the desired number
of labels for each image. The mini batch size was set to 32.
The algorithm was implemented on the publicly available
Keras platform on a single NVIDIA GeForce Titan X GPU
with 12GB memory.

Experimental Results

In this paper, we conduct comprehensive experiments on
PASCAL VOC2007 and VOC2012 classification bench-
marks to evaluate the proposed method. These two databases
contain 9,963 and 22,531 images respectively, and are di-
vided into train,val and test subsets. We merge the train set
with val set into trainval set and conduct our experiments
on the trainval / test splits (5,011/4,952 for VOC 2007 and
11,540/10,991 for VOC2012). The evaluation metrics in-
clude Average Percision(AP) and mean of AP(mAP).

Label curriculum exploration

We first evaluate the influence of the label prediction order
on the multi-label learning algorithms’ performance on the
PASCAL VOC2007 dataset. After counting label occurrence
frequencies in the training data, it is supposed that more fre-
quent labels tend to appear earlier than less frequent ones
(Wang et al. 2016a). Based on this assumption, we design a
simple label order with no curriculum characteristic, which
is feed into the proposed algorithm RMIC to learn the pol-
icy. This RMIC-fixed variant thus has a different reward
function with that of standard RMIC. For example, if the
pre-defined label order is “person” and “horse” while the al-
gorithm sequentially predicts “horse” and “person”, the re-
wards received will be “-1” and “-1”. Positive rewards can
only be obtained when each sequentially predicted label is
right. However, in our standard RMIC method, the reward
can be “+1” and “+1” either for the predictions “horse” and
“person” or “person” and “horse”. Apart from the different
reward setting during training, the state representation, ac-
tion set, behavior policy of RMIC-fixed and RMIC meth-
ods are the same. We thus compared RMIC-fixed with our
proposed method in terms of evaluation metrics, including
mAP, class-level averaged precision and example-level av-
eraged precision (C-P and E-P), class-level averaged recall
and example-level averaged recall (C-R and E-R), and class-
level averaged F1 and example-level averaged F1 (C-F1 and
E-F1). According to Table 1, it is observed that the pro-
posed RMIC method outperforms the RMIC-fixed variant
in terms of nearly all the evaluation metrics. In the proposed
RMIC method, the RL agent learns a curricular order to pre-
dict from easy to complex based on the current image con-
text and previous prediction history. However, the agent in
RMIC-fixed receives the positive reward “+1” only when it
has selected the label which is at the corresponding loca-
tion of the pre-defined order. The performance improvement
of the proposed RMIC algorithm demonstrates its effective-
ness in discovering the more optimal curricular label order
to predict from easy to complex, which is an advantage over
other methods which require a number of attempts to deter-
mine the best label sequence either in training or test stage.
We next proceed to analyze label occurrence frequency in

Method C-P E-P C-F1 C-R E-R E-F1 mAP
RMIC-fixed 42.7 87.7 57.4 42.3 89.6 57.5 81.5

RMIC 43.7 88.8 58.6 43.1 91.3 59.4 84.5

Table 1: The influence of label prediction order on the pre-
diction results
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prediction at the first three prediction steps

the VOC2007 dataset to reveal the relationship between la-
bel frequencies and their learned curricular appearance or-
der. In Fig.3, purple pillars represent the ground-truth ap-
pearance numbers of different labels, while the rest three
color ones are the predicted label appearance numbers in the
proposed RMIC algorithm at the first three steps. It is ob-
served that the agent generally predicts labels based on the
ground-truth label appearance numbers (the purple ones) at
the first step. In other words, more frequent labels appear
earlier than those less frequent ones . However at the follow-
ing steps, this trend gets weaker and the agent predicts those
infrequent labels with the help of previously predicted ones.
For example, “person”, “car”, and “dog” instances are more
commonly found in the training set, thus most of images as-
sociated with these labels are recognized earlier. While those
instances associated with few images like “bottle”, “plant”
and “tv” are usually recognized with the help of those al-
ready recognized ones at the next two steps. Besides, we an-
alyze the sizes of objects that are predicted at the first three
steps. The information of bounding boxes provided in the
dataset are used for a more intuitive illustration in Fig.4. It
is observed that larger objects are usually recognized first,
which then promotes recognition of smaller objects at the
next two steps. For example, “chair”, “plant” and “bottle”
often appear as appendages of “person”, since the recogni-
tion result of “person” provides evidences for the existence
of these smaller instances. In Fig.3, infrequent instances like
“boat”, “cow” and “sheep” are recognized at the first or sec-
ond step, and this is mainly because of their larger object
sizes in images. Taking Fig.3 and Fig.4 together, we sug-
gest that our proposed RMIC method can predict labels from
easy to complex following the curriculum mechanism, and

utilizes previous easy predictions to promote predictions of
later complex ones.

Image classification results

We compare our the proposed RMIC algorithm with state-
of-the-art fully supervised multi-label learning method. The
scores computed by the Q-network estimate the confidence
on labels. In the test stage, since there is no feedback of
users, we directly use the calculated Q-values without itera-
tions as the predicted confidence scores. Classification re-
sults on the VOC2007 and VOC2012 datasets are shown
in Table 2 and Table 3, respectively. INRIA (Harzallah,
Jurie, and Schmid 2010) is built on the transitional fea-
ture extraction-coding-pooling pipeline. AGS (Dong et al.
2013) and AMM (Song et al. 2011) employ grounding-truth
bounding box information for training. HCP-Alex (Wei et
al. 2016) extracts region proposals to fine-tune the features
pre-trained on ImageNet. (Sermanet et al. 2013) and (Chat-
field et al. 2014) proposed CNN-SVM pipeline for multi-
label classification. PRE-1000C* and PRE-1512* (Oquab et
al. 2014) described a weakly supervised convolutional neu-
ral network directly for object annotation and classification.
SPP*(He et al. 2014) equips the network with another pool-
ing strategy which reduces the scale effect on classification
task. Whole images can be feed into CNN-RNN (Wang et al.
2016a) framework and this framework can be trained end-
to-end. We also conducted the 5*2 CV test in terms of met-
ric mAP on the database of VOC2007. The mean value is
84.57%. This smaller standard deviation indicates the stabil-
ity of the algorithm’s performance. Besides, all these com-
parison algorithms have trained in the fully supervised set-
ting, where all the information of ground-truth labels are
provided. However, according to the reported results, we
find that the performance of our RMIC method can perform
comparable or even better than these supervised methods,
even though the RMIC method has only used the partially
supervised information through the user feedbacks.

Prediction results on different epochs

We show example prediction results on the VOC2007
dataset using the RMIC algorithm trained at different epochs
in the training phase in Fig.5. We find that from the first
epoch to the third epoch, the predicted labels become more
distinguishable, especially for images associated with more
ground-truth labels such as the fifth image. We also note that
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aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
INRIA (Harzallah, Jurie, and Schmid 2010) 77.2 69.3 56.2 66.6 45.5 68.1 83.4 53.6 58.3 51.1 62.2 45.2 78.4 69.7 86.1 52.4 54.4 54.3 75.8 62.1 63.5

AGS (Dong et al. 2013) 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 55.2 60.0 69.7 83.6 77.0 71.1
AMM (Song et al. 2011) 84.5 81.5 65.0 71.4 52.2 76.2 87.2 68.5 63.8 55.8 65.8 55.6 84.8 77.0 91.1 55.2 60.0 69.7 83.6 77.0 71.3

Razavianetal.* (Sermanet et al. 2013) 88.5 81.0 83.5 82.0 42.0 72.5 85.3 81.6 59.9 58.5 66.5 77.8 81.8 78.8 90.2 54.8 71.1 62.6 87.4 71.8 73.9
PRE-1000C* (Oquab et al. 2014) 88.5 81.5 87.9 82.0 47.5 75.5 90.1 87.2 61.6 75.7 67.3 85.5 83.5 80.0 95.6 60.8 76.8 58.0 90.4 77.9 77.7

Chatfield et al.* (Chatfield et al. 2014) 95.3 90.4 92.5 89.6 54.4 81.9 91.5 91.9 64.1 76.3 74.9 89.7 92.2 86.9 95.2 60.7 82.9 68.0 95.5 74.4 82.4
SPP* (He et al. 2014) - - - - - - - - - - - - - - - - - - - - 82.4

HCP-Alex* (Wei et al. 2016) 95.4 90.7 92.9 88.9 53.9 81.9 91.8 92.6 60.3 79.3 73.0 90.8 89.2 86.4 92.5 66.9 86.4 65.6 94.4 80.4 82.7
CNN-RNN (Wang et al. 2016a) 96.7 83.1 94.2 92.8 61.2 81.2 89.1 94.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0

RMIC 97.1 91.3 94.2 57.1 86.7 90.7 93.1 63.3 83.3 76.4 92.8 94.4 91.6 95.1 92.3 59.7 86.0 69.5 96.4 79.0 84.5

Table 2: Classification Results (AP in %) comparison on the PASCAL VOC2007 dataset

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
NUS-PSL (Zitnick and Dollr 2014) 97.3 84.2 80.8 85.3 60.8 89.9 86.8 89.3 75.4 77.8 75.1 83.0 87.5 90.1 95.0 57.8 79.2 73.4 94.5 80.7 82.2

Zeiler et al.* (Silver et al. 2016) 96.0 77.1 88.4 85.8 55.8 85.8 78.6 91.2 65.2 74.4 67.7 87.8 86.0 85.1 90.9 52.2 83.6 61.1 91.8 76.1 79.0
PRE-1000C* (Oquab et al. 2014) 93.5 78.5 87.7 80.9 57.3 85.0 81.6 89.4 66.9 73.8 62.0 89.5 83.2 87.6 95.8 61.4 79.0 54.3 88.0 78.3 78.8

PRE-1512* (Oquab et al. 2014) 94.6 82.9 88.2 84.1 60.3 89.0 84.4 90.7 72.1 86.8 69.0 92.1 93.4 88.6 96.1 64.3 86.6 62.3 91.1 79.8 82.8
Chatfieldetal.* (Chatfield et al. 2014) 96.8 82.5 91.5 88.1 62.1 88.3 81.9 94.8 70.3 80.2 76.2 92.9 90.3 89.3 95.2 57.4 83.6 66.4 93.5 81.9 83.2

HCP-Alex* (Wei et al. 2016) 97.7 83.2 92.8 88.5 60.1 88.7 82.7 94.4 65.8 81.9 68.0 92.6 89.1 87.6 92.1 58.0 86.6 55.5 92.5 77.6 81.8
RMIC 98.0 85.5 92.6 88.7 64.0 86.8 82.0 94.9 72.7 83.1 73.4 95.2 91.7 90.8 95.5 58.3 87.6 70.6 93.8 83.0 84.4

Table 3: Classification Results (AP in %) comparison on the PASCAL VOC2012 dataset
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Figure 5: Examples of prediction results on the VOC2007 dataset at different epochs

easily predicted objects will be beneficial for the prediction
of complex ones. For example, “car” in the second image
promotes the prediction of “person”, and in the fourth im-
age. Though the existences of “table” and “bottle” are not
very obvious, the label “person” helps the recognition of
“bottle”, and “bottle” promotes the existence probability of
“table”. These indicate that our RMIC method learns to an-
notate images from easy to complex not only based on the
object context, but also on the relationship of objects, so that
the algorithm can determine the optimal curricular order .

Conclusion

In this paper, we propose a novel Reinforced Multi-label Im-
age Classification (RMIC) approach imitating human cur-
riculum mechanism to label image from easy to complex.
This approach allows a reinforcement learning agent to se-
quentially predict labels by taking the user feedbacks as par-

tial observation of ground-truth labels. This agent fully ex-
ploits image feature and previously predicted labels as a new
state to predict the next label, and it aims to learn an opti-
mal curricular policy with the goal of determining the most
accurate labels of the target images. Experimental results
show that our method can explore the optimal relationship
of objects and actively utilize their dependencies to deter-
mine the curricular prediction order in the multi-label clas-
sification task. Moreover, experimental results on PASCAL
VOC2007 and VOC2012 demonstrate that this RMIC ap-
proach achieves superior performance to the state-of-the-art
supervised learning methods.
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