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Abstract

We study the problem of modeling human mobility from se-
mantic trace data, wherein each GPS record in a trace is as-
sociated with a text message that describes the user’s activ-
ity. Existing methods fall short in unveiling human move-
ment regularities for such data, because they either do not
model the text data at all or suffer from text sparsity severely.
We propose SHMM, a multi-modal spherical hidden Markov
model for semantics-rich human mobility modeling. Under
the hidden Markov assumption, SHMM models the genera-
tion process of a given trace by jointly considering the ob-
served location, time, and text at each step of the trace. The
distinguishing characteristic of SHMM is the text modeling
part. We use fixed-size vector representations to encode the
semantics of the text messages, and model the generation of
the l2-normalized text embeddings on a unit sphere with the
von Mises-Fisher (vMF) distribution. Compared with other
alternatives like multi-variate Gaussian, our choice of the
vMF distribution not only incurs much fewer parameters, but
also better leverages the discriminative power of text embed-
dings in a directional metric space. The parameter inference
for the vMF distribution is non-trivial since it involves func-
tional inversion of ratios of Bessel functions. We theoretically
prove, for the first time, that: 1) the classical Expectation-
Maximization algorithm is able to work with vMF distribu-
tions; and 2) while closed-form solutions are hard to be ob-
tained for the M-step, Newton’s method is guaranteed to con-
verge to the optimal solution with quadratic convergence rate.
We have performed extensive experiments on both synthetic
and real-life data. The results on synthetic data verify our the-
oretical analysis; while the results on real-life data demon-
strate that SHMM learns meaningful semantics-rich mobility
models, outperforms state-of-the-art mobility models for next
location prediction, and incurs lower training cost.

Introduction

Uncovering human mobility patterns is not only a funda-
mental task for human behavioral analysis, but also an im-
portant building block for urban planning, traffic forecast-
ing, mobile health applications, and location-based recom-
mender systems (Gonzalez, Hidalgo, and Barabasi 2008;
Kitamura et al. 2000; Zhang et al. 2016a). Recent years
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are witnessing an increasing importance of modeling hu-
man mobility from semantic trace data, where each record
in a trace is associated with a text message that describes the
user’s activity. With the wide proliferation of mobile devices
and the ubiquitous access to the mobile Internet, massive se-
mantic trace data are being collected by various social media
services (e.g., Twitter, Instagram, Facebook) and phone car-
riers on a daily basis (Cheng et al. 2011; Wu et al. 2015;
Zhang et al. 2016b; 2017). Meanwhile, raw GPS trajecto-
ries can be readily linked with external sources (e.g., map
data, land uses) to annotate each record with rich semantic
information (Wu et al. 2015).

The wide availability of semantic trace data necessitates a
shift in the paradigm of human mobility modeling — it be-
comes possible to interpret human mobilities in a semantics-
rich way. In addition to uncovering the spatiotemporal pat-
terns of human movements, we could move one step fur-
ther to understand what are people’s activities at different
regions, and how and why people move from one region to
another. Such semantics-rich knowledge not only enables us
to understand human mobility in a more interpretable way,
but also plays an important role for prediction and decision
making in various downstream applications.

Unfortunately, learning semantics-rich human mobility
models from semantic trace data is a challenging prob-
lem that remains largely unsolved by existing techniques.
Traditional mobility modeling techniques (Giannotti et al.
2007; Li et al. 2010; Cho, Myers, and Leskovec 2011;
Mathew, Raposo, and Martins 2012) mostly focus on min-
ing pure spatiotemporal regularities and cannot handle the
text information in semantic traces. Recently, there have
been research efforts that attempt to integrate the text in-
formation into the mobility modeling process based on the
bag-of-words model (Ying et al. 2011; Wu et al. 2015;
Zhang et al. 2016a). Nevertheless, these methods are unable
to make the best use of the text information. First, by con-
sidering each keyword as an independent dimension, they
do not model the correlations between keywords (e.g., ‘car’,
‘taxi’ and ‘drive’) and may fail to correlate semantically
similar messages. Further, since the vocabulary size is often
large, their performance is limited by the high dimensional-
ity and text sparsity, and meanwhile results in high compu-
tational overhead in the model learning process.

To learn semantics-rich mobility models from semantic
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trace data, we propose SHMM, a method that uncovers hu-
man mobility regularities by statistically modeling the gen-
eration process of the given trace data. SHMM is a multi-
modal spherical hidden Markov model (HMM). Under the
hidden Markov assumption, it jointly models the generation
of the observed location, time, and text at each step of an
input trace. While the low-dimensional location and time
can be modeled with Gaussian distributions, the key chal-
lenge is to capture the semantics of the high-dimensional
text messages and model textual semantics. To address this
challenge, we use fixed-size vector representations to encode
the semantics of the text messages, which has been recently
shown successful for a wide variety of NLP tasks (Mikolov
et al. 2013a; 2013b). With the derived text embeddings, we
further model the generation of the l2-normalized text em-
beddings on a unit sphere with the von Mises-Fisher (vMF)
distribution (Fisher 1953). Compared with other alternatives
like multi-variate Gaussian, our choice of the vMF distribu-
tion not only incurs much fewer parameters, but also better
unleashes the discriminative power of text embeddings in a
directional metric space.

In the parameter inference process of our SHMM model,
we use the classical Expectation-Maximization (EM) algo-
rithm (Dempster, Laird, and Rubin 1977). However, since
the vMF distribution has a complicated mathematical form,
literature so far has not yet proved that EM algorithm is able
to work with the vMF distribution. We, for the first time, the-
oretically prove the feasibility of using the EM algorithm on
the vMF distribution. Furthermore, while closed-form solu-
tions are hard to be obtained for the M-step, we prove that
using Newton’s method is guaranteed to converge to the op-
timal solution with quadratic convergence rate.

To summarize, we make the following contributions:

1. We propose a spherical hidden Markov model for human
mobility modeling with semantic trace data. Compared
with existing mobility models, our method is novel in that
it uses embeddings to encode the semantics of text mes-
sages and the von-Mises Fisher distribution to model the
generation of text embeddings.

2. We provide rigorous theoretical proof to show that the EM
algorithm is able to work with the vMF distribution. Also,
while obtaining closed-form solutions for the M-step is
intractable, we prove that Newton’s method is guaranteed
to converge to the optimal solution with quadratic conver-
gence rate. Some other properties of the vMF distribution
and modified Bessel functions are also studied.

3. We perform extensive experiments on both synthetic and
real-life data. The results on synthetic data verify our
theoretical analysis; while the results on real-life data
demonstrate that SHMM learns meaningful semantics-
rich mobility models, outperforms state-of-the-art mobil-
ity models for next location prediction, and incurs lower
training cost.

Problem Description

We study the problem of modeling human mobility from se-
mantic trace data. Semantic traces are text-rich GPS traces

where each GPS record is associated with a text message
that describes the user’s activity. We provide the formal def-
inition of a semantic trace as follows.
Definition 1 (Semantic Trace). The semantic trace of a user
u is a time-ordered sequence S = [x1, x2, . . . , xR]. Each
record xi is a tuple (ti, li,mi) where: (1) ti is the timestamp
scalar; (2) li is a two-dimensional vector representing the
location of the user at time ti; and (3) mi is a text message
vector describing the activity of the user.

To capture the semantics of user activities, we use dis-
tributed representations for the text messages in our model.
Specifically, we first use the CBOW model (Mikolov et al.
2013b) to obtain fixed-size vector representations (i.e., em-
beddings) for the keywords in the given corpus. The pa-
rameters used are: min-count=10, size=30, window=5, sam-
ple=10−4, negative=5. As each text message usually con-
sists of multiple keywords, we compute the TF-IDF weights
of the keywords and use the weighted average of keyword
embeddings to derive the embedding of the message mi (Le
and Mikolov 2014; Arora, Liang, and Ma 2016).

Now we are ready to formulate our mobility modeling
problem. Given the semantic traces for a group of users
D = {S1, S2, . . . , SG}, our work aims to build semantics-
rich mobility models for those users. The result mobility
model is expected to address two aspects regarding human
mobility: (1) Discovering latent states. The first aspect is
to discover the latent states that govern people’s activities. A
latent state is an abstraction of what the user is doing around
where during when. Examples include shopping in the 5th
Ave at 5pm, and watching a film at the AMC theater in the
evening. (2) Characterizing transition regularity. The sec-
ond aspect is to characterize how users move sequentially
between the latent states. For example, after shopping in the
5th Ave, what activities will the users do next? We aim to
characterize people’s transitions among the latent states in a
concise and probabilistic way.

The SHMM Model

In this section, we describe SHMM in detail and describe
the parameter inference procedure.

Model Description

Consider a sequence of chronologically ordered records
x1, x2, . . . , xR of a user u. In SHMM, we adopt the hidden
Markov assumption, i.e., assuming each record xi is gener-
ated from a latent state zi, and the sequence z1, z2, . . . , zR
follows a Markov process. The Markov process is param-
eterized by an initial probability matrix π over the latent
states, as well as a matrix A that specifies the transition
probabilities among the latent states. When generating xi

from zi, we assume the location li, the timestamp ti, and the
text embedding mi are generated independently. Therefore,
the conditional probability p(xi|zi) is given by p(xi|zi) =
p(ti|zi) · p(li|zi) · p(mi|zi).

For each record xi, we assume the following distribu-
tions for each component: 1) the timestamp ti is gener-
ated from a univariate Gaussian with mean μt and vari-
ance σt, i.e. p(ti|zi) = N (ti|μt, σt), where ti indicates
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the time in a day; 2) the location li is generated from a bi-
variate Gaussian with mean μl and covariance matrix Σl,
i.e. p(li|zi) = N (li|μl,Σl); 3) the message vector mi is
generated from the von Mises-Fisher (vMF) distribution
with mean direction μ and concentration parameter κ, i.e.
p(mi|zi) = vMF(mi|μ, κ).

While the Gaussian distribution is suitable for modeling
timestamps and locations, it is problematic for modeling text
embeddings. The reason is two-fold. First, using Gaussian
distributions to model text embeddings would lead to a large
co-variance matrix with too many parameters. Second, pre-
vious research has demonstrated that the cosine distance bet-
ter reflects the semantic similarity between text embeddings
compared to the Euclidean distance, i.e., the discriminative
power of the text embeddings is stronger in a directional
metric space. Our choice of the vMF distribution addresses
the above two issues. A vMF distribution is defined on the
p-dimensional unit sphere, parameterized by two parame-
ters: a mean direction μ and a concentration parameter κ.
The mean μ specifies the direction of the semantic focus of
the text embeddings, while κ controls how concentrated the
text embeddings are around the mean direction. The larger
κ is, the more concentrated the text embeddings are around
the mean direction. Formally, the probability density func-
tion of a vMF distribution for a p-dimensional unit vector m
is defined as:

fp(m;μ, κ) = Cp(κ) exp(κμ
Tm),

where ||μ|| = 1, κ ≥ 0, Cp(κ) = κp/2−1

(2π)p/2Ip/2−1(κ)
, and p

is the dimension of the vector. Iv(·) is the modified Bessel
function of the first kind at order v and is defined as Iv(κ) =∑∞

q=0
1

q!Γ(q+v+1) (
κ
2 )

2q+v , and Γ(·) is the gamma function.

Parameter Inference

In our SHMM model, the parameters to be estimated are the
parameters (π,A) for the hidden states and the distribution
parameters (μt, σt, μl,Σl, μ, κ). Since we are using standard
Gaussian distributions for modeling location and time, the
updating rules for all the parameters except κ can be easily
derived by the Baum-Welch algorithm (Baum et al. 1970)
— an Expectation-Maximization procedure for HMM. The
challenge of applying the Baum-Welch algorithm is how to
estimate the parameter κ.

Due to the complicated form of the vMF distribution, it
is intractable to derive closed-form solutions for κ in the
M-step of the Baum-Welch algorithm. However, we found
that one can use Newton’s method to find an approximate
solution of κ that asymptotically converges to the optimal
value. Below we first present our method for updating κ
based on Banerjee’s work (Banerjee et al. 2005) and New-
ton’s method, and then show our theoretical analysis that our
update rule achieves quadratic convergence rate. In the M-
step of the Baum-Welch algorithm, we estimate the κ value

with the following iterative procedure:

r̄ ← ||∑N
i=1 mi||
N

κ ← r̄p− r̄3

1− r̄2

repeat

κ ← κ− Ap(κ)− r̄

1−A2
p(κ)− p−1

κ Ap(κ)

until convergence

where mi is a l2-normalized p-dimensional text embedding,
N is the total number of text embeddings belonging to the
current state, and Ap(κ) =

Ip/2(κ)

Ip/2−1(κ)
.

Theoretical Analysis

Due to the complicated mathematical form of the vMF dis-
tribution, no existing literature has proved that the vMF dis-
tribution can work under the EM framework. In this section,
we theoretically prove that:

1. The EM algorithm is able to work with the vMF distri-
bution, because there exists a unique κ such that the Q-
function in the M-step can be maximized.

2. While closed-form solutions for κ are hard to be obtained,
one can use Newton’s method for obtaining an approxi-
mate solution, which is guaranteed to converge to the op-
timal κ for M-step with quadratic convergence rate.

Theorem 1. There exists a unique κ that maximizes the Q-
function in the M-step of the EM algorithm.

Proof. To maximize the Q-function, it is equivalent to solve
Ap(κ) = r̄ where r̄ =

||∑N
i=1 mi||
N (Banerjee et al. 2005).

Based on this result, we have the following claims:

1. Claim 1: 0 < r̄ ≤ 1.
Proof. It is obvious that r̄ > 0. Since m2

i1 +m2
i2 + . . .+

m2
ip = 1, we have ||∑N

i=1 mi||2 = (m11+ ...+mN1)
2+

...+ (m1p + ...+mNp)
2 ≤ N(m2

11 + ...+m2
N1 + ...+

m2
1p + ...+m2

Np) = N2. Hence, r̄ =
||∑N

i=1 mi||
N ≤ 1.

2. Claim 2: lim
κ→0

Ap(κ) = 0, lim
κ→∞Ap(κ) = 1

Proof. The first equation is given by Lemma 2.1 in (Se-
gura 2011). With Corrolary 1 in (Balachandran, Viles,
and Kolaczyk 2013), we have exp(− p

2κ ) ≤ Ap(κ) ≤
exp(−α0

p−1
2κ ), where α0 = −log(

√
2 − 1), if p ≤

2κ. Hence, we have lim
κ→∞ exp(− p

2κ ) ≤ lim
κ→∞Ap(κ) ≤

lim
κ→∞ exp(−α0

p−1
2κ ). Therefore, lim

κ→∞Ap(κ) = 1.

3. Claim 3: Ap(κ) is a continuous function if κ is real-valued
and positive.
Proof. By the definition of the modified Bessel function
and its recurrence relation (Equation 9.6.1 and 9.6.26 in
(Abramowitz and Stegun 1964)), we can get A′p(κ) = 1−
A2

p(κ) − p−1
κ Ap(κ). Since Ap(κ) is differentiable when

κ is real-valued and positive, Ap(κ) is continuous at all
real-valued positive κ.
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By the intermediate value theorem and the above claims, we
have that there exists a solution for Ap(κ) = r̄. Since we
have A′p(κ) > 0 for all positive κ (Equation 15 in (Amos
1974)), there exists a unique κ such that Ap(κ) = r̄ and the
Q-function is maximized. This completes the proof.

So far, we have proved that there exists one unique κ to
maximize the Q-function. This implies the EM algorithm
is able to work with vMF distributions. However, it is non-
trivial to find the optimal κ since it involves calculating the
ratios of modified Bessel functions. Next, we show that the
solution can be found by Newton’s Method.

Lemma 1. Ap(κ) is a strictly concave function, when κ > 0
and p ≥ 2.

Proof. It is shown in Theorem 3 in (Simpson and Spec-
tor 1984) that κ

Ap(κ)
is strictly convex for κ ≥ 0, p ≥ 2.

Thus,
−κA′′p (κ)A

2
p(κ)−2Ap(κ)A

′
p(κ)(Ap(κ)−κA′p(κ))

A4
p(κ)

> 0. Since

Ap(κ) > 0, we get A′′p(κ) <
2A′p(κ)
κAp(κ)

(κA′p(κ) − Ap(κ)).
Now we have: 1) A′p(κ) > 0 and κA′p(κ) − Ap(κ) < 0,

(Equation 15 in (Amos 1974)); 2) Ap(κ) =
Ip/2(κ)

Ip/2−1(κ)
> 0,

since Iv(κ) is positive when v ≥ 0, and κ > 0 (Equa-
tion 9.6.1 in (Abramowitz and Stegun 1964)). Therefore,
A′′p(κ) < 0 and it is strictly concave. This completes the
proof of Lemma 1.

Building on Lemma 1, we proceed to show that New-
ton’s Method is guaranteed to converge to the solution for
Ap(κ) = r̄.

Theorem 2. Newton’s method is guaranteed to converge to
the solution for Ap(κ) = r̄.

Proof. Assume κ = r is the solution, i.e. Ap(r) − r̄ = 0.
Let’s start with a point κ0 and 0 < κ0 ≤ r. We define en =
κn − r. By Newton’s updating rule, we have

en+1 = en − Ap(κn)− r̄

A′p(κn)
(1)

By Taylor’s Theorem, we have Ap(r) = Ap(κn − en) =
Ap(κn)−enA

′
p(κn)+

1
2e

2
nA

′′
p(ξn) = r̄, where κn ≤ ξn ≤ r.

Then we have

en+1 =
enA

′
p(κn)−Ap(κn) + r̄

A′p(κn)
=

1

2

A′′p(ξn)
A′p(κn)

e2n. (2)

Therefore, en ≤ 0 for all n since A′′p(ξn) < 0 and A′p(κn) >
0. That implies κn ≤ r and Ap(κn) ≤ r̄ for all n. Therefore,
from Equation (1), we have en+1 ≥ en. Thus, the sequence
e0, e1, . . . , en is an increasing sequence and bounded by 0,
and therefore, it must have a limit e∗. Accordingly, the se-
quence κ0, κ1, . . . , κn must have a limit κ∗. From Equation
(1), we have lim

n→∞ en+1 = lim
n→∞(en − Ap(κn)−r̄

A′p(κn)
), and thus

Ap(κ
∗) = r̄ and κ∗ = r. Therefore, if we choose any posi-

tive starting point κ0, such that κ0 ≤ r, Newton’s method is
guaranteed to converge to the solution.

We have shown that Newton’s method is guaranteed to
converge to the solution for Ap(κ) = r̄. The update rule is
simply given by κn+1 = κn − Ap(κn)−r̄

A′p(κn)
, where A′p(κn) =

1−A2
p(κn)− p−1

κn
Ap(κn). Next, we show the convergence

rate of Newton’s method.

Lemma 2. The rate of convergence for calculating Ap(κ) =
r̄ using Newton’s Method is quadratic and en+1 ≈ Ce2n with
C ∈ (−1, 0).

Proof. Equation (2) shows the convergence rate is quadratic.
Then, we have en+1 = 1

2

A′′p (ξn)
A′p(κn)

e2n ≈ 1
2

A′′p (κn)

A′p(κn)
e2n and

A′′p(κn)

A′p(κn)
=

(−2Ap(κn)− p−1
κn

)A′p(κn) +
p−1
κ2
n
Ap(κn)

A′p(κn)

> −2Ap(κn)− p− 1

κn
+

p− 1

κ2
n

κn = −2Ap(κn)

where the last inequality uses Equation 15 in (Amos 1974).
Therefore,

A′′p (κn)

A′p(κn)
∈ (−2Ap(κn), 0). We have shown that

lim
κ→0

Ap(κ) = 0, lim
κ→∞Ap(κ) = 1 and A′p(κ) > 0 in Theo-

rem 1, and hence Ap(κn) ∈ (0, 1). Therefore, en+1 ≈ Ce2n,
where C ∈ (−1, 0).

Experiments

In this section, we empirically evaluate the performance of
SHMM. We implemented SHMM and the baseline meth-
ods in JAVA and conducted all the experiments on a com-
puter with 2.9 GHz Intel Core i7 CPU and 16GB memory.

Experimental Setup

Data We use both synthetic and real-life datasets to evalu-
ate SHMM. The real-life datasets are semantic traces from
Twitter users collected by Zhang et al. (Zhang et al. 2016a).
The first dataset (LA) consists of million-scale geo-tagged
tweets created by Los Angeles users from 2014.08.01 to
2014.11.30. Following the preprocessing steps in (Zhang et
al. 2016a), we first group the tweets by user ID to obtain the
location history for each user. Since two consecutive records
in a raw location history can be large, we further segment
the location history into dense semantic traces with a time
threshold Δt = 6 h, such that the time gap between any
two consecutive records is no larger than 6 hours. After pre-
processing, we obtain approximately 30 thousand semantic
traces. The second dataset (NY) consists of the geo-tagged
tweets in New York City during 2014.08.01 and 2014.11.30.
We preprocess the NY data in a similar manner and obtain
approximately 42 thousand trajectories in total.

We also generate multiple synthetic data to verify the
theoretical analysis of our SHMM model. For generating
points from the vMF distribution, we use the code from
Chen et al. (Chen et al. 2015). Given the synthetic points,
we apply our proposed Newton’s method for estimating the
parameters of the SHMM model, and evaluate the approxi-
mation errors and convergence speed.
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Baseline Methods We compare our SHMM model with
the following baseline methods:

1. LAW (Brockmann, Hufnagel, and Geisel 2006) is a widely
used mobility model based on the Lévy flight law with
long-tailed distributions.

2. HMM (Mathew, Raposo, and Martins 2012) uses HMM
to model the spatial locations in the trace data for mobility
modeling.

3. ST-HMM is an extension of HMM that models both spa-
tial and temporal information in the trace data.

4. GMove (Zhang et al. 2016a) is the state-of-the-art mo-
bility model for semantic traces. It differs from SHMM
in the text modeling part. It uses the bag-of-words model
to represent text messages and uses multinomial distribu-
tions to generate the observed messages.

5. GHMM is an adaption of SHMM. It uses independent
Gaussians to model text vectors instead of the vMF distri-
bution.

Evaluation Protocol We use next location prediction as a
downstream task for evaluating the quality of the SHMM
model. Given a semantic trace dataset, we randomly select
70% traces for model training and use the rest 30% for test-
ing. For a test trajectory [x1, x2, ..., xR], we assume the first
R − 1 locations [x1, x2, ..., xR−1] are observed and attempt
to recover the last record xR. Specifically, we first form a
candidate pool by mixing xR with other records whose cre-
ating time and distances are close to xR. 1 After the can-
didate pool is formed, we use the SHMM model to select
the top-K most likely visited records and see whether the
ground-truth appears in the top-K list. We use the prediction
accuracy @K to measure the performance of different mod-
els, i.e., the percentage of test traces for which the ground-
truth record is recovered by the top-K list.

Results on Synthetic Data

Figure 1 shows the performance of our used Newton’s
method for estimating the parameters of a vMF distribution
on synthetic data. As shown in Figure 1 (a), our estimation
method converges extremely fast for estimating κ, achieving
approximation errors smaller than 10−13 after three itera-
tions. Figure 1 (b) shows the μ and κ estimation performance
on synthetic datasets with different sizes. We can see the ap-
proximation error tends to become smaller on synthetic data
sets with more samples. This is expected, as a small number
of samples may lead to biased estimations of the true pa-
rameter values. The results in Figure 2 shows the estimation
performance for different κ and dimension p (the number of
samples is 100,000). Generally, we do not observe obvious
patterns showing how the approximation errors change with
different κ and p, but the relative approximation errors are
quite small under different κ and p values.

1To select negative records, we set the distance threshold to 3.5
kilometers on LA and 2.0 kilometers on NY; and we set the time
threshold to 300 seconds on both LA and NY.
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Figure 2: Estimation error for the concentration parameter κ

Results on Real-Life Data

Visualization of the Mobility Models In this set of ex-
periments, we set the number of states to 50 on LA and NY
to obtain mobility models. After parameter inference, each
state is characterized by: (1) a two-dimensional Gaussian
distribution for the spatial location; (2) a one-dimensional
Gaussian distribution for the time; and (3) a 30-dimensional
vMF distribution for the semantics.

Figure 3 visualizes a number of representative states and
some frequent transitions among them. We plot the mean
location of some states as well as the top-10 keywords from
the vocabulary whose embeddings are the closest to the vMF
mean directions. Most of the top-10 keywords for the same
state carry consistent and clear semantics. For example, for
the BASEBALL state on the LA dataset: homeruns is a spe-
cific baseball term; dodgers is the baseball team in LA; gi-
ants is the baseball team in San Francisco; 162 indicates
that there are 162 games for each team in the Major League
Baseball (MLB) season; and the rest six keywords are all re-
lated to baseball too. We have examined the center locations
of the states, and found that the geographical locations well
match the semantic meanings of different states.

Another interesting finding is that in LA dataset, the mean
direction of the General Sports state lies in-between the Bas-
ketball state and the Baseball state in the embedding space.
Also, the concentration parameter κ for General Sports
state is lower than Basketball and Baseball state. Such phe-
nomenon intuitively makes sense since General Sports is a
broader topic and the semantics of the tweets are more scat-
tered.

We have also observed some interesting state transitions.
As shown in Figure 3, the following transitions receive high
probabilities in the SHMM model: (A) moving from air-
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Figure 3: The visualization of the mobility models. The digits (1-7) indicate different state locations and the letters (A-D)
indicate frequent human movements.

ports to restaurants; (B) enjoying beach activities at the
Venice beach, and then moving around for other leisure ac-
tivities; (C) going to concerts after having food; (D) watch-
ing shows at Broadway and then having other sightseeing
activities in NYC Downtown. These high-probability transi-
tions match people’s movements in the real world well.

Performance for Next Location Prediction Figure 4
shows the performance of next location prediction for differ-
ent mobility models. It can be seen that our SHMM model
outperforms the state-of-the-art GMove model by 3.2% on
average. The performance difference shows that the text
embedding can better capture the semantics of text mes-
sages and reduce text sparsity. Also, the vMF distribution
unleashes the discriminative power of text embeddings in a
directional metric space.
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Figure 4: The accuracies of top-K location prediction.

Effects of Parameters In Figure 5, we study the perfor-
mance of SHMM and GMove when the number of states

varies. We find that the performance of both models gen-
erally increases with the number of states. One major rea-
son is that the semantics of people’s activities are separated
at finer granularities when the number of states is large.
For example, we can see from the LA data set that Gen-
eral Sports, Basketball and Baseball are three separated top-
ics. If the number of states is not large enough, these states
may be clustered as one single topic. On the other hand, one
caveat for choosing the number of states is that a large num-
ber of states could incur high computational overhead, and
also harm the interpretability of the result model because the
same semantics may be split into duplicate ones.
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Figure 5: Prediction accuracy v.s. the number of states.

Efficiency Comparison Finally, we compare the model-
ing training time between SHMM and GMove when the
number of states varies. Generally speaking, the training
time of both models increases quadratically with the number
of states. The training time of SHMM is obviously smaller
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than that of GMove, e.g., when the number of states is 100,
training SHMM is 25.7% faster on LA and 40.9% faster
on NY, and the speedups are even larger when the number
of states or the data size increases. This is because SHMM
models low-dimensional text embeddings instead of high-
dimensional bag-of-words, and thus involves much fewer
parameters. In addition, the estimation of the parameters for
the vMF distribution is cheap and converges fast.
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Figure 6: Running time v.s. the number of states.

Related Work

Human mobility modeling. Classic human mobility mod-
eling methods focus on mining the spatiotemporal regulari-
ties underlying human movements. Generally, existing mo-
bility modeling methods can be divided into two categories:
pattern-based methods and model-based methods. Pattern-
based methods aims at discovering specific mobility pat-
terns that occur regularly. Different mobility patterns have
been introduced to capture people’s movement regularities,
such as frequent sequential patterns (Giannotti et al. 2007),
periodic patterns (Li et al. 2010), and co-location patterns
(Kalnis, Mamoulis, and Bakiras 2005). Model-based meth-
ods use statistical models to characterize the human mobil-
ity, and learn the parameters of the designed model from the
observed trace data. Mathew et al. (Mathew, Raposo, and
Martins 2012) use the hidden Markov model to capture the
sequential transition regularities of human mobility; Brock-
mann et al. (Brockmann, Hufnagel, and Geisel 2006) pro-
posed that human mobility can be modeled by a continuous-
time random-walk model with long-tail distribution; Cho
et al. (Cho, Myers, and Leskovec 2011) introduce periodic
mobility models to discover the periodicity underlying hu-
man movements.

While the above mobility modeling methods focus on spa-
tiotemporal regularities without considering text data, recent
years are witnessing growing interest in modeling human
mobility from semantic trace data (Ying et al. 2011; Wu et
al. 2015; Zhang et al. 2016a; 2014). Among these works,
the state-of-the-art GMove model (Zhang et al. 2016a) is the
most relevant to our model. Both GMove and SHMM use
hidden Markov models to model the generation process of
the observed semantic trace data. However, SHMM is dif-
ferent from GMove in that it encodes the semantics of user
activities with text embeddings, and uses the vMF distribu-
tion to model the text embeddings in the HMM model. As
such, the SHMM involves much fewer parameters and well

unleashes the discriminative power of text embeddings in a
directional metric space.

It is worth mentioning that, there are quite a number of
works that uses human trace data for the location predic-
tion problem (Wang et al. 2015; Liu and et al. 2016). Typi-
cally, they extract features that are important for predicting
which place the user tends to visit next based on discrimi-
native models such as recurrent neural networks. While we
use location prediction as an evaluation task in our experi-
ments, our work is quite different from these works. Instead
of optimizing the performance of location prediction, our fo-
cus is to learn interpretable models that reveals the regulari-
ties underlying human movements. Besides location predic-
tion, our learned mobility models can be used for many other
downstream tasks as well.
vMF-based learning. There are some existing works that
utilize vMF distribution for different learning tasks. Dhillon
et al. (Dhillon and Sra 2003) and Banerjee et al. (Banerjee et
al. 2005) are two pioneering works that use the vMF distri-
butions to handle directional data, which demonstrate inspir-
ing results for text categorization and gene expression anal-
ysis. Besides, Gopal and Yang (Gopal and Yang 2014) re-
cently applied vMF distributions for clustering analysis, and
proposed variational inference procedures for estimating the
parameters of the vMF clustering model. Batmanghelich et
al. (Batmanghelich et al. 2016) proposed a spherical topic
model based on the vMF distribution, which accounts for
word semantic regularities in language and has been demon-
strated to be superior than multi-variate Gaussian distribu-
tions. However, there are no previous works that integrate
the vMF distribution with HMMs for semantic trace data.
To the best of our knowledge, we are the first to demonstrate
that the vMF distribution can work well with HMM for di-
rectional data with theoretical guarantees.

Conclusion

We proposed a spherical hidden Markov model for learn-
ing interpretable human mobility model from semantic trace
data. Our model uses text embeddings to capture the seman-
tics of text messages and integrate the vMF distribution into
the hidden Markov model for generating such text embed-
dings. We have theoretically proved that the Expectation-
Maximization algorithm is able to work with vMF distribu-
tion, and that the Newton’s method can be applied for effi-
ciently solving the M-step with quadratic convergence rate.
Our experiments on synthetic data simulations verify our
theoretical analysis. Furthermore, by applying our model to
real-life semantic trace datasets, we are able to obtain highly
interpretable mobility models, which intuitively make sense
and outperform baseline models for downstream tasks like
location prediction.
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