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Abstract

Clustering of data points is a fundamental tool in data analysis.
We consider points X in a relaxed metric space, where the
triangle inequality holds within a constant factor. A clustering
of X is a partition of X defined by a set of points Q (centroids),
according to the closest centroid. The cost of clustering X
by Q is V (Q) =

∑
x∈X dxQ. This formulation generalizes

classic k-means clustering, which uses squared distances. Two
basic tasks, parametrized by k ≥ 1, are cost estimation, which
returns (approximate) V (Q) for queries Q such that |Q| = k
and clustering, which returns an (approximate) minimizer of
V (Q) of size |Q| = k. When the data set X is very large, we
seek efficient constructions of small samples that can act as
surrogates for performing these tasks. Existing constructions
that provide quality guarantees, however, are either worst-case,
and unable to benefit from structure of real data sets, or make
explicit strong assumptions on the structure. We show here
how to avoid both these pitfalls using adaptive designs.
The core of our design are the novel one2all probabilities,
computed for a set M of centroids and α ≥ 1: The clustering
cost of each Q with cost V (Q) ≥ V (M)/α can be estimated
well from a sample of size O(α|M |ε−2). For cost estima-
tion, we apply one2all with a bicriteria approximate M , while
adaptively balancing |M | and α to optimize sample size per
quality. For clustering, we present a wrapper that adaptively
applies a base clustering algorithm to a sample S, using the
smallest sample that provides the desired statistical guarantees
on quality. We demonstrate experimentally the huge gains of
using our adaptive instead of worst-case methods.

Introduction

Clustering is a fundamental and prevalent tool in data anal-
ysis. We have a set X of data points that lie in a (relaxed)
metric space (M, d), where distances satisfy a relaxed tri-
angle inequality: For some constant ρ ≥ 1, for any three
points x, y, z, dxy ≤ ρ(dxz + dzy). Note that any metric
space with distances replaced by their pth power satisfies this
relaxation: For p ≤ 1 it remains a metric and otherwise we
have ρ = 2p−1. In particular, for squared distances (p = 2),
commonly used for clustering, we have ρ = 2.

Each set Q ⊂ M of points (centroids) defines a clustering,
which is a partition of X into |Q| clusters, which we denote
by Xq for q ∈ Q, so that a point x ∈ X is in Xq if and only
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if it is in the Voronoi region of q, that is q = argminy∈Q dxy .
We allow points x ∈ X to have optional weights wx > 0,
and define the cost of clustering X by Q to be

V (Q | X,w) =
∑

x∈X
wxdxQ , (1)

where dxQ = miny∈Q dxy is the distance from point x to the
set Q.

Two fundamental computational tasks are cost queries
and clustering (cost minimization). The clustering cost (1)
of query Q can be computed using n|Q| pairwise distance
computations, where n = |X| is the number of points in X .
With multiple queries, it is useful to pre-process X and return
fast approximate answers. Clustering amounts to finding Q
of size |Q| ≤ k with minimum cost:

arg min
Q||Q|≤k

V (Q | X,w) . (2)

Optimal clustering is computationally hard (Aloise et al.
2009) even on Euclidean spaces and even to tightly approx-
imate (Awasthi et al. 2015). There is a local search poly-
nomial algorithm with 9 + ε approximation ratio (Kanungo
et al. 2004). In practice, clustering is solved using heuris-
tics, most notably Lloyd’s algorithm (EM) for squared Eu-
clidean distances (Lloyd 1982) and scalable approximation
algorithms such as KMEANS++ (Arthur and Vassilvitskii
2007) for general metrics. EM iterates allocating points to
clusters defined by the nearest centroid, and replacing each
centroid with the center of mass

∑
x wxx of its cluster. Each

iteration uses |X|k pairwise distance computations. It is a
heutistic because although each iteration reduces the clus-
tering cost, the algorithm can terminates in a local minima.
KMEANS++ produces a sequence of points {mi}: The first
point m1 is selected randomly with probability ∝ wx and a
point mi us selected with probability ∝ wxd{m1,...,mi−1}x.
Each iteration requires O(|X|) pairwise distance computa-
tions. KMEANS++ guarantees that the expected clustering
cost of the first k points is within an O(log k) factor of the
optimum k-means cost. Moreover, KMEANS++ provides bi-
criteria guarantees (Aggarwal, Deshpande, and Kannan 2009;
Wei 2016): The first βk points selected (for some constant
β > 1) have expected clustering cost is within a constant
factor of the optimum k-means cost. In practice, kmeans++
is often used to initiallize Lloyd’s algorithm.
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With very large point sets X , we seek a summary struc-
ture that can be efficiently computed and act as a surrogate
of the full data for the purpose of approximating clustering
costs. When designing such strutcures we seek to optimize
a tradeoff between its size and the quality guarantees it pro-
vides. Coresets that build on the theory of ε-nets were stud-
ied in the computational geometry literature (Agarwal, Har-
Peled, and Varadarajan 2005; Har-Peled and Mazumdar 2004)
and notable constructions include (Mettu and Plaxton 2004;
Chen 2009; Feldman and Langberg 2011; Feldman, Schmidt,
and Sohler 2013). A common coreset form is a subset S ⊂ X
with weights w′ so that V (Q | S,w′) ≈ V (Q | X,w) for
each Q of size k.

The bulk of coreset constructions are aimed to provide
strong “ForAll” statistical guarantees, which bound the distri-
bution of the maximum approximation error of all Q of size
k. The ForAll requirement, however, comes with a hefty in-
crease in size that is generally unnecessary for the two tasks
we have at hand: For clustering cost queries, weaker per-
query “ForEach” typically suffice, which for each Q, with
very high probability over the structure distribution, bound
the error of the estimate of V (Q). For clustering, it suffices to
guarantee that the (approximate) minimizers of V (Q | S,w′)
are approximate minimizers of V (Q | X,w). Moreover,
previous constructions use coreset sizes that are worst-case,
based on general (VC) dimension or union bounds. A state-of-
the-art asymptotic worst-case bound of O(kε−2 log k log n)
is claimed in (Braverman, Feldman, and Lang 2016).

Even when a worst-case bound is tight up to constants,
which typically it is not (constants are not even specified in
state of the art coreset constructions), it only means it is tight
for pathological data sets of the particular size and dimension.
A much smaller summary structure might suffice in the pres-
ence of structure typical in data such as natural clusterability
(which is what we seek) and lower dimensionality than the
ambient space.

It seems on the surface, however, that in order to achieve
statistical guarantees on quality of the results one must either
make explicit assumptions on the data or use the worst-case
size. We show here how to avoid both these pitfalls via elegant
adaptive designs.

Contribution Overview

At the heart of our approach are novel summary structures
for clustering costs based on multi-objective probability-
proportional-to-size (pps) samples (Cohen, Kaplan, and Sen
2009; Cohen 2015), which build on the classic notion of sam-
ple coordination (Kish and Scott 1971; Brewer, Early, and
Joyce 1972; Saavedra 1995; Cohen 1997).

Consider a particular set Q of centroids. The theory of
weighted sampling (Särndal, Swensson, and Wretman 1992;
Tillé 2006) tells us that to estimate the sum V (Q | X,w)
it suffices to compute a sample S of ε−2 points included
with probabilities px ∝ wxdQx proportional to their contri-
bution to the sum (Hansen and Hurwitz 1943). The inverse-
probability (Horvitz and Thompson 1952) estimator of V (Q |
X,w)

̂V (Q | X,w) := V (Q | S, {wx/px}) ,

is unbiased with normalized root mean squared error that
is bounded by ε and with Bernstein-Chernoff concentration.
Note that any set of nonnegative probabilities yields an unbi-
ased estimate but weighted sampling is necessary for provid-
ing concentration and variance bounds. A challenge here for
us is that we are interested in simultaneously having pps-like
quality guarantees for any subset Q of size k whereas the
estimate V (Q′ | S, {wx/px}) when S is taken from a sam-
ple distribution according to Q �= Q′ will not provide these
guarantees for Q′. To obtain these quality guarantees for all
Q by a single sample, we use multi-objective pps sampling
probabilities, where the sampling probability of each point
x ∈ X is the maximum pps probability over all Q of size
k. Evidently, a multi-objective sample can be larger than a
dedicated sample providing the same guarantees. We refer to
the increase factor in sample size as the overhead.

For our applications, we need not only to bound these
probabilities but also to efficiently compute such bounds –
evidently it is not feasible to enumerate the infinite number
of subsets Q. The basis of our work is a novel general con-
struction of the one2all probabilities assigned to points in X
and defined with respect to a set M of points and α ≥ 1. The
one2all probabilities upper bound the pps probabilities for
any Q with clustering cost V (Q) ≥ V (M)/α. The overhead
is only O(α|M |) and the computation uses |M |n pairwise
distance computations. Note that this holds for any (relaxed)
metric space and in particular, does not depend on the dimen-
sion or the size of the data.

The one2all probabilities of an optimal clustering Q∗ of
size k and α = 1 upper bound the pps probabilities for all
Q of size k and existentially establishes that the overhead is
O(k). This generalizes previous work (Chechik, Cohen, and
Kaplan 2015) for the case where k = 1, where clustering
cost reduces to inverse classic closeness centrality (sum of
distances from a single point Q).

We use one2all to obtain a clustering cost oracle for queries
with cost at least a specified C: We pre-process the data by ap-
plying KMEANS++ (Arthur and Vassilvitskii 2007) to obtain
a sequence M of centroids. We can then apply one2all with
M and α = max{1, V (M | X,w)/C}. In a further adaptive
optimization, we consider all prefixes M ′ ⊂ M and corre-
sponding α′ ← αV (M ′)/V (M) and select the sweet-spot
prefix M ′ of the centroids sequence returned by KMEANS++
that minimizes the sample size. Finally, we sample X to
obtain S.

Our oracle then processes cost query Q by computing and
returning the clustering cost of S by Q: V (Q | S, {wx/px}).
Each computation performs O(|S||Q|) pairwise distance
computations instead of the O(n|Q|) that would have been
required over the full data.

To obtain an oracle for all Q of size k, we use the bi-
criteria approximation (Wei 2016) guarantee of KMEANS++:
For some small constants β and α > 1, M of size βk is
likely to have cost V (M) ≤ αV (Q∗). One2all probabilities
for these M and α provide us with an oracle of size at most
βα times larger than if we had used Q∗. In particular, the
sample size is O(α|M |ε−2) = O(kε−2). This construction,
however, uses the bicriteria bound in a worst-case manner.
Instead, we propose a feedback oracle design that adaptively
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lower the target clustering cost C by increasing sample size
when provided with a query with lower clustering cost than
C.

For the task of approximate clustering, we adapt an op-
timization framework over multi-objective samples (Cohen
2015). The meta algorithm is a wrapper that inputs multi-
objective pps probabilities, specified error guarantee ε, and
a black-box (exact, approximate, bicriteria, heuristic) base
clustering algorithm A. The wrapper applies A to a sample
to obtain a respective approximate minimizer of the cluster-
ing cost over the sample. When the sample is much smaller
than the full data set and is yet large enough to support the
optimization, we can improve clustering quality with reduced
computation. Our initial multi-objective pps sample provides
ForEach guarantees that apply to each estimate in isolation
but not to the sample optimum. In particular, it does not guar-
antee us that the solution over the sample has the respective
quality over the full data set. A larger sample may or may
not be required. One can always increase the sample by a
worst-case upper bound (using a union bound or domain-
specific dimensionality arguments). Our adaptive approach
exploits a critical benefit of ForEach: That is, we are able
to test the quality of the sample approximate optimizer Q
returned by A: If the clustering cost of V (Q | X,w) agrees
with the estimate V (Q | S,w′) then we can certify that Q
has similar (within (1 + ε) quality over X as it has over the
sample S. Otherwise, the wrapper doubles the sample size S
and repeats until the test is satisfied. Since the base algorithm
is always at least linear, the total computation is dominated
by that last largest sample size we use.

Note that the only computation performed over the full
data set are the O(k) iterations of KMEANS++ that produce
(M,α) to which we apply one2all. Each such iteration per-
forms O(|X|) distance computations. This is a significant
gain, as even with Lloyd’s algorithm (EM heuristic), each
iteration is O(k|X|).

A further adaptive optimization targets this initial cost: On
real-world data it is often the case that much fewer iterations
of KMEANS++ bring us to within some reasonable factor α
of the optimal k-clustering. We thus propose to adaptively
perform additional KMEANS++ iterations as to balance their
cost with the size of the sample that we need to work with.

We demonstrate through experiments on both synthetic
and real-world data the potentially huge gains of our data-
adaptive methods as a replacement to worst-case-bound size
samples or coresets.

Multi-objective pps samples for clustering

We review the framework of weighted and multi-objective
weighted sampling (Cohen 2015) in our context of clustering
costs. Consider approximating the clustering cost V (Q |
X,w) from a sample S of X . For probabilities px > 0 for
x ∈ X and a sample S drawn according to these probabilities,
we have the unbiased inverse probability estimator (Horvitz
and Thompson 1952) of V (Q | X,w):

̂V (Q | X,w) :=
∑

x∈S
wx

dxQ
px

= V (Q | S, {wx/px}) . (3)

Note that the estimate is equal to the clustering cost of S with
weights wx/px by Q.

Probability proportional to size (pps) sampling

To obtain guarantees on the estimate quality of the clustering
cost by Q, we need to use weighted sampling (Hansen and
Hurwitz 1943). The pps base probabilities of Q for x ∈ X
are

ψ(Q|X,w)
x =

wxdxQ∑
y∈X wydyQ

. (4)

The pps probabilities for a sample with size parameter r > 1
are

r ∗ ψ(Q|X,w)
x = min{1, rψ(Q|X,w)

x } .

Note that the (expected) sample size is
∑

x px. When px =

r ∗ ψ
(Q|X,w)
x , the size is at most r. With pps sampling we

obtain the following guarantees:
Theorem 0.1 ((weak) pps sampling) Consider a sample S
where each x ∈ X is included independently (or using
VarOpt dependent sampling (Chao 1982; Cohen et al. 2011))
with probability px ≥ νε−2 ∗ ψ(Q|X,w)

x , where ν ≤ 1. Then
the estimate (3) has the following statistical guarantees:
• Normalized root mean square error (NRMSE) bounded by

NRMSE[ ̂V (Q | X,w)] =
√

ES∼p[V (Q | S, {wx/px})2]− V (Q | X,w)2

V (Q | X,w)
≤ ε√

ν
.

• Chernoff-Bernstein concentration, which bounds the rela-
tive error as follows:

Pr[V (Q | S) ≥ (1 + δ)V (Q | X)] ≤ e−
δ ln(1+δ)νε−2

2

Pr[V (Q | S) ≤ (1− δ)V (Q | X)] ≤ e−
δ2νε−2

2

For our purposes here, we bound on the probability that when
ν < 1 the estimate exceeds ν−1V (Q | X,w):
Corollary 0.1 (Overestimation probability)

Pr[V (Q | S) ≥ V (Q | X)

ν
] ≤ e−(1−ν) ln(1/ν)ε−2/2

Multi-objective pps

When we seek estimates with statistical guarantees for a set
Q of queries (for example, all possible sets of k centroids),
we use multi-objective pps (Cohen, Kaplan, and Sen 2009;
Cohen 2015). The multi-objective (MO) pps base sampling
probabilities are defined as the maximum of the pps base
probabilities over Q ∈ Q:

ψ(Q|X,w)
x = max

Q∈Q
ψ(Q|X,w)

x . (5)

Accordingly, for a size parameter r, the multi-objective pps
probabilities are

r ∗ ψ(Q|X,w)
x = min{1, rψ(Q|X,w)

x } = max
Q∈Q

r ∗ ψ(Q|X,w)
x .

A key property of multi-objective pps is that the error bounds
of dedicated pps samples (Theorem 0.1 and Corollary 0.1)
hold. We refer to these multi-objective statistical quality guar-
antees as “ForEach,” meaning that they hold for each Q over
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the distribution of the samples. We define the overhead of
multi-objective sampling Q or equivalently of the respective
base probabilities as:

h(Q | X,w) := |ψ(Q|X,w)|1 :=
∑

x∈X
ψ(Q|X,w)
x .

The overhead bounds the factor-increase in sample size due
to “multi-objectiveness:” The multi-objective pps sample size
with size parameter r is at most |r ∗ ψ(Q|X,w)|1 ≤ rh(Q |
X,w).

Often we can not efficeintly compute ψ but only obtain
upper bounds π ≥ ψ(Q|X,w). Accordingly, we use sampling
probabilities r ∗ π. The use of upper bounds increases the
sample size. We refer to h(π) = |π|1 as the overhead of π.
We seek upper-bounds π with overhead not much larger than
h(Q | X,w).

one2all probabilities
Consider a relaxed metric space (M, d) where distances
satisfy all properties of a metric space except that the triangle
inequality is relaxed using a parameter ρ ≥ 1:

∀x, y, z ∈ M, dxy ≤ ρ(dxz + dzy) . (6)
Let (X,w) where X ⊂ M and w > 0 be weighted points

in M. For another set of points M ⊂ M, which we refer to
as centroids, and q ∈ M , we denote by

X(M)
q = {x ∈ X | dxq = dxM}

the points in X that are closest to centroid q. In case of ties we
apply arbitrary tie breaking to ensure that X(M)

q for q ∈ M

forms a partition of X . We will assume that X(M)
q is not

empty for all q ∈ M , since otherwise, we can remove the
point q from M without affecting the clustering cost of X by
M .

Our one2all construction takes one set of centroids M and
computes base probabilities for x ∈ X such that samples
from it allow us to estimate the clustering costs of all Q
with estimation quality guarantees that depends on V (Q |
X,w). For a set M we define the one2all base probabilities
π(M |X,w) as:

∀m ∈M, ∀x ∈ Xm, (7)

π
(M|X,w)
x = min

{
1,max

{
2ρ

wxdxM

V (M | X,w)
,
8ρ2wx

w(Xm)

}}
.

We omit the superscripts when clear from context.
Theorem 0.2 (one2all) Consider weighted points (X,w) in
a relaxed metric space with parameter ρ, points M , and a
set Q of centroids. Then

π(M |X,w) ≥ min{1, V (Q | X,w)

V (M | X,w)
}ψ(Q|X,w) ,

where π(M |X,w) are the one2all base probabilities for M .
The full proof of the Theorem is provided in the next section.
As a corollary, we obtain that for r ≥ 1, we can upper bound
the multi-objective base pps probabilities ψ(Q|X,w) and the
overhead h(Q) of the set Q of all Q with at least a fraction
1/r of the clustering cost of M :

Corollary 0.2 Consider M and r ≥ 1 and the set Q = {Q |
V (Q | X,w) ≥ V (M | X,w)/r}. Then, r ∗ π(M |X,w) ≥
ψ(Q|X,w) and h(Q) ≤ r(8ρ2|M |+ 2ρ).

Proof For Q ∈ Q, r ∗π(M |X,w) ≥ rmin{1, V (Q|X,w)
V (M |X,w)}∗

ψ(Q|X,w) ≥ ψ(Q|X,w). Note that |π(M |X,w)|1 ≤
8ρ2|M |+ 2ρ.

We can also upper bound the multi-objective overhead of
all sets of centroids of size k:
Corollary 0.3 For k ≥ 1, let Q be the set of all k-subsets of
points in a relaxed metric space M with parameter ρ. The
multi-objective pps overhead of Q satisfies

h(Q) ≤ 8ρ2k + 2ρ .

Proof We apply Corollary 0.2 with M being the k-means
optimum and r = 1.

Proof of the one2all Theorem

Consider a set of points Q and let α = max{1, V (M |X,w)
V (Q|X,w) } .

To prove Theorem 0.2, we need to show that ∀x ∈ X,

ψ(Q|X,w)
x =

wxdxQ
V (Q | X,w)

≤ απ(M |X,w)
x . (8)

We will do a case analysis, as illustrated in Figure 1. We first
consider points x such that the distance of x to Q is not much
larger than the distance of x to M . Property (8) follows using
the first term of the maximum in (7).
Lemma 0.4 Let x be such that dxQ ≤ 2ρdxM . Then

wxdxQ
V (Q | X,w)

≤ 2ρα
wxdxM

V (M | X,w)
.

Proof Using V (Q | X,w) ≥ V (M | X,w)/α we get

dxQ
V (Q | X,w)

≤ α
dxQ

V (M | X,w)
≤ 2ρα

dxM
V (M | X,w)

.

It remains to consider the complementary case where point
x is much closer to M than to Q:

dxQ ≥ 2ρdxM . (9)

We first introduce a useful definition: For a point q ∈ M ,
we denote by Δq the weighted median of the distances dqy
for y ∈ Xq , weighted by wy. The median Δq is a value that
satisfies the following two conditions:

∑

x∈Xq|dxq≤Δq

wx ≥ 1

2
w(Xq) (10)

∑

x∈Xq|dxq≥Δq

wx ≥ 1

2
w(Xm) . (11)
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Figure 1: Illustration of the one2all construction proof with
ρ = 1. The data points X are in black. The points in M are
colored red. We show the respective Voronoi partition and
for each cluster, we show circles centered at the respective
m ∈ M (red) point with radius Δm. The points in blue are a
set Q. The points x ∈ X are labeled A if dxQ < 2dxM (and
we apply Lemma 0.4). Otherwise, when there is a point m
such that dxQ > dxm, the point is labeled B when dmQ ≥
2Δm (Lemma 0.5) and is labeled C otherwise (Lemma 0.6).

It follows from (11) that for all q ∈ M ,

V (M | Xq,w) =
∑

x∈Xq

wxdqx ≥
∑

x∈Xq |dxq≥Δq

wxdxq

≥ Δq

∑

x∈Xq |dxq≥Δq

wx ≥ 1

2
w(Xm)Δq .

Therefore,

V (M | X,w) =
∑

q∈M
V (M | Xq,w) ≥ 1

2

∑

q∈M
w(Xm)Δq .

(12)

We now return to our proof for x that satisfies (9). We will
show that property (8) holds using the second term in the
max operation in the definition (7). Specifically, let m be the
closest M point to x. We will show that

dxQ
V (Q | X,w)

≤ 8ρ2α
1

w(Xm)
. (13)

We divide the proof to two subcases, in the two following
Lemmas, each covering the complement of the other: When
dmQ ≥ 2ρΔm and when dmQ ≤ 2ρΔm.
Lemma 0.5 Let x be such that

∃m ∈ M, dmx <
1

2ρ
dxQ and dmQ ≥ 2ρΔm .

Then
dxQ

V (Q | X,w)
≤ 8ρ2

w(Xm)
.

Proof Let q = argminz∈Q dmz be the closest Q point to
m. From (relaxed) triangle inequality (6) and our assump-
tions:

dxQ ≤ dxq ≤ ρ(dmq+dmx) = ρ(dmQ+dmx) ≤ ρdmQ+
1

2
dxQ .

Rearranging, we get

dxQ ≤ 2ρdmQ . (14)

Consider a point y such that dmy ≤ Δm. Let q′ =
argminz∈Q dyz be the closest Q point to y. From relaxed
triangle inequality we have dmq′ ≤ ρ(dyq′ + dym) and there-
fore

dyQ = dyq′ ≥ 1

ρ
dmq′ − dym ≥ 1

ρ
dmQ −Δm

≥ 1

ρ
dmQ − 1

2ρ
dmQ ≥ 1

2ρ
dmQ .

Thus, using the definition of Δm (10):

V (Q | X,w) ≥
∑

y|dyQ≤Δm

wydyQ ≥ 1

2ρ

∑

y|dyQ≤Δm

wydmQ

≥ 1

2ρ
dmQ

∑

y∈Xm|dyQ≤Δm

wy

≥ 1

2ρ
dmQ

w(Xm)

2
=

1

4ρ
dmQw(Xm) . (15)

Combining (14) and (15) we obtain:

dxQ
V (Q | X,w)

≤ 2ρdmQ
1
4ρw(Xm)dmQ

= 8ρ2
1

w(Xm)
.

Lemma 0.6 Let a point x be such that

∃m ∈ M, dxm <
1

2ρ
dxQ and dmQ ≤ 2ρΔm .

Then
dxQ

V (Q | X,w)
≤ 8ρ2α

1

w(Xm)
.

Proof Let q = argminz∈Q dzm be the closest Q point to
m. We have

dxQ ≤ dxq ≤ ρ(dxm+dmq) ≤ 1

2
dxQ+ρdmQ ≤ 1

2
dxQ+2ρ2Δm

Therefore,
dxQ ≤ 4ρ2Δm . (16)

Using (12) we obtain

V (Q | X,w) ≥ V (M | X,w)/α ≥ 1

2α

∑

y∈M
w(Xy)Δy

≥ 1

2α
w(Xm)Δm . (17)

Combining (16) and (17) we obtain

dxQ
V (Q | X,w)

≤ 4ρ2Δm
1
2αw(Xm)Δm

≤ 8ρ2α
1

w(Xm)
.
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n d k guarantee ε adaptive |S|
n

worst-case |S|
n

× gain est. err V (Q|X)
Vground-truth

V ({m0,...,mk}|X)

Vground-truth
sweet-spot

Mixture of Gaussians data sets
5× 105 10 5 0.10 0.0500 1.00 20.0 0.008 1.07 2.50 2.3

5× 105 10 5 0.20 0.0136 1.00 73.3 0.012 1.10 2.39 2.6

2.5× 106 10 5 0.20 0.0025 1.00 90.2 0.0160 1.14 2.14 2.2

1× 107 10 5 0.20 0.00066 1.00 94.4 0.018 1.12 2.07 2.6

2× 106 10 20 0.10 0.04839 1.00 20.7 0.0018 1.14 2.27 9.1

2× 106 10 20 0.20 0.012007 1.00 83.2 0.008 1.18 2.25 9.0

2× 106 10 50 0.20 0.0298 1.00 33.5 0.0057 1.16 2.24 19.5

2× 106 10 100 0.20 0.061918 1.00 16.2 0.0058 1.15 2.22 40.8

1× 106 20 10 0.10 0.05293 1.00 18.9 0.0035 1.17 2.39 5.0

1× 106 50 10 0.10 0.04726 1.00 21.2 0.0037 1.19 2.65 3.9

1× 106 100 10 0.10 0.05287 1.00 18.9 0.0035 1.18 2.6 4.9
MNIST data set

6× 105 784 10 0.20 0.0371 1.00 26.9 0.018 0.985 1.765 1.0
Fashion data set

6× 105 784 10 0.20 0.05720 1.00 17.5 0.021 0.91 1.65 1.0

Table 1: Sample size needed to meet the specified statistical guarantees by our adaptive and worst-case approaches. The reported
estimation error is for the estimate V (Q | S) of V (Q | X) of the returned clustering Q from the final sample S. It is the square
root of the normalized squared error, averaged over repetitions. .

Algorithm 1 Clustering Wrapper
Input: points X , weights w > 0, ε > 0, a clustering algorithmA that inputs a weighted set of

points and returns Q ∈ Q.
Output: Set Q of k centroids with statistical guarantees on quality over X that match within (1+ε)

those provided byA
// Initialization
c←∞ // Apply KMEANS++ to (X,w)
foreach iteration i ∈ [2k] of KMEANS++(X,w) do

mi ← next centroid
vi ← V ({m1, . . . ,mi} | X,w) // Clustering cost

if ivi < c then // sweet-spot one2all prob. (7)
π ← π(M|X,w) ; VM ← vi ; c← ivi

r ← vM
v2k

// Initial sample size increase factor

Q∗ ← {m1, . . . ,mk}; V ← vk // Best so far and upper bound
foreach x ∈ X do ux ∼ U [0, 1] // Randomization for sampling

S ← {x | ux ≤ rε−2πx} // Initial sample. O(|S|) given preprocessed
π

foreach x ∈ S do w′x ← wx/min{1, rπx} // weights for sampled points
// Main Loop
repeat

// Cluster the sample S

Q← A(S,w′) // Apply algorithm A to sample
VQ ← V (Q | X,w) // Exact or approx using a validation sample

if VQ < V then V ← VQ Q∗ ← Q

if VQ ≤ (1 + ε)V (Q | S,w′) and VQ ≥ VM/r then
break

r ← max{2, VQ/VM}r // Increase the sample size parameter

repeat// Increase sample size until Q is cleared

S ← {x | ux ≤ rε−2πx} // Add points to sample

foreach x ∈ S do w′x ← wx/min{1, rπx} // weights for sampled
points

r ← 2r
until V (Q | S,w′) > min{(1 + ε)V , (1− ε)VQ}

until True

return Q∗

Clustering wrapper

The input to a clustering problem is a (weighted) set of points
(X,w) and k > 0. The goal is to compute a set Q of k cen-
troids aimed to minimize the clustering cost V (Q | X,w).

We present a wrapper, Algorithm 1, which inputs a cluster-
ing problem, a clustering algorithm A, and ε > 0, and returns
a set of Q of k centroids. The wrapper computes weighted
samples (S,w′) of the input points (X,w) and applies A to
S. It then performs some tests on the clustering Q returned
by A, based on which, it either terminates and returns a clus-
tering, or adaptively increases the sample size. The wrapper
provides a statistical guarantee that the quality of the cluster-

ing Q returned by A on the sample (S,w′) reflects, within
(1 + ε), its quality on the data.

The first part of the wrapper performs 2k iterations of
KMEANS++ tor (X,w) to compute a list {mi} of centroids
and respective clustering costs vi = V ({m1, . . . ,mi} |
X,w). While performing this computation, we identify a
sweet-spot M = {m1, . . . ,mi} and retain π : X , which
are the one2all base probabilities for M . Our wrapper sep-
arately maintains a size parameter r, that is initially set to
r = Vi/v2k. From Theorem 0.2, the probabilities r ∗π upper
bound the base pps probabilities for all Q with clustering
cost V (Q | (X,w)) ≥ VM/r. Initially, r ∗ π is set for cost
above v2k. We then selects a fixed randomization u, that will
allow for coordination of samples selected with different size
parameters.

The main iteration computes a weighted sample (S,w′)
selected with probabilities ε−2r ∗π. Our algorithm is applied
to the sample Q ← A(S,w′) to obtain a set Q of k cen-
troids. We compute (or estimate from a validation sample)
the clustering cost over the full dataset VQ = V (Q | x,w).
If VQ is not lower than VM/r and is also not much higher
than the sample clustering cost V (Q | S,w′), we break and
return the best Q we found so far. Otherwise, we increase
the size parameter r, augment the sample accordingly, and
iterate. The increase in the size parameter at least doubles
it and is set so that (i) We have VM/r ≤ V , where V is the
smallest clustering cost encountered so far. (ii) The set Q
that was underestimated by the sample has estimate that is
high enough to clear it from V or to comprise an accurate
estimate.

Analysis

We show that if our algorithm A provides a certain approxi-
mation ratio on the quality of the clustering, then this ratio
would also hold (approximately, with high confidence) over
the full data set. A similar argument applies to a bicriteria
bound.

The wrapper works with an optimistic initial choice of
r, but increases it adaptively as necessary. The basis of the
correctness of our algorithm is that we are able to detect when
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our choice of r is too low.
There are two separate issues that we tackle with adaptiv-

ity instead of with a pessimistic worst-case bound. The first
is also addressed by our feedback oracle: For accurate esti-
mates we need VM/r to be lower than V ∗ = V (Q∗ | X,w)
(the optimal clustering cost over X), which we do not know.
Initially, VM/r = v2k, which may be higher than V ∗. We
increase r when we find a clustering Q with V (Q) < VM/r.
The potential “bad” event is when the optimum clustering
Q∗ has V ∗  VM/r but is overestimated by a large amount
in the sample resulting in the sample optimum V ∗S is much
larger than V ∗. As a consequence, the clustering algorithm A
applied to the sample can find Q, for which the estimate is cor-
rect, and has cost above Vm/r. The approximation ratio over
the sample is V (Q | S)/V ∗S which can be much better than
the true (much weaker) approximation ratio V (Q | S)/V ∗
over the full data.

This bad event happens when V ∗S � V ∗. But note that
in expectation, E[V ∗S ] ≤ V ∗. Moreover, the probability of
this bad event is bounded by exp(−ε−2/6) (see Theorem 0.1
and Corollary 0.1). We can make the probability of such
bad event smaller by augmenting the wrapper as follows.
When the wrapper is ready to return Q, we generate multiple
samples of the same size and apply A to all these samples
and take the best clustering generated. If we find a clustering
with cost below Vm/r, we continue the algorithm. Otherwise,
we return the best Q. The probability that all the repetitions
are “bad” drops exponentially with the number of repetitions
(samples) we use.

The second issue is inherent with optimization over sam-
ples. Suppose now that r is such that V ∗ ≥ VM/r. The
statistical guarantees provided by the sample are “ForEach,”
which assure us that the cost is estimated well for a given Q.
In particular, V (Q∗ | S,w′) is well concentrated around V ∗
(Theorem 0.1). This means that V ∗S , the optimal clustering
cost over S, can only (essentially - up to concentration) be
lower than V ∗.

When we consider all Q of size k, potentially an infinite
or a very large number of them, it is possible that some
Q has clustering cost V (Q | X,w) � V ∗ but is grossly
underestimated in the sample, having sample-based cost
V (Q | S, {wx/px}) < V ∗. In this case, V ∗S  V ∗ and our
algorithm A that is applied to the sample will be fooled and
can return such a Q. The worst-case approach to this issue
is to use a union or a dimensionality bound that drastically
increases sample size. We get around it using an adaptive
optimization framework (Cohen 2015).

We can identify and handle this scenario, however, by
testing Q returned by the base algorithm to determine if our
algorithm was “fooled” by the sample:

V (Q | X,w) ≤ (1 + ε)V (Q | S, {wx/px}) . (18)

by either computing the exact cost V (Q | X,w) or by draw-
ing another independent validation sample S′, and using the
estimate V (Q | S, {wx/px}). When the test fails, we in-
crease the sample size and repeat. In fact, we at least double
the sample size parameter, but otherwise increase it at least
to the point that V (Q | S, {wx/px}) can no longer fool the
algorithm. The only bad event possible here is that the sam-

ple optimum is much larger than V (Q∗). But as noted, when
V ∗ ≥ VM/r the probability of this for a particular sample is
bounded by Theorem 0.1. Moreover, note that each increase
of the sample size significantly strengthens the concentration
of estimates for particular Q. Thus, the worst quality, over
iterations, in which Q∗ is estimated in the sample is domi-
nated by the first iteration with V (Q∗) ≥ VM/r. Therefore,
the approximation ratio over the sample is at least (up to the
statistical concentration of the estimates of Q∗) the ratio over
the full data.

Computation

The computation performed is dominated by two compo-
nents. The first is the 2k iterations of KMEANS++ on the data,
which are dominated by 2k|X| pairwise distance computa-
tions. These is the only component that must be performed
over the original data. The second is the application of A to
the sample. When A is (super)linear, it is dominated by the
largest sample we use.

Experiments

We performed illustrative experiments for Euclidean k-means
clustering on both synthetic and real-world data sets. We
implemented our wrapper Algorithm 1 in numpy with the
following base clustering algorithm A: We use 5 applications
of KMEANS++ and take the set of k centroids that has the
smallest clustering cost. This set is used as an initialization to
20 iterations of Lloyd’s algorithm. The use of KMEANS++ to
initialize Lloyd’s algorithm is a prevalent method in practice.

Synthetic data: We generated synthetic data sets by draw-
ing n points X ⊂ Rd from a mixture of k Gaussians. The
means of the Gaussians are arranged to lie in a line with
equal distances. The standard deviations of the Gaussians
were drawn from a range equal to the distance to the closest
mean. As a reference, we use the means of the Gaussians as
the ground truth centroids.

MNIST and Fashion MNIST datasets: We use the
MNIST data set of images of handwritten digits (LeCun
and Cortes 2010) and the Fashion data set of images of cloth-
ing items (Xiao, Rasul, and Vollgraf 2017). Both data sets
contain n = 6× 105 images coded as d = 784 dimensional
vectors. There are k = 10 natural classes that correspond
to the 10 digits or 10 types of clothing items. Our reference
ground-truth centroids were taken as the mean of each class.

Worst-case bounds: We also report, for comparison, sizes
based on state-of-the-art coresets constructions that provide
the same statistical guarantees. The coreset sizes are deter-
mined using worst-case upper bounds. When constant factors
are not specified, we underestimate them. Details are pro-
vided in the full version.

Adaptive bounds: Table 1 reports the results of our exper-
iments. The first four columns report the basic parameters of
each data set: The number of points n, clusters k, dimension
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d, and the specified value of ε for the desired statistical guar-
antee. The middle columns report the final sample size |S|
used by the algorithm as a fraction of n, an underestimate on
the corresponding coreset size from state of the art worst-case
bounds, and the gain factor in sample size by using our adap-
tive algorithm instead of a worst-case bound. We can observe
significant benefit that increases with the size of the data sets.
On the MNIST data, the worst-case approach provides no
data reduction.

The third set of columns reports the accuracy of the sample-
based estimate of the cost of the final clustering Q. We can
see that the error is very small (much smaller than ε). We
also report the quality of the final clustering Q and the qual-
ity of the clusters obtained by applying KMEANS++ to X ,
relative to the cost of the “ground truth” centroids. We can
see that the cost of the final clustering is very close (in the
case of MNIST, is lower) than the “ground truth” cost. We
also observe significant improvement over the cost of the
KMEANS++ centroids used for initialization. The last column
reports the number of KMEANS++ iterations on the full data
set that was eventually used (the sweet spot value).

Conclusion

A salient feature of our methods is that we start with an op-
timistic small sample and increase it adaptively only in the
face of evidence that a larger sample is indeed necessary for
meeting the specified statistical guarantees on quality. Pre-
vious constructions use worst-case size summary structures
that can be much larger. We demonstrate experimentally the
very large potential gain, of orders of magnitude in sample
sizes, when using our adaptive versus worst-case methods.
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