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Abstract

We propose a framework for modeling and estimating the
state of controlled dynamical systems, where an agent can af-
fect the system through actions and receives partial observa-
tions. Based on this framework, we propose Predictive State
Representation with Random Fourier Features (RFF-PSR). A
key property in RFF-PSRs is that the state estimate is rep-
resented by a conditional distribution of future observations
given future actions. RFFPSRs combine this representation
with moment-matching, kernel embedding and local opti-
mization to achieve a method that enjoys several favorable
qualities: It can represent controlled environments which can
be affected by actions, it has an efficient and theoretically jus-
tified learning algorithm, it uses a non-parametric representa-
tion that has expressive power to represent continuous non-
linear dynamics. We provide a detailed formulation, a theo-
retical analysis and an experimental evaluation that demon-
strates the effectiveness of our method.

1 Introduction

Controlled dynamical systems, where an agent can influence
an environment through actions and receive partial observa-
tions, emerge in numerous applications in robotics and au-
tomatic control. Modeling and learning these systems from
data is of great importance in these fields.

The general problem of learning dynamical systems from
data (also known as system identification) has been exten-
sively studied and several methods were proposed to tackle
it. However, having an expressive, efficient and consistent
method for non-linear controlled systems remains an open
problem.

Many system identification methods rely on likelihood-
based optimization or sampling using EM, MCMC or gradi-
ent descent. which makes them prone to poor local optima.
There is another class of methods that alleviates the local op-
tima problem and offers a tractable and statistically consis-
tent approach to system identification. These methods, usu-
ally referred to as spectral algorithms, have two key prop-
erties in common: predictive representation and method of
moments. Instead of the state being a latent variable, they
represent the estimated state by the expectation of sufficient
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statistics (or features) of future observations and they use
method of moments to learn model parameters from data. 1

Initially introduced for linear-Gaussian systems (van
Overschee and de Moor 1996), these algorithms have been
extended to discrete systems (Hsu, Kakade, and Zhang
2009; Siddiqi, Boots, and Gordon 2010; Boots, Siddiqi, and
Gordon 2011) and then to general smooth continuous sys-
tems (Boots, Gretton, and Gordon 2013). More recently, it
has been shown that a wide class of spectral learning algo-
rithms for uncontrolled systems is an instance of a two-stage
regression framework (Hefny, Downey, and Gordon 2015),
where system identification is reduced to solving a set of re-
gression problems. This framework allows for seamless in-
tegration of compressing non-linearities, sparsity (Xia 2016)
and online learning (Venkatraman et al. 2016) into system
identification, and for establishing theoretical guarantees by
leveraging the rich literature on supervised regression.

Unfortunately, the formulation in (Hefny, Downey, and
Gordon 2015) is limited to uncontrolled systems. On the
contrary, we are interested in controlled systems, where the
user can affect the system through actions. This gives rise
to a key issue: the policy that determines the actions can
change at test time. For this reason, the representation of the
predictive state must be independent of the training policy
and therefore must encode a conditional distribution of fu-
ture observations given future actions. To adopt such a rep-
resentation into a practical method that retains the benefits
of the two-stage regression formulation, there are a number
of challenges that need to be tackled.

First, we need a suitable state representation and dynam-
ics model that can be used to represent a wide class of con-
trolled dynamical systems while ensuring the learning prob-
lem remains tractable. Second, we would like to benefit from
the two-stage regression view of (Hefny, Downey, and Gor-
don 2015) to facilitate model formulation. However, a key
assumption in that work is that future observations provide
an unbiased estimate of the predictive state, which is not true
when the state is a conditional distribution. A suitable state
estimation method needs to be provided. Third, having a dif-
ferent state representation and having action policy playing a

1There is a class of spectral algorithms that maintains the latent
variable view. This is exemplified by tensor decomposition meth-
ods (Anandkumar et al. 2014).
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Method Actions Continuous Non-
linear

Partially
observable

Scalable Consistent

Non-linear ARX � � � × � �
N4SID for Kalman Filter � � × � � �

Non-convex optimization (e.g. EM) � � � � � ×
Gram-Matrix (e.g. HSE-PSR) � � � � × �

Spectral PSR/POMDP � × � � � �
Reduction to Supervised Learning × � � � � �

RFF-PSR � � � � � �

Table 1: Comparison between proposed RFF-PSR and existing system identification methods in terms of the type of systems
they can model as well as their computational efficiency and statistical consistency. The table should be interpreted as follows:
for each method there exists an instantiation that simultaneously satisfies all properties marked with � but there is no instanti-
ation that is guaranteed to satisfy the properties marked with ×. A method is scalable if computational and memory costs scale
at most linearly with the number of training examples. For RFF-based methods, consistency is up to an approximation error
that is controllable by the number of features (Rahimi and Recht 2008).

key role on determining the training data require more theo-
retical analysis than the one in (Hefny, Downey, and Gordon
2015). Forth, because they are based on method of moments,
two stage regression models are statistically inefficient. Hav-
ing the ability to refine the model using local optimization
can lead to significant gains in predictive performance.

In this work we address these challenges by combining
ideas from two-stage regression, kernel embedding and ap-
proximation , and gradient descent with backpropagation
through time to develop RFF-PSRs. Overall, RFF-PSRs en-
joy a number of advantages that, to our knowledge, are not
attained by existing system identification methods. We sum-
marize these advantages in Table 1.

In summary, the contributions of this work are as fol-
lows: (1) We develop a two-stage regression framework for
controlled dynamical systems that admits tractable learning
(Sections 3-4). (2) Through the two-stage regression view,
we provide theoretical guarantees on learning the parame-
ters of a controlled system (Section 4.4). (3) We use the ex-
tended formulation to construct RFF-PSRs, an efficient ap-
proximation of kernel-based predictive state representations
(HSE-PSRs) (Section 5). (4) We provide a means to refine
the parameters of a controlled dynamical system and apply
it to our proposed RFF-PSR model (Section 5.5). (5) We
demonstrate the advantages of our proposed method through
synthetic and robot simulation experiments (Section 6).

2 Related Work

Developing tractable and consistent algorithms for latent
state dynamical systems dates back to spectral subspace
identification algorithms for Kalman filters (van Overschee
and de Moor 1996). At their heart, these algorithms repre-
sent the state as a prediction of the future observations con-
ditioned on history and future actions and use matrix factor-
ization to obtain a basis for the state.

This notion of the state as a prediction is the basis of
predictive state representations (PSRs) (Singh, James, and
Rudary 2004), where the state is represented by the success
probabilities of a number of tests. A test succeeds if a spec-
ified sequence test observations is observed when adminis-
tering a specified sequence of test actions.

Noting that the state and parameters of a PSR are
defined up to a similarity transformation has led to a
family of tractable and consistent spectral algorithms for
learning PSRs (Rosencrantz and Gordon 2004). More re-
cently, (Boots, Gretton, and Gordon 2013) proposed a gen-
eralization of PSRs in a reproducing kernel Hilbert space
(RKHS). This Hilbert space embedding of PSRs (HSE-
PSRs) is able to represent systems with continuous obser-
vations and actions while still offering a tractable and con-
sistent learning algorithm. HSE-PSRs, however, use a Gram
matrix formulation, whose computational and storage re-
quirements can grow rapidly with the size of training data.
A finite dimensional approximation for non-linear PSRs was
proposed by (Boots and Gordon 2011). However, it can be
thought of as an approximation of HSE-HMMs (Song et
al. 2010) with actions, which has poor theoretical guaran-
tees (Boots, Gretton, and Gordon 2013). In addition, (Boots
and Gordon 2011) did not provide examples on how to apply
the proposed model to controlled processes with continuous
actions. In contrast, the model we propose is an approxima-
tion of HSE-PSRs, which is a more principled generalization
of PSRs as it performs true Bayesian inference in the RKHS.
In addition, our proposed learning algorithm incorporates a
local optimization procedure that we demonstrate to be very
effective.

We use a reduction of system identification to super-
vised regression. Similar reductions has been proposed in
the literature (Langford, Salakhutdinov, and Zhang 2009;
Hefny, Downey, and Gordon 2015; Boots and Gordon 2011;
Venkatraman et al. 2016; Sun et al. 2016). These reductions,
however, assume uncontrolled systems, where future obser-
vation statistics constitute an unbiased representation of the
predictive state. 2 Modeling controlled systems is more sub-
tle since the the state of the system is a conditional distribu-
tion of observations given actions.

Another related work is the spectral learning algorithm
for POMDPs proposed by (Azizzadenesheli, Lazaric, and
Anandkumar 2016). This method uses tensor factorization

2implicit reductions do exist in the system identification liter-
ature (van Overschee and de Moor 1996) but they assume linear
systems.
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to recover POMDP parameters from examples collected by a
non-blind memoryless policy. However, this method is lim-
ited to discrete POMDPs Also, PSRs have more represen-
tational capacity than POMDPs and can compactly repre-
sent more sophisticated systems (Singh, James, and Rudary
2004). There are other classes of dynamical system learning
algorithms that are based on local optimization or sampling
approaches (Fox et al. 2009; Frigola et al. 2013) but they do
not offer consistency guarantees.

3 Formulation

We define a class of models that extends predictive state
models of (Hefny, Downey, and Gordon 2015) to controlled
systems. We first introduce some notation: We denote by
Pr[x | do(Y = y)] the probability of x given that we inter-
vene by setting Y to y. This is different from Pr[x | Y = y]
which denotes conditioning on observing Y = y; in the for-
mer case, we ignore all effects on Y by other variables. We
denote by VA|B;c the linear operator that satisfies

E[A|B = b, C = c] = VA|B;cb ∀b, c
In other words for each c, VA|B;c is a conditional expectation
operator from B to A (In the discrete case, VA|B;c is just a
conditional probability table).

When dealing with multiple variables, we will use tensor
notation e.g. VA,B|C,D is a 4-mode tensor. We will use

VA,B|C,D ×C c×D d

to denote multiplying VA,B|C,D by c along the mode corre-
sponding to C and by d along the mode corresponding toD.
If c is a matrix then the multiplication is performed along
the first dimension of c.

We will also use ‖ · ‖F to denote Frobenius norm, a ⊗ b
to denote Kronecker product of two vectors and A � B to
denote the Khatri-Rao product of two matrices (columnwise
Kronecker product).

3.1 Model Definition

We will consider k-observable systems, where the poste-
rior belief state given all previous observations and ac-
tions is uniquely identified by the conditional distribution
Pr[ot:t+k−1 | do(at:t+k−1)].

Following (Hefny, Downey, and Gordon 2015), we denote
by ψo

t , ψa
t , ξot and ξat sufficient features of future observa-

tions ot:t+k−1, future actions at:t+k−1, extended future ob-
servations ot:t+k and extended future actions at:t+k at time
t respectively.

We also use h∞t ≡ o1:t−1, a1:t−1 to denote the entire his-
tory of observations and actions at time t and use ψh

t ≡
ψh(o1:t−1, a1:t−1) to denote finite features of previous ob-
servations and actions before time t3.

We are now ready to define the class of systems we are
interested in.
Definition 1. A dynamical system is said to conform to a
predictive state controlled model (PSCM) if it satisfies the
following properties:

3Often but not always, ψh
t is a computed from fixed-size win-

dow of previous observations and actions ending at t− 1.

• For each time t, there exists a linear operator Qt =
Vψo

t |do(ψa
t );h

∞
t

(referred to as predictive state) such that
E[ψo

t | do(at:t+k−1), h
∞
t ] = Qtψ

a
t

• For each time t, there exists a linear operator Pt =
Vξot |do(ξat );h∞

t
(referred to as extended state) such that

E[ξot | do(at:t+k), h
∞
t ] = Ptξ

a
t

• There exists a linear map Wsys (referred to as system pa-
rameter map), such that, for each time t,

Pt =Wsys(Qt) (1)

• There exists a filtering function ffilter such that, for each
time t, Qt+1 = ffilter(Pt, ot, at). ffilter is typically non-
linear but known in advance.

It follows that a PSCM is specified by the tuple
(Q0,Wsys, ffilter), where Q0 denotes the initial belief state.

There are a number of aspects of PSCMs that warrant dis-
cussion. First, unlike latent state models, the state Qt is rep-
resented by a conditional distribution of observed quantities.
Second, Qt is a deterministic function of the history h∞t .
It represents the belief state that one should maintain after
observing the history to make optimal predictions. Third, a
PSCM specifies a recursive filter where given an action at
and an observation ot, the state update equation is given by

Qt+1 = ffilter(Wsys(Qt), ot, at) (2)

This construction allows us to learn a linear map Wsys and
use it to build models with non-linear state updates, includ-
ing IO-HMMs (Bengio and Frasconi 1995), Kalman filters
with inputs (van Overschee and de Moor 1996) and HSE-
PSRs (Boots, Gretton, and Gordon 2013). As we see in Sec-
tion 4, avoiding latent variables and having a linear Wsys

enable the formulation of a consistent learning algorithm.

4 Learning A Predictive State Controlled

Model

We assume that the extended features ξot and ξat are chosen
such that ffilter is known. The parameters to learn are thus
Wsys and Q0. We also assume that a fixed blind (open-loop)
policy is used to collect training data and so, we can treat
causal conditioning on action do(at) as ordinary condition-
ing on at. 4 It is possible, however, that a different (possibly
non-blind) policy is used at test time.

To learn model parameters, we will adapt the two-stage
regression method of (Hefny, Downey, and Gordon 2015).
Let Q̄t ≡ E[Qt | ψh

t ] (resp. P̄t ≡ E[Pt | ψh
t ]) be the

expected state (resp. expected extended state) conditioned
on finite history features ψh

t . For brevity, we might refer
to Q̄t simply as the (predictive) state when the distinction
from Qt is clear. It follows from linearity of expectation that

4One way to deal with non-blind training policies is to assign
importance weight to training examples to correct the bias result-
ing from non-blindness (Bowling et al. 2006; Boots, Siddiqi, and
Gordon 2011). This, however, requires knowledge of the data col-
lection policy and can result in a high variance of the estimated
parameters. We defer the case of unknown non-blind policy to fu-
ture work.

3193



E[ψo
t | ψa

t , ψ
h
t ] = Q̄tψ

a
t and E[ξot | ξat , ψh

t ] = P̄tξ
a
t ; and it

follows from the linearity of Wsys that

P̄t =Wsys(Q̄t)

So, we train regression models (referred to S1 regression
models) to estimate Q̄t and P̄t from ψh

t . Then, we train an-
other (S2) regression model to estimate Wsys from Q̄t and
P̄t. Being conditional distributions, estimating Q̄t and P̄t

from ψh
t is more subtle compared to uncontrolled systems,

since we cannot use observation features as estimates of the
state. We describe two methods to construct an S1 regres-
sion model to estimate Q̄t. The same methods apply to P̄t.
As we show below, instances of both methods exist in the
literature of system identification.

4.1 Joint S1 Approach

Let ψoa
t denote a sufficient statistic of the joint observa-

tion/action distribution Pr(ψo
t , ψ

a
t | ψh

t ). This distribution
is fixed for each value of ψh

t since we assume a fixed model
and policy. We use an S1 regression model to learn the map
f : ψh

t �→ E[ψao
t | ψh] by solving the optimization problem

argmin
f∈F

T∑
t=1

l(f(ψh
t ), ψ

oa
t ) +R(f)

for some suitable Bregman divergence loss l (e.g. square
loss) and regularization R.

Once we learn f , we can estimate Q̄t by first estimating
the joint distribution Pr(ψo

t , ψ
a
t | ψh

t ) and then deriving the
conditional operator Q̄t. By the continuous mapping theo-
rem, a consistent estimator of f results in a consistent es-
timator of Q̄t. An example of applying this method is us-
ing kernel Bayes rule (Fukumizu, Song, and Gretton 2013)
to estimate states in HSE-PSR (Boots, Gretton, and Gordon
2013).

4.2 Conditional S1 Approach

In this method, instead of estimating the joint distribution
represented by E[ψoa

t | ψh
t ], we directly estimate the con-

ditional distribution Q̄t. We exploit the fact that each train-
ing example ψo

t is an unbiased estimate of Q̄tψ
a
t = E[ψo

t |
ψa
t , ψ

h
t ]. We can formulate the S1 regression problem as

learning a function f : ψh
t �→ Q̄t that best matches the train-

ing examples. i.e. we solve the problem

argmin
f∈F

T∑
t=1

l(f(ψh
t )ψ

a
t , ψ

o
t ) +R(f) (3)

for some suitable Bregman divergence loss l (e.g. square
loss) and regularization R. An example of applying this
method is the oblique projection method used in spectral
system identification (van Overschee and de Moor 1996). It
is worth emphasizing that both the joint and conditional S1
approaches assume the state to be a conditional distribution.
They only differ in the way to estimate that distribution.

4.3 S2 Regression and Learning Algorithm

Given S1 regression models to estimate Q̄t and P̄t, learning
a controlled dynamical system proceeds as shown in Algo-
rithm 1.

Algorithm 1 Two-stage regression for predictive state con-
trolled models

Input: ψh
n,t,ψ

o
n,t, ψ

a
n,t, ξ

o
n,t, ξ

a
n,t for 1 ≤ n ≤ N , 1 ≤ t ≤

Tn (N is the number of trajectories, Tn is the length of
nth trajectory)
Output: Dynamics matrix Ŵsys and initial state Q̂0

Use S1A regression to estimate Q̄n,t.
Use S1B regression to estimate P̄n,t.
Let Ŵsys be the (regularized) least squares solution to the
system of equations

P̄n,t ≈Wsys(Q̄n,t) ∀n, t
if N is sufficiently large then

Let Q̄0 be the (regularized) least square solution to the
system of equations ψo

n,1 ≈ Q0ψ
a
n,1 ∀n

else
Set Q̂0 to the average of Q̄n,t

end if

4.4 Theoretical Guarantees

It is worth noting that Algorithm 1 is still an instance of
the two stage regression framework described in (Hefny,
Downey, and Gordon 2015) and hence retains its theoretical
guarantees: mainly that we can bound the error in estimat-
ing the dynamics matrixWsys in terms of S1 regression error
bounds, assuming that we collect examples from the station-
ary distribution of a blind policy with sufficient exploration.

A blind policy provides sufficient exploration if it has a
stationary distribution that (1) visits a sufficient history set
such that the set of equations E[Pt|ψh

t ] = Wsys(E[Qt|ψh
t ])

are sufficient for estimating Wsys ,and (2) provides training
data to estimate E[Qt|ψh

t ] and E[Pt|ψh
t ] with increasing ac-

curacy.
Theorem 1. Let π be a blind data collection policy with
a stationary distribution. If history, action and observation
features are bounded, π provides sufficient exploration , and
ridge regression is used with λ1 and λ2 regularization pa-
rameter for S1 and S2 regression respectively, then for all
valid states Q the following is satisfied with probability at
least 1− δ.

‖(Ŵsys −Wsys)(Q)‖ ≤

O

⎛
⎝ηδ,N

⎛
⎝(1/λ2) + (1/λ

3
2
2 )

√
1 +

√
log(1/δ)

N

⎞
⎠
⎞
⎠

+O

(
log(1/δ)√

N

(
1

λ2
+

1

λ
3
2
2

))
+O

(√
λ2

)
,

where

ηδ,N = Op

(
1/
√
N + λ1

c+ λ1

)
,

where c > 0 is a problem-dependent constant.
We omit the proof due to space constraints.
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5 Predictive State Controlled Models With

Random Fourier Features

Having a general framework for learning controlled dy-
namical systems, we now focus on HSE-PSR (Boots, Gret-
ton, and Gordon 2013) as a non-parametric instance of that
framework using Hilbert space embedding of distributions.
We first describe HSE-PSR learning as a two-stage regres-
sion method. Then we demonstrate how to obtain a finite
dimensional approximation using random Fourier features
(RFF) (Rahimi and Recht 2008). Before describing HSE-
PSR we give some necessary background on Hilbert space
embedding and random Fourier features.

5.1 Hilbert Space Embedding of Distributions

We will briefly describe the concept of Hilbert space em-
bedding of distributions. We refer the reader to (Smola et
al. 2007) for more details on this topic. Hilbert space em-
bedding of distributions provide a non-parametric general-
izations of marginal, joint and conditional probability tables
of discrete variables to continuous domains: namely, mean
maps, covariance operators and conditional operators.

Let k be a kernel associated with a feature map φ(x) such
that k(x1, x2) = 〈φ(x1), φ(x2)〉. A special case for discrete
variables is the delta kernel where φ(x) maps x to an indi-
cator vector. For a random variable X , the mean map μX

is defined as E[φX (X)]. Note that μX is an element of the
reproducing kernel Hilbert space (RKHS) associated with k.

The uncentered covariance operator of two variables X
and Y is CXY = E[φX (X)⊗φY(Y )]. For universal kernels
kX and kY , CXY is a sufficient representation of the joint
distribution Pr(X,Y ). In this paper, we will use CXY |z to
denote the covariance of X and Y given that Z = z.

Under smoothness assumptions, (Song et al. 2009) show
that VφX (X)|φY(Y ) = CXY C

−1
XX , where the conditional

operator V is as defined in Section 3. More generally,
VφX (X)|φY(Y );z = CXY |zC

−1
XX|z .

5.2 HSE-PSR as a predictive state controlled
model

HSE-PSR is a generalization of IO-HMM that has proven to
be successful in practice (Boots, Gretton, and Gordon 2013;
Boots and Fox 2013). It is suitable for high dimensional and
continuous observations and/or actions. HSE-PSR uses ker-
nel feature maps as sufficient statistics of observations and
actions. We define four kernels kO, kA, ko, ka over future
observation features, future action features, individual ob-
servations and individual actions respectively.

We can then define ψo
t = φO(ot:t+k−1) and similarly

ψa
t = φA(at:t+k−1). We will also use φot and φat as short-

hands for φo(ot) and φa(at). The extended future is then
defined as ξot = ψo

t ⊗ φot and ξat = ψa
t ⊗ φat

Under the assumption of a blind learning policy, the oper-
ators Qt and Pt are defined to be

Qt = Vψo
t |ψa

t ;h
∞
t

(4)

Pt = (P ξ
t , P

o
t ) = (Vψo

t+1⊗φo
t |ψa

t+1⊗φa
t ;h

∞
t
, Vφo

t⊗φo
t |φa

t ;h
∞
t
)

(5)

Therefore, Qt specifies the state of the system as a condi-
tional distribution of future observations given future actions
while Pt is a tuple of two operators that allow us to condition
on the pair (at, ot) to obtain Qt+1. In more detail, filtering
in an HSE-PSR is carried out as follows
• From ot and at, obtain φot and φat .
• Compute Cotot|h∞

t ,at
= Vφo

t⊗φo
t |φa

t ;h
∞
t
φat

• Multiply by inverse observation covariance to change
“predicting φot ” into “conditioning on φot ”:
Vψo

t+1|ψa
t+1,φ

o
t ,φ

a
t ;h

∞
t

= Vψo
t+1⊗φo

t |ψa
t+1,φ

a
t ;h

∞
t

×φo
t
(Cotot|h∞

t ,at
+ λI)−1

• Condition on φot and φat to obtain shifted state
Qt+1 ≡ Vψo

t+1|ψa
t+1;φ

o
t ,φ

a
t ,h

∞
t

= Vψo
t+1|ψa

t+1,φ
o
t ,φ

a
t ;h

∞
t

×φo
t
φot ×φa

t
φat

Thus, in HSE-PSR, the parameter Wsys is composed of
two linear maps; fo and fξ such that P ξ

t = fξ(Qt) and P o
t =

fo(Qt). In the following section we show how to estimate
Q̄t and P̄t from data. Estimation of fξ, fo can then be carried
out using kernel regression.

Learning and filtering in an HSE-PSR can be implicitly
carried out in RKHS using a Gram matrix formulation. We
will describe learning in terms of RKHS elements and refer
the reader to (Boots, Gretton, and Gordon 2013) for details
on the Gram matrix formulation.

5.3 S1 Regression for HSE-PSR

As discussed in section 4 we can use a joint or conditional
approach for S1 regression. We now demonstrate how these
two approaches apply to HSE-PSR.

Joint S1 Regression for HSE-PSR This is the method
used in (Boots, Gretton, and Gordon 2013). In this approach
we exploit the fact that

Q̄t =Wψo
t |ψa

t ;ψ
h
t
= Cψo

tψ
a
t |ψh

t
(Cψa

t ψ
a
t |ψh

t
+ λI)−1

So, we learn two linear maps Toa and Ta such that
Toa(ψ

h
t ) ≈ Cψo

tψ
a
t |ψh

t
and Ta(ψh

t ) ≈ Cψa
t ψ

a
t |ψh

t
. The train-

ing examples for Toa and Ta consist of pairs (ψh
t , ψ

o
t ⊗ ψa

t )
and (ψh

t , ψ
a
t ⊗ ψa

t ) respectively.
Once we learn this map, we can estimate Cψo

tψ
a
t |ψh

t
and

Cψa
t ψ

a
t |ψh

t
and consequently estimate Q̄t.

Conditional S1 Regression for HSE-PSR It is also pos-
sible to apply the conditional S1 regression formulation in
Section 4.2. Specifically, let F be the set of 3-mode tensors,
with modes corresponding to ψo

t , ψo
t and ψh

t . We estimate a
tensor T ∗ by optimizing
T ∗ = arg min

T∈F
‖(T ×ψh

t
ψh
t ×ψt

a
ψt
a)− ψt

o‖2 + λ‖T‖2HS ,

where ‖.‖2HS is the Hilbert-Schmidt norm, which translates
to Frobenius norm in finite-dimensional Euclidan spaces.
We can then use

Q̄t = T ∗ ×ψh
t
ψh
t

For both regression approaches, the same procedure can
be used to estimate the extended state P̄t by replacing fea-
tures ψo

t and ψa
t with their extended counterparts ξot and ξat .
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5.4 Approximating HSE-PSR with Random
Fourier Features

A Gram matrix formulation of the HSE-PSR has compu-
tational and memory requirements that grow rapidly with
the number of training examples. To alleviate this prob-
lem, we resort to kernel approximation–that is, we replace
RKHS vectors such as ψo

t and ψa
t with finite dimensional

vectors that approximately preserve inner products. We use
random Fourier features (RFF) (Rahimi and Recht 2008) as
an approximation but it is possible to use other approxima-
tion methods. Unfortunately RFF approximation can typi-
cally require D to be prohibitively large. Therefore, we ap-
ply principal component analysis (PCA) to the feature maps
to reduce their dimension to p D. We apply PCA again to
quantities that require p2 space such as extended features ξot ,
ξat and states Q̄t, reducing them to p-dimensions. We map
them back to p2 dimensions when needed (e.g. for filtering).
We also employ randomized SVD (Halko, Martinsson, and
Tropp 2011) for fast computation of PCA, resulting in an
algorithm that scales linearly with N and D.

5.5 Model refinement by local optimization

A common practice is to use the output of a moment-based
algorithm to initialize a non-convex optimization algorithm
such as EM (Belanger and Kakade 2015) or gradient de-
scent (Jiang, Kulesza, and Singh 2016). Since EM is not
directly applicable to RFF-PSR, we propose a gradient de-
scent approach. We can observe that filtering in an RFF-PSR
defines a recurrent structure given by.

qt+1 = ffilter(Wsysqt, ot, at),

E[ot|qt] =Wpred(qt ⊗ φ(at)),

where Wpred is a linear operator that predicts the next
observation 5. If ffilter is differentiable, we can improve
our estimates of Wsys and Wpred using backpropagation
through time (BPTT) (Werbos 1990). It is possible to op-
timize the error in predicting (features of) a window of ob-
servations. In our experiments, we learn to predict ot:t+k−1

given at:t+k−1.

6 Experiments

6.1 Synthetic Data

We use the benchmark synthetic non-linear system used
by (Boots, Gretton, and Gordon 2013) :
ẋ1(t) = x2(t)− 0.1 cos(x1(t))(5x1(t)− 4x31(t) + x51(t))

− 0.5 cos(x1(t))a(t)

ẋ2(t) = −65x1(t) + 50x31(t)− 15x51(t)− x2(t)− 100a(t)

o(t) = x1(t)

The input a is generated as zero-order hold white noise, uni-
formly distributed between -0.5 and 0.5. We collected 20
trajectories of 100 observations and actions at 20Hz and we
split them into 10 training, 5 validation and 5 test trajecto-
ries. The prediction target for this experiment is o(t).

4Code is available at: https://github.com/ahefnycmu/rffpsr
5The linearity of Wpred is a valid assumption for a universal

kernel.

6.2 Predicting windshield view

In this experiment we used TORCS car simulation server,
which outputs 64x64 images (see Figure 2). The observa-
tions are produced by converting the images to greyscale
and projecting them to 200 dimensions via PCA. The car is
controlled by a built-in controller that controls acceleration
while the external actions control steering. We collected 50
trajectories by applying a sine wave with random starting
phase to the steering control and letting the simulator run
until the car gets off the track. We used 40 trajectories for
training, 5 for validation and 5 for testing. The prediction
target is the projected image.

6.3 Predicting the nose position of a simulated
swimmer robot

We consider the 3-link simulated swimmer robot from the
open-source package RLPy (Geramifard et al. 2013). The
2-d action consists of torques applied on the two joints of
the links. The observation model returns the angles of the
joints and the position of the nose (in body coordinates). The
measurements are contaminated with Gaussian noise whose
standard deviation is 5% of the true signal standard devia-
tion. To collect the data, we use an open-loop policy that
selects actions uniformly at random. We collected 25 trajec-
tories of length 100 each and use 24 for training and 1 for
validation. We generate test trajectories using a mixed pol-
icy: with probability pblind, we sample a uniformly random
action, while with probability 1 − pblind, we sample an ac-
tion from a pre-specified deterministic policy that seeks a
goal point. We generate two sets of 10 test trajectories each,
one with pblind = 0.8 and another with pblind = 0.2. The
prediction target is the position of the nose.

6.4 Tested Methods and Evaluation Procedure

We tested three different initializations of RFF-PSR (with
RBF kernel): random initialization, two-stage regression
with joint S1, and two-stage regression with conditional S1
(Section 5.3). For each initialization, we tested the model
before and after refinement. For refinement we used BPTT
with a decreasing step size: the step size is reduced by half if
validation error increases. Early stopping occurs if the step
size becomes too small (10−5) or the relative change in val-
idation is insignificant (10−3). We also test the following
baselines.

HSE-PSR: We implemented the Gram matrix HSE-PSR
as described in (Boots, Gretton, and Gordon 2013).

N4SID: We used MATLAB’s implementation of sub-
space identification of linear dynamical systems.

Non-linear Auto Regression (RFF-ARX): We imple-
mented a version of auto regression where the predictor vari-
able is the RFF representation of future actions together with
a finite history of previous observations and actions, and the
target variable is future observations.

Models were trained with future length of 10 and history
length of 20. For RFF-PSR and RFF-ARX we used 10000
RFF features and applied PCA to project features onto 20 di-
mensions. Kernel bandwidths were set to the median of the
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Figure 1: Mean square error for 10-step prediction on (from left to right) synthetic model, TORCS car simulator, swimming
robot simulation with 80% blind test-policy, and swimming robot with 20% blind test policy. Baselines with very high MSE
are not shown for clarity. A comparison with HSE-PSR on TORCS and swimmer datasets was not possible as it required
prohibitively large memory.

Figure 2: An example of windshield view output by TORCS.

distance between training points (median trick). For eval-
uation, we perform filtering on the data and estimate the
prediction target of the experiment at test time t given the
history o1:t−H , a1:t, where H is the prediction horizon. We
report the mean square error across all times t for each value
of H ∈ {1, 2, . . . , 10}.

6.5 Results and Discussion

The results are shown in Figure 1. 6 There are a number of
important observations.

• In general, joint S1 training closely matches or outper-
forms conditional S1 training, with and without refine-
ment.

• Local refinement significantly improves predictive perfor-
mance for all initialization methods.

• Local refinement, on its own, is not sufficient to produce
a good model. The two stage regression provides a good
initialization of the refinement procedure.

• Even without refinement, RFF-PSR outperforms HSE-
PSR. This could be attributed to the dimensionality re-
duction step, which adds appropriate inductive bias.

• Compared to other methods, RFF-PSR has better perfor-
mance with non-blind test policies.
6We omit the results for randomly initialized RFF-PSR as they

were significantly worse. A comparison with HSE-PSR on the
swimmer dataset was not possible as it required prohibitively large
memory.

7 Conclusion

We proposed a framework to learn controlled dynamical sys-
tems using two-stage regression. We then applied this frame-
work to develop a scalable method for controlled non-linear
system identification: using RFF approximation of HSE-
PSR together with a refinement procedure to enhance the
model after a two-stage regression initialization. We have
demonstrated promising results for the proposed method in
terms of predictive performance. As future work, we would
like to use this framework for further tasks such as imitation
learning and reinforcement learning.
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