
Efficient K-Shot Learning
with Regularized Deep Networks

Donghyun Yoo,1 Haoqi Fan,2 Vishnu Naresh Boddeti,3 Kris M. Kitani1
1The Robotics Institute, School of Computer Science, Carnegie Mellon University

2Facebook 3Michigan State University
{donghyuy,kkitani}@cs.cmu.edu, haoqifan@fb.com, vishnu@msu.edu

Abstract

Feature representations from pre-trained deep neural networks
have been known to exhibit excellent generalization and util-
ity across a variety of related tasks. Fine-tuning is by far the
simplest and most widely used approach that seeks to ex-
ploit and adapt these feature representations to novel tasks
with limited data. Despite the effectiveness of fine-tuning, it
is often sub-optimal and requires very careful optimization
to prevent severe over-fitting to small datasets. The problem
of sub-optimality and over-fitting, is due in part to the large
number of parameters (≈ 106) used in a typical deep convolu-
tional neural network. To address these problems, we propose
a simple yet effective regularization method for fine-tuning
pre-trained deep networks for the task of k-shot learning. To
prevent overfitting, our key strategy is to cluster the model
parameters while ensuring intra-cluster similarity and inter-
cluster diversity of the parameters, effectively regularizing the
dimensionality of the parameter search space. In particular, we
identify groups of neurons within each layer of a deep network
that share similar activation patterns. When the network is to
be fine-tuned for a classification task using only k examples,
we propagate a single gradient to all of the neuron parameters
that belong to the same group. The grouping of neurons is
non-trivial as neuron activations depend on the distribution
of the input data. To efficiently search for optimal groupings
conditioned on the input data, we propose a reinforcement
learning search strategy using recurrent networks to learn the
optimal group assignments for each network layer. Experi-
mental results show that our method can be easily applied to
several popular convolutional neural networks and improve
upon other state-of-the-art fine-tuning based k-shot learning
strategies by more than 10% of accuracy.

Introduction

While deep neural networks continue to exhibit excellent
performance on large scale data, they suffer from severe over-
fitting when learning with a small number of samples. The
growing complexity and size of these networks, the main
factor that contributes to their effectiveness in learning from
large scale data, is also the reason for their failure to general-
ize from limited data. Learning from very few training sam-
ples (i.e. k-shot learning), is an important learning paradigm
that is widely believed to be how humans learn new concepts

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Convolutional Filters are often highly correlated.
First layer visualization of LeNet. Correlated filters high-
lighted in red and blue.

as discussed in (Thorpe, Fize, and Marlot 1996) and (Li et al.
2002). However, k-shot learning still remains a key-challenge
in machine learning.

Fine-tuning methods seek to overcome this limitation by
leveraging networks that have been pre-trained on large scale
data. Starting from such networks and carefully adapting
their parameters have enabled deep neural networks to still
be effective for learning from few samples. This procedure
affords a few advantages: (1) enables us to exploit good
feature representations learned from large scale data, (2) it
is a very efficient process, often involving only a few quick
iterations over the small scale, (3) scales linearly to a large
number of k-shot learning tasks, and (4) is applicable to any
existing pre-trained networks without the need for searching
for optimal architectures or training from scratch.

Unfortunately, fine-tuning can be unstable, especially
when the amount of training data is small. Large deep neural
networks typically are comprised of many redundant param-
eters, with the parameters within each layer being highly
correlated with each other. For instance consider the filters,
shown in Fig.1, in the first layer of LeNet (LeCun et al. 1998)
that was learned on the MNIST dataset. A number of filters
are similar to other filters, i.e., these filters functionally play
the same role and tend to produce similar activations. The
presence of a large number of correlated filters can potentially
lead to over-fitting, especially when learning under a small
sample regime.

To stabilize the learning process, we propose a simple yet
effective procedure to regularize fine-tuning based k-shot
learning approaches. The key idea of our approach is to iden-
tify the redundancies in the parameters and constrain their
updates during fine-tuning. This is achieved by clustering the
parameters in each layer of the network into multiple groups
based on the similarity of their activations on a specific k-shot
learning task. The parameters in each group share a common

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

4382

update while ensuring intra-group similarity and inter-group
diversity of activations. By grouping the model parameters
and guiding the fine-tuning process with more supervisory
signals, our approach is able to reduce the capacity of the net-
work, to mitigate over-fitting and improve the effectiveness
of pre-trained networks for k-shot learning.

We make the following contributions in this paper, (1)
grouping neurons by their activations for layer-wise clus-
tering of parameters while enforcing intra-group similar-
ity and inter-group orthogonality of group activations, (2) a
hybrid loss function for k-shot learning consisting of cross-
entropy loss as well as triplet loss among the k-shot data, the
latter providing more supervision for optimizing the model,
and (3) a reinforcement learning based mechanism to ef-
ficiently search for the optimal clustering of the parame-
ters across all the layers of the model. Our proposed k-shot
learning approach affords the following advantages: (1) a
task agnostic approach to k-shot learning that does not rely
on any task-specific prior knowledge, (2) is applicable to any
network without having to change the original network struc-
ture, and (3) a general purpose technique for decomposing
the parameter space of high capacity deep neural networks.

To demonstrate the effectiveness of our approach, we ex-
perimentally evaluate it across two tasks: an one-shot domain-
adaption task for matching images across three different do-
mains and a k-shot transfer learning task. Our experimental
results show that the proposed approach yields significant
performance improvements over task agnostic fine-tuning
approaches for small sample learning without the need for
any task specific prior knowledge.

Related Work
k-shot Learning: One of the earliest work on one-shot learn-
ing for object categories was proposed by Fei-Fei et al. (Fei-
Fei, Fergus, and Perona 2006). The authors developed a
Bayesian learning framework with the premise that previ-
ously learned classes can inform a prior on the model parame-
ters for a new class. Among recent work, powerful generative
models have been developed that compose characters from a
dictionary of parts (Wong and Yuille 2015) or strokes (Lake,
Salakhutdinov, and Tenenbaum 2013). Such generative mod-
els have shown great promise on datasets with limited
intra-class variation. Siamese networks (Koch, Zemel, and
Salakhutdinov 2015) has been used to automatically learn fea-
ture representations where objects of the same class are closer
together. Santoro et al. (Santoro et al. 2016) proposed the
memory-augmented neural networks with an external content
based memory. Wang and Hebert (Wang and Hebert 2016b;
2016a) propose a regression approach from classifiers trained
on small datasets to classifiers trained on large datasets.
Vinyals et al. (Vinyals et al. 2016) proposed matching net-
works that learns a non-parameteric k-nearest neighbor classi-
fier through end-to-end learning, with the weights for the near-
est neighbors are provided by an LSTM. Ravi and Larochelle
(Ravi and Larochelle 2017) proposed LSTM-based meta-
learner that uses its state to represent the learning updates
of the parameters of a classifier for k-shot learning. Hariha-
ran and Girshick (Hariharan and Girshick 2016) suggest a
novel squared gradient magnitude regularization technique

and techniques to hallucinate additional training examples
for small data classes. While these approaches have state-of-
the-art performance on k-shot learning problems, they often
utilize specific architectures designed for these problems. In
contrast, we explore a more general method that can reuse
existing networks, by fine-tuning them for k-shot learning.
Domain Adaptation: These methods seek to adapt a pre-
trained model trained on one domain (source domain) to
another domain (target domain). (Daume III 2009) proposed
an adaptation method through feature augmentation, creating
feature vectors with a source component, a target component,
and a shared component. A Support Vector Machine (SVM)
is then trained on this augmented feature vector. (Hoffman
et al. 2013) used the feature representation of a pre-trained
network like AlexNet that was trained on the 2012 ImageNet
1000-way classification dataset (Krizhevsky, Sutskever, and
Hinton 2012). The authors replace the source domain clas-
sification layer with a domain-adaptive classification layer
that takes the activations of one of the existing networks lay-
ers as input features. We are also interested in adapting a
model learned on large scale data from the source domain
to a model for the target domain with few examples. How-
ever, unlike these approaches, we propose a task adaptive
regularization approach that improves the adaptability of ex-
iting pre-trained networks to new target domains with limited
training samples.

Proposed Approach

Our focus in this paper is the task of k-shot learning by fine-
tuning an existing pre-trained network. We consider the set-
ting where the pre-trained network was learned on a source
domain with large amounts of data and the k-shot target
domain consists of very few samples. To avoid the pitfalls
of overfitting when training with only a few examples, we
propose the following strategy. (1) We first search for simi-
lar activations to identify redundant filters, and then group
them in a source domain. (2) After identifying the redun-
dant parameters, the pre-trained network is fine-tuned with
group-wise backpropagation in a target domain to regular-
ize the network. The proposed layer-wise grouping method
and model fine-tune by group-wise backpropagation effec-
tively make the fine-tuning on k-shot samples more stable.
However, our proposed grouping method has an important
hyper-parameter, the number of groups. Deciding the number
of groups for each layer is a non-trivial task as the optimal
number of groups may be different in each layer. We suggest
a hyper-parameter search method based on reinforcement
learning to explore the optimal group numbers.

We now describe the three sub-components involved in
our approach: (1) grouping neurons by activations, (2)
model fine-tuning for k-shot learning and (3) a reinforce-
ment learning based policy for searching over the opti-
mal grouping of the parameters.

Grouping Neurons by Activations (GNA)

To identify redundant parameters to be grouped together for
more stable fine-tuning, we define correlated filters as filters
which have similar activations conditioned on a set of training

4383

Figure 2: Correlated filters in activation point of view

Figure 3: Correlation of parameters. Circles are neuron of a
network. Ai is activation of neuron i. A1 and A2 have similar
actions, so they are correlated. Thus, we can group A1 and
A2 to one group gk.

images. We would like to group these correlated filters as
a means of regularizing the network. Fig. 2 illustrates a toy
example of two convolutional filters with very correlated
activations (heatmaps). Since the two filters have similar
patterns, their outputs are very similar.

Now consider the fully connect layer of a neural network
illustrated in Fig 3. Given a batch of data B as input, we
can pass each data element (image) through the network to
compute the activations at layer L. Ai is the output of the non-
linear activation function of the i-th neuron in layer L. If we
compare activation Ai to another activation Aj over the input
data, we can measure the correlation between neurons. In our
example, A1 and A2 have similar output patterns over the
batch image data whereas, A1 and A3 have different output
patterns. This implies that A1 and A2 are good candidates
for grouping.

In our proposed approach, we use a clustering algorithm
to group similar neurons based on their activations over the
k-shot training data (e.g., one image for each category). In
particular, we use k-means clustering to group the neurons
and the number of clusters k for each layer is learned via a
reinforcement learning procedure described later.

Backpropagation with Groups

Once the redundant parameter groups in each layer are iden-
tified, an effective regularization method is required during
fine-tuning to prevent over-fitting. To restrain the redundant
parameters from overfitting, we can consider updating the
parameters in a group with the same gradient because the
gradients of the redundant weights in the same group would
be expected to be very similar to each other. From this insight,

we update the parameters of each group gk by a shared gradi-
ent Wa during learning to regularize the network. The shared
update is computed as the average gradient of all the filters
in the group i.e., ∇Wa = 1

|gk|
∑

i∈gk
∇Wi, where ∇Wi is

the gradient of weight Wi. We demonstrate the feasibility
of this backpropagation by an average gradient with domain
adaptation and transfer learning experiments described later.

Loss Functions

The low sample complexity of typical k-shot learning results
in extremely noisy gradient updates for each k-shot entity. To
provide more supervisory signals to the learning process, we
introduce a triplet loss to the network optimization objective.
The triplet loss is similar to the one introduced by Schroff et
al (Schroff, Kalenichenko, and Philbin 2015). The triplet loss
serves the twin purposes of providing more supervisory sig-
nals to increase the separation between the k-shot entities as
well as to reduce the noise in the gradient signal by averaging
over larger number of loss terms

We define the triplet loss for the k-shot learning problem
as:

Ltriplet =
∑
i,j,n

[d (f(xi), f(xj)) − d (f(xi), f(xn)) + α]+

(1)
where f(x) is the output of the network for input x, i,j are
indices of samples belonging to the same class and n is the in-
dex of sample belonging to a different class, d (f(xi), f(xj))
is the distance between f(xi) and f(xj) and [·]+ denotes the
margin maximizing loss. The distance can be the Euclidean
distance ‖ · ‖22 and total variation ‖ · ‖1 for regression and
classification tasks respectively. We note that the triplet loss
reduces to a margin loss for one-shot learning. The margin
loss is defined as:

Lmargin =
∑
i,n

[−d (f(xi), f(xn)) + α]+ . (2)

In addition to the classification loss described above, it
is important to ensure that the intra-group activations are
similar to each other, while the inter-group activations are
orthogonal to each other. We augment the k-shot learning
loss function with these two criterion during training. Let the
activation of a filter i in the l-th layer be Al

i. The intra-group
similarity loss is defined as:

Lintra =
∑
l

∑
n

∑
i,j∈gn

∥∥Al
i −Al

j

∥∥
2
. (3)

The inter-group orthogonality loss is defined as:

Linter =
∑
l

∑
i,j

‖M l�
i M l

j‖2F (4)

where M l
i and M l

j are matrices with the activations of all the
weights in group gi and gj respectively at the l-th layer and
‖ · ‖2F is the squared Frobenius norm.

Our k-shot learning task is trained to optimize a combina-
tion of the loss functions described above. The total loss is
described as the following expression:

L = Lclass + αLintra + βLinter + γLtriplet (5)

4384

where α, β and γ are hyper-parameters that control the im-
portance of each of the loss terms.

Hyper-Parameter Search Through Reinforcement
Learning

The performance of the proposed approach is critically de-
pendent on the number of clusters that the weights in each
layer are grouped into. Manually selecting the number of
clusters can lead to sub-optimal performance while an ex-
haustive search is prohibitively expensive. This problem is
exacerbated as the number of layers in the network increases.
Common methods for determining hyper parameters are brute
force search, grid search, or random search. While brute force
search is guaranteed to find the optimal solution, it is very
time consuming and is usually intractable. Grid search is
the most used method for hyper-parameter selection, but
is still limited by the granularity of the search and can po-
tentially end up being computationally expensive. On the
other hand, surprisingly, Bergstra and Bengio (Bergstra and
Bengio 2012) suggest that random search is more effective
than grid search. Recently, Hansen (Hansen 2016) proposed
a reinforcement learning approach for determining hyper-
parameters. Building upon this, Zoph and Le (Zoph and Le
2016) proposed a neural network architecture to find the
optimal hyper-parameter of a neural architecture through
reinforcement learning. In this work, we adopt a similar ap-
proach to determine the optimal number of clusters in each
layer of the network for k-shot learning.

We pose the hyper-parameter search problem as a rein-
forcement learning problem to find a locally optimal layer-
wise group size for the entire network. Figure 4(a) shows our
reinforcement learning problem, where the environment is
a pre-trained network that we wish to fine-tune for k-shot
learning. Intuitively the policy network implicitly learns the
relation between different groupings of the layer weights and
the performance of the network. We model the problem as a
fixed horizon episodic reinforcement learning problem where
all actions (layer-wise prediction of number of clusters) have
an equal affect on the final outcome. We represent the se-
quence of actions as a1:L, where al is the action at the l-th
layer, predicting the number of clusters in the l-th layer. We
define the state as a vector that has the number of groups of
each layer.

S = {n1, n2, ..., ni} (6)
where ni is the number of groups in layer i.

Our agent’s policy network is a Long Short-Term Mem-
ory (LSTM) by Hochreier and Schmidhuber (Hochreiter and
Schmidhuber 1997) as shown in Fig. 4(b) and is learned
through a policy gradient method. The time horizon of the
LSTM is equal to the number of layers in the pre-trained net-
work. The output of the LSTM consists of a fully connected
layer followed by a softmax layer to predict the probabilities
of the action al at the l-th layer. The input of the policy net-
work at the l-th layer, I ∈ R

Na+1 is a vector created by the
concatenation of the number of filters (a single integer) in the
l-th layer and the output action at the previous layer (one hot
encoding), where Na is the number of actions.

We adopt the policy gradient method (Zoph and Le 2016)
to learn our agent’s policy that maximizes the expected

(a) Hyper-Parameter Search Framework

(b) Hyper-Parameter Policy Network

Figure 4: We adopt a deep reinforcement learning frame-
work to search over the clustering hyper-parameters, number
of groups. Furthermore, we adopt an LSTM as our policy
network to determine the numbers of clusters in each layer.

accuracy of the proposed fine-tuning process through pa-
rameter clustering since the cumulative reward R is non-
differentiable. We define agent’s reward returned by the envi-
ronment as the accuracy Aft of the fine-tuned model on the
validation set for a valid action and -1 for an invalid action
(impossible group size).

R =

{
Aft if an action is valid
−1 otherwise

Aft is the accuracy of the fine-tuned network of which pa-
rameters are clustered and calculated on the validation set.
In each episode the agent predicts a list of actions a1:L cor-
responding to the number of groups in the L layers of the
network. The parameters in each layer of the pre-network are
clustered into the number of groups as determined by the ac-
tion. The pre-trained network is then fine-tuned on the k-shot
data until convergence, after which the validation accuracy
of the network is recorded to use as a reward R for the agent.
The agent’s policy network is then updated by backpropa-
gating the gradients computed from the loss Eq. 9. As the
episodes are repeated, the policy network’s predictions inch
closer to the optimal number of parameter clusters in each
layer, in turn resulting in a gradual increase in the accuracy
of the fine-tuning process.

To estimate the optimal clustering of the network param-
eters, the policy network’s parameters θc are optimized to
maximize the expected reward J (θc), computed over all fu-

4385

Algorithm 1: Grouping and average gradient update
algorithm

Given a pre-trained network M , source domain
samples and k samples of target domain

Step 1) Grouping and fine-tuning in a source domain
for each iteration do

Generate actions that change the numbers of
groups for each layer by a recurrent policy
network

Set the numbers of groups for each layers
Cluster the parameters of each layer in network M

to K groups by k-mean clustering
Fine-tune the network M with source domain
training samples
Rk ← the validation accuracy of fine-tuned

network
Update recurrent policy network by policy
gradient update equation (9)

end
Step 2) Fine-tuning in a target domain
for each iteration do

for each group gi, i ∈ [1,K] do
compute
Lintra =

∑
l

∑
n

∑
i,j∈gn

∥∥Al
i −Al

j

∥∥
2

compute Linter =
∑

l

∑
i,j ‖M l�i M l

j‖2F
compute Ltriplet by equation (1)

end
L = Lclass + αLintra + βLinter + γLtriplet

Update by average gradient
∇Wa = 1

|gk|
∑

i∈gk
∇Wi

end

ture episodes from current state.

J(θc) = EP (a1:T ;θc)[R] (7)

Since the reward signal is non-differentiable, we use an
approximate policy gradient method to iteratively update the
policy network. In this work, we use the REINFORCE rule
from (J.Williams 1992)

�θcJ(θc) =
T∑

t=1

EP (a1:T ;θc)[�θc logP (at|a(t−1):1; θc)R]

(8)
The above quantity can be empirically approximated as:

1

m

m∑
k=1

T∑
t=1

�θc logP (at|a(t−1):1; θc)Rk (9)

where Rk is a reward of k episode, and m is the number
of episodes. P (at|a(t−1):1; θc) denotes the probability of a
history of actions a1:T given policy-defining weights θc. Our
complete algorithm is presented in Algorithm 1.

Experiments

The usefulness of the proposed method is verified through
experiments on two tasks, domain adaptation and transfer

Table 1: Experimental Evaluation: k-shot domain adaptation
on Office dataset

Method Feature type Accuracy(%)

Late fusion (Hoffman et al. 2013) DeCAF-7 64.29
Late fusion (Hoffman et al. 2013) ResNet-18 71.08
Daume (Daume III 2009) DeCAF-7 72.09
Daume (Daume III 2009) ResNet-18 76.25
Fine-Tuning ResNet-18 70.07
Fine-Tuning + margin loss ResNet-18 70.34
Fine-Tuning + dropout ResNet-18 76.66
GNA ResNet-18 79.94
GNA + margin loss ResNet-18 82.16
GNA + margin loss+Greedy ResNet-18 83.16
GNA + margin loss+RL ResNet-18 85.04

10
0

10
1

10
2

10
3

10
4

Iterations

65

70

75

80

85

90

k
-S

h
o
t
A

c
c
u
ra

c
y

Reinforcement Learning for K-Shot Learning

Figure 5: Progression of hyper-parameter search through rein-
forcement learning through the iterations for K-shot domain
adaptation on Office dataset

learning. In both tasks, we show how our approach can be
used to learn a new model from only a few number of ex-
amples. We present the results of multiple baseline variants
of our proposed approach, (1) Fine-Tuning: the standard ap-
proach of updating a pre-trained network on k-shot data with
cross-entropy loss, (2) Fine-Tuning+Triplet Loss: updating
a pre-trained network on k-shot data with cross-entropy loss
and the triplet loss, (3) GNA: proposed grouping neurons by
activation with cross-entropy loss and manual hyperparame-
ter search, (4) GNA+Triplet Loss: proposed grouping neu-
rons by activation with cross-entropy and triplet loss and man-
ual hyperparameter search, (5) GNA+Triplet Loss+Greedy:
proposed grouping neurons by activation with cross-entropy
and triplet loss and greedy hyperparameter selection, and
(6) GNA+Triplet Loss+RL: proposed grouping neurons by
activation with cross-entropy and triplet loss and RL based
hyperparameter search.

Domain Adaptation

For this task, we consider the Office dataset introduced by
(Saenko et al. 2010) consisting of a collection of images
from three distinct domains: Amazon, DSLR and Webcam.
The dataset consists of 31 objects that are commonly en-
countered in office settings, such as keyboards, file cabinets,
laptops etc. We follow the experimental protocol used in
(Hoffman et al. 2013), and consider domain adaptation be-

4386

Table 2: Experimental Evaluation: (Top) one-shot transfer
learning from CIFAR-100 to CIFAR-10 and (Bottom) 10-shot
transfer learning from CIFAR-100 to CIFAR-10.

Method Accuracy(%)

Fine-Tuning 29.58
Fine-Tuning + margin loss 33.44
GNA 32.70
GNA+margin loss 34.43
GNA+margin loss+greedy 33.50
GNA+margin loss+RL 35.95

(a) 1-shot learning
Method Accuracy(%)

Fine-Tuning 56.00
Fine-Tuning + margin loss 57.32
Fine-Tuning + triplet loss 58.17
GNA 57.96
GNA+margin loss 59.05
GNA+triplet loss 58.56
GNA+triplet loss+greedy 58.56
GNA+triplet loss+RL 60.30

(b) 10-shot learning

tween the Amazon (source) and the Webcam (target) images.
The experiment is conducted on 16 out of the 31 objects
that are also present in the ImageNet dataset. Our pre-trained
network is the ResNet-18 architecture by (He et al. 2016)
trained on the ImageNet dataset. Our action space for this
experiment is the number of possible clusters in each layer
a = {20, 21, 22, 23, 24, 25, 26, 27, 28}, or equivalently the ac-
tion space is the number of possible groups per layer. We set
the action space to {1, 2, 4, ..., Nf}, where Nf is the num-
ber of filters. The minimum number of groups is one. The
maximum number of groups is the same as the number of
weights. In this work, we define the actions (number of pos-
sible clusters) as {20, 21, ..., Nf} to reduce the size of the
action space and speed up the search process. However, in
general, the action space can also be densely discrete like
{1, 2, 3, ..., Nf}.

We use 20 source images per each class for clustering the
parameters and fine-tune the model with 16 one-shot exam-
ples, one image per class. The performance of our proposed
approach is compared to the baselines in Table 1, and Figure
5 shows the progression of the reinforcement learning based
hyper-parameter search on the k-shot learning accuracy. Late
fusion (Hoffman et al. 2013) and Daume (Daume III 2009)
are compared as the baselines. The Late fusion and Daume
use DeCAF-7 features in their works, but we also apply their
method with ResNet-18 features for fair comparison with our
method. For fine-tuning, the learning-rate is 0.01, and it is
changed to 0.001 after 1000 iteration. We tried 10 random
runs with randomly selected different dataset to get average
performance.

We also compare our proposed method with well-known
regularization methods. We performed a comparison experi-
ment with dropout on the Office dataset experiment. We add
dropout layers to the pre-trained network and fine-tune it
in source domain and one-shot target domain. The one-shot
accuracy of normal fine-tuning with dropout regularization in
target domain is 76.66%. Without dropout, the fine-tuning ac-

curacy is 70.07% shown in Table 1. The accuracy of our pro-
posed group-level regularization in the same setup is 79.94%.
Notice that our group-level regularization method indeed out-
performs the dropout regularization method by 3% in k-shot
domain adaptation experiment.

We note that the clustering hyper-parameter search through
the reinforcement learning is able to efficiently search the
hyper-parameter space and find better parameter groupings
compared to both manual and greedy search. For the manual
baseline, we initialize the number of groups in all the layers
to two and compute the accuracy of the network. We then
compute the accuracy of the of the network by doubling and
halving the number of groups in a layer. The action (doubling
or halving) that results in higher accuracy is selected. We re-
peat this process and update the number of groups iteratively
through the process described above.

For the greedy baseline(Greedy), we set the number of
groups in the first layer to two and compute the accuracy of
the original network. If the accuracy is greater than before,
then the number of groups is doubled, otherwise we set the
number of groups to the previous number and move to the
next layer. We repeat this procedure until the last layer.

Transfer Learning

In the domain adaptation experiment that has same classes,
we showed our proposed method outperforms the baseline
approaches. We can apply the grouping method to a task
that the source classes are different from the target classes.
We consider the task of transfer learning, where the k-shot
learning task (target) is different from the pre-trained network
task (source). Our pre-trained network is the ResNet-18 ar-
chitecture trained on the CIFAR-100 dataset while the k-shot
learning task is classification on the CIFAR-10 dataset. For
the transfer learning setting, we select the classes that are dif-
ferent from ten target classes as our source classes. Our action
space for this experiment is the number of possible clusters in
each layer a = {20, 21, 22, 23, 24}. We consider two differ-
ent k-shot settings, one with k = 1 and another with k = 10.
The k-shot data are chosen randomly from the target training
set for fine-tuning and we evaluate on the entire target test
set. The performance of our proposed approach is compared
to the baselines in Table 2 both for one-shot learning as well
as for 10-shot learning. Our proposed margin loss improves
the accuracies of the grouping method as well as fine-tuning.
The accuracies of our grouping methods are higher than the
fine-tuning result. Thus, the proposed method with RL search
outperforms the baseline fine-tuning approach by 6.37% in
1-shot learning and 4.3% in 10-shot learning.

Effect of Sample Size K

In this experiment we are interested in comparing the perfor-
mance of our proposed approach as we vary the difficulty of
the k-shot learning problem. We consider different ranges of
k, the number of samples per category. Table 3 presents the
results of GNA with clustering and standard fine-tuning with-
out clustering as we vary k. Unsurprisingly, the performance
decreases and there is greater uncertainty as k is lowered to
one-shot learning. But we observe a consistent improvement

4387

10
0

10
1

10
2

10
3

10
4

Iterations

30

31

32

33

34

35

36

37

k
-S

h
o
t
A

c
c
u
ra

c
y

Reinforcement Learning for K-Shot Learning

(a) one-shot

10
0

10
1

10
2

10
3

Iterations

52

54

56

58

60

62

k
-S

h
o
t
A

c
c
u
ra

c
y

Reinforcement Learning for K-Shot Learning

(b) 10-shot

Figure 6: Progression of hyper-parameter search through rein-
forcement learning through the iterations for K-shot transfer
learning from CIFAR-100 to CIFAR-10

in performance with our clustering approach in comparison
to the standard fine-tuning procedure.

Effect of Clustering Across Layers

It is commonly believed that most deep convolutional neural
networks have highly redundant filters at the initial layers
only. If this is indeed the case, applying our clustering method
to layers other than the initial few layers should not be helpful.
To test this hypothesis, we perform clustering to increasing
number of layers, starting at the initial layers of the network.
For this experiment we considered a pre-trained ResNet-18
network trained on a few categories in the CIFAR-10 dataset
and used the other categories as the k-shot learning task. The
results of GNA in Table 4 surprisingly does not confirm our
hypothesis. We found that all layers of the deep network did
consist of redundant filters for the k-shot learning task. In
fact, applying our method to all the layers of the network
resulted in the best performance. This experiment suggests
that large convolutional neural networks could potentially
consist of redundant parameters even in the higher layers,
necessitating search over the entire hyper-parameter space
of parameter groupings. This motivates the need for efficient
techniques to search the hyper-parameter space, like the one
we proposed in this paper.

Table 3: k-shot classification performance as a function of
number of samples per category

The number Accuracy (%)

of clustering w/o clustering w/ clustering

25 shot 80.41 84.48
20 shot 76.90 82.09
15 shot 81.63 84.01
10 shot 70.64 72.88
5 shot 68.84 68.93
1 shot 52.25 53.77

(a) Accuracy

The number Standard deviation

of clustering w/o clustering w/ clustering

25 shot 5.68 0.76
20 shot 2.66 1.44
15 shot 5.16 0.79
10 shot 5.31 3.79
5 shot 6.95 2.72
1 shot 10.02 10.66

(b) Standard deviation

Conclusion

In this paper we proposed a new regularization method for
fine-tuning a pre-trained network for k-shot learning. The
key idea of our approach was to effectively reduce the dimen-
sionality of the network parameter space, by clustering the
weights in each layer while ensuring intra-group similarity
and inter-group orthogonality. To provide additional super-
vision to the k-shot learning problem we introduce a triplet
loss to maximize the separation between the k-shot samples.
Lastly, we introduced a reinforcement learning based ap-
proach to efficiently search over the hyper-parameters of our
clustering approach. The experimental results demonstrate
that our proposed regularization technique can significantly
improve the performance of fine-tuning based k-shot learning
approaches.

Acknowledgments

This work was sponsored in part by JST CREST grant (JP-
MJCR14E1) and NSF NRI grant (1637927).

References

Bergstra, J., and Bengio, Y. 2012. Random search for hyper-
parameter optimization. Journal Machine Learning Research
13:281–305.
Daume III, H. 2009. Frustratingly easy domain adaptation.
arXiv.
Fei-Fei, L.; Fergus, R.; and Perona, P. 2006. One-shot
learning of object categories.
Hansen, S. 2016. Using Deep Q-learning to Control Opti-
mization Hyperparameters. Optimization and Control.

4388

Table 4: K-shot classification performance as we vary layers
where filters are clustered.

Accuracy(%)

the number of layers w/o clustering w/ clustering

1 layer 80.41 82.87
3 layers 80.41 81.68
5 layers 80.41 82.98
7 layers 80.41 83.03
all 80.41 84.08

(a) Accuracy

Accuracy(%)

the number of layers w/o clustering w/ clustering

1 layer 5.68 4.47
3 layers 5.68 4.01
5 layers 5.68 3.65
7 layers 5.68 3.11
all 5.68 0.76

(b) Standard deviation

Hariharan, B., and Girshick, R. 2016. Low-shot visual
recognition by shrinking and hallucinating features. arXiv
preprint arXiv:1606.02819.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Identity
mappings in deep residual networks. In European Conference
on Computer Vision, 630–645. Springer.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Hoffman, J.; Tzeng, E.; Donahue, J.; Jia, Y.; Saenko, K.; and
Darrell, T. 2013. One-shot adaptation of supervised deep
convolutional models. arXiv preprint 1312.6204.
J.Williams, R. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. In Ma-
chine Learning.
Koch, G.; Zemel, R.; and Salakhutdinov, R. 2015. Siamese
neural networks for one-shot image recognition. 32nd Inter-
national Conference on Machine Learning 2252–2259.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Ima-
genet classification with deep convolutional neural networks.
In Advances in neural information processing systems 1097–
1105.
Lake, B. M.; Salakhutdinov, R.; and Tenenbaum, J. 2013.
One- shot learning by inverting a compositional causal pro-
cess. NIPS.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-Based Learning Applied to Document Recognition.
Procedding of IEEE.
Li, F. F.; VanRullen, R.; Koch, C.; and Perona, P. 2002.
Rapid natural scene categorization in the near absence of
attention. Proceedings of the National Academy of Sciences
99(14):9596–9601.
Ravi, S., and Larochelle, H. 2017. Optimization as a model

for few-shot learning. International Conference on Learning
Representations (ICLR).
Saenko, K.; Kulis, B.; Fritz, M.; and Darrell, T. 2010. Adapt-
ing visual category models to new domains. Computer Vision–
ECCV 2010 213–226.
Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; and
Lillicrap, T. 2016. One-shot Learning with Memory-
Augmented Neural Networks. arXiv preprint.
Schroff, F.; Kalenichenko, D.; and Philbin, J. 2015. Facenet:
A unified embedding for face recognition and clustering.
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR.
Thorpe, S.; Fize, D.; and Marlot, C. 1996. Speed of process-
ing in the human visual system. nature 381(6582):520.
Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.;
and Wierstra, D. 2016. Matching Networks for One Shot
Learning. arXiv preprint.
Wang, Y.-X., and Hebert, M. 2016a. Learning from small
sample sets by combining unsupervised meta-training with
cnns. In Advances in Neural Information Processing Systems,
244–252.
Wang, Y., and Hebert, M. 2016b. Learning to learn: Model
regression networks for easy small sample learning. ECCV.
Wong, A., and Yuille, A. L. 2015. One Shot Learning via
Compositions of Meaningful Patches. In Proceedings of the
IEEE International Conference on Computer Vision 1197–
1205.
Zoph, B., and Le, Q. V. 2016. Neural architecture search
with reinforcement learning. arXiv.

4389

