
MDP-Based Cost Sensitive
Classification Using Decision Trees

Shlomi Maliah, Guy Shani

Software and Information Systems Engineering
Ben Gurion University, Israel

shlomima@post.bgu.ac.il, shanigu@bgu.ac.il

Abstract

In classification, an algorithm learns to classify a given
instance based on a set of observed attribute values. In
many real world cases testing the value of an attribute
incurs a cost. Furthermore, there can also be a cost as-
sociated with the misclassification of an instance. Cost
sensitive classification attempts to minimize the ex-
pected cost of classification, by deciding after each ob-
served attribute value, which attribute to measure next.
In this paper we suggest Markov Decision Processes as
a modeling tool for cost sensitive classification. We con-
struct standard decision trees over all attribute subsets,
and the leaves of these trees become the state space of
our MDP. At each phase we decide on the next attribute
to measure, balancing the cost of the measurement and
the classification accuracy. We compare our approach to
a set of previous approaches, showing our approach to
work better for a range of misclassification costs.

1 Introduction

Classification is the task of identifying the class of an in-
stance based on a set of observed attributes. For example,
we may conduct a set of tests for a patient to properly iden-
tify her condition, applying an appropriate treatment for that
condition. In many cases some tests, such as measuring tem-
perature and blood pressure are easy to conduct and incur
little cost, while other tests such as gene profiling are much
more costly. On the other hand, costly tests are often more
informative than blood pressure, and can be more useful for
diagnosis. In such cases it may be reasonable to collect mea-
surements in an incremental manner, deciding on the next
test after observing the results of the previous test.

In addition, in many applications there is a cost associated
with an error on the final classification decision. In the diag-
nosis example above, an error in classification may cause
the doctors to apply a wrong treatment, which may be both
costly in hospital resources, as well as damaging to the pa-
tient. There are hence two different costs that must be con-
sidered — a cost for measuring the value of a attribute, and
the cost of misclassification.

Classical classification algorithms ignore these costs, fo-
cusing on measuring the value of attributes that provide bet-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ter accuracy. In many cases better accuracy results implicitly
in reduced misclassification cost. Cost sensitive classifica-
tion (Elkan 2001; Turney 1995; Lomax and Vadera 2013),
on the other hand, takes costs directly into consideration.

For example, several researchers suggested to modify the
splitting criterion of standard decision tree algorithms, such
as C4.5, to take into account costs (Tan 1993; Norton 1989;
Núñez 1991). Turney (1995) used a genetic algorithm to
construct a decision tree, taking into account not only im-
mediate costs, but also future costs.

In this paper we suggest Markov Decision Process (MDP)
(Bellman 1957; Puterman 2014) as a useful tool for model-
ing cost sensitive classification. MDPs allow a classifier to
choose which attribute to measure next taking into consid-
eration the expected future sum of costs. MDPs inherently
take into consideration future actions, rather than consider-
ing only the immediate, myopic gain.

We construct a set of decision trees, over all attribute sub-
sets. These decision trees are learned in the standard manner,
ignoring all costs, where each node in the tree is associated
with an attribute to measure, and each outgoing edge is as-
sociated with a constraint over the observed value for that
attribute. Leaves are associated with a final classification de-
cision. The state space of our MDP is the set of leaves of all
trees. When classifying the MDP state conforms to a single
leaf in one of the trees, based on the set of attributes values
that were observed thus far. The available MDP actions are
to select an additional attribute to test, transitioning to a leaf
in other tree, or to classify based on the known attributes.

After choosing an attribute to measure based on the MDP
policy, we transition to a new leaf in another tree given the
observed attribute value. The cost of attribute measurement
actions are the costs of the tests, and the costs for the final
classification decision are the misclassification costs.

Even though we construct multiple decision trees, we do
not propose an ensemble approach (Banfield et al. 2007).
Our approach can be described as constructing a single cost
sensitive decision tree from multiple accuracy driven deci-
sion trees.

We provide experiments over a set of benchmarks (Lomax
and Vadera 2013) showing that our MDP approach scales
well over these benchmarks. We provide a set of experiments
when varying the cost of misclassification. When the mis-
classification cost is very high, one will query all available

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3746

attributes that provide useful information before making a
decision. When the misclassification cost is very low, it is
often better to make a decision based on the priors without
paying the cost of measuring any attribute. We show that
for a range of symmetric and asymmetric misclassification
costs between these two extremes, our MDP approach out-
performs all other methods.

2 Background

We now briefly review relevant background — decision
trees, cost-sensitive classification, and MDPs.

2.1 Decision Trees

In classification, given an instance that specifies values for
a set of attributes, the classifier must predict a class for that
instance. Decision trees are perhaps one of the most popu-
lar classification model in machine learning literature, due
to their predictive power, as well as their readability. The
nodes of the tree are labeled by an attribute. The outgoing
edges from a node labeled by an attribute a are labeled by
the various possible values of a. The leaves are labeled by a
class name.

To classify a new instance, one starts at the root, and tra-
verses the tree towards one of the leaves. At each node la-
beled by an attribute we observe the value of that attribute in
the current example, and traverse the edge corresponding to
that value. Upon reaching a leaf we classify the instance to
the class associated with that leaf.

Classical decision tree induction algorithms, such as ID3
and C4.5, construct a decision tree incrementally, given a
population of example instances labeled by known classes.
The algorithms start with the entire population and select
an attribute that would split the population into different
groups, such that the split maximizes some criteria. Typi-
cal criteria for preferring one attribute over another can be
the information gain or the gain ratio. These algorithms take
a greedy approach, choosing the attribute that splits the pop-
ulation best in a single step, ignoring future splits.

2.2 Cost-sensitive Decision Tree Learning

Classical classification algorithms assume that when given
a new instance to classify, the values of all attributes are al-
ready known. This is identical to the case where the values
can be acquired online, while classifying, incurring no addi-
tional cost. In addition, classical algorithms assume that all
classification errors have an identical penalty.

These two assumptions are often invalid in many real
world problems, such as sensor activation in cellphones, car
failure diagnosis, and medical diagnosis. For example, in
medical classification problems (Turney 1995), the patient
diagnosis typically involves a sequence of medical tests. As
the tests are costly both in terms of resources (money and
time), as well as in inconvenience or even damage to the pa-
tient, the goal is to reduce these costs prior to a successful
classification. A typical diagnosis process performs tests se-
quentially, and after observing the results of a test, makes a
decision to classify, or to conduct another test.

In some cases test costs are not independent, that is, the
cost for testing two attributes is lower than the sum of costs
of testing each independently. For example, in medical di-
agnosis, there is a cost associated with extracting a blood
sample, but once a blood sample has been extracted, testing
additional properties of the blood may not require another
sample, and thus has a reduced cost.

It is also natural in such problems to define a cost for mis-
classification, such as diagnosing the wrong disease, or di-
agnosing a disease in a healthy person. These misclassifi-
cations may result in unneeded expensive treatments. Also,
misclassifying a sick patient as healthy may result in seri-
ous damage to the patient. One can also assign a reward for
the correct classification of a disease, corresponding to the
improvement in the quality of life. Different misclassifica-
tions may incur different costs, and different correct classi-
fications may incur different rewards.

Given these two types of costs, it is more reasonable to
measure the expected classification cost, rather than the ac-
curacy of the model. Classical classification algorithms that
ignore these costs may result in relatively high expected
costs. One can adapt arbitrary classification algorithms to be
cost sensitive (Zadrozny, Langford, and Abe 2003; Domin-
gos 1999). Alternatively, one can construct a cost-sensitive
algorithm directly, as we do.

Early cost-sensitive decision tree induction algorithms,
such as CS-ID3, IDX, and EG2 take a greedy approach,
choosing an attribute given the myopic expected test cost
and gain. ICET (Turney 1995) uses a genetic algorithm to
learn a decision tree that minimizes the expected cost. Ge-
netic algorithms, as any local search, tend to achieve a lo-
cal minima, and may hence produce suboptimal classifiers.
MetaCost (Domingos 1999) uses bagging to construct sev-
eral decision trees over different samples of the data, relabel-
ing examples to their minimal cost class, and then retraining.

Lomax and Vadera (Lomax and Vadera 2011) conduct a
comprehensive comparison of cost-sensitive, showing that
Turney’s ICET is still among the best preforming algo-
rithms, and that IDX (Norton 1989) also preforms well.

We take a maximizing approach, where positive rewards
represent desirable outcomes, and negative rewards repre-
sent costs and undesirable outcomes, and the goal of the
classifier is to maximize the expected reward, rather than
minimize the expected cost of classification. More explicitly,
we assume a negative reward (cost) ra|P for testing the value
of an attribute a given the set of already tested attributes P ,
and a negative reward rc,c′ for misclassifying an example of
class c′ as class c, and a positive reward rc,c for correctly
classifying an example of class c.

2.3 Markov Decision Processes

A Markov decision process (MDP) (Bellman 1957; Puter-
man 2014) is a decision making algorithms, designed to take
into account future decision while deciding on the next ac-
tion. Formally an MDP is a tuple 〈S,A, tr, R,H〉 where S is
a set of states, A is a set of actions, tr is a transition function,
R is a reward function, and H is the planning horizon — the
maximal amount of steps before the execution terminates.

3747

The state space S models all the relevant features for mak-
ing a decision. The system is always at exactly one state, and
this state is known to the decision maker. The action set A
models the actions that are available to the decision maker.
At each phase the decision maker observes the current state,
and decides on an action. The system then transitions to a
new state, and the process is repeated.

The tr function models stochastic state transitions,
that is, tr(s, a, s′) = pr(s′|s, a) is the probabil-
ity of transitioning to state s′ given that action a
was executed at state s. We assume the Markovian
property, where only the current state influences the
transition, i.e., pr(st+1|s0, a0, s1, a1, ..., st−1, at−1) =
pr(st+1|st−1, at−1). The reward function R(s, a) models
desirable outcomes, as well as action costs. A positive re-
ward is given for a successful outcome, such as a correct
classification, while a negative reward is used to denote ei-
ther undesirable outcomes (e.g. misclassification), or action
costs (e.g. test costs). Given the Markovian property, re-
wards depend solely on the action and the state prior to the
action, ignoring previous states and actions.

A solution to an MDP is typically expressed as a policy
π : S → A — a mapping from states to actions. An optimal
policy maximizes the expected sum of rewards:

∑
i=0..H ri.

The value iteration algorithm computes a value function V :
S → R, assigning a value to a state, modeling the expected
sum of rewards from that state following an optimal policy.

One can compute a value function iteratively using the
Bellman backup (Bellman 1957):

V1(s) = max
a

R(s, a) (1)

Qi+1(s, a) = R(s, a) +
∑

s′∈S

tr(s, a, s′)Vi(s
′) (2)

Vi+1(s) = max
a∈A

Qi+1(s, a) (3)

where Vi models the expected sum of rewards with i steps
to go. Given cyclic transitions value iteration eventually
converges, but for acyclic transitions, computing values in
reversed topological order requires only a single iteration.
Given a value function V we can define a policy:

π(s) = argmaxa∈AR(s, a) +
∑

s′∈S

tr(s, a, s′)V (s′) (4)

mapping each state to an action to execute.
MDPs have been previously suggested for the related task

of dynamic feature selection (He, Daumé III, and Eisner
2012), where the goal is to collect a relatively small num-
ber of features to increase classification speed.

2.4 Reinforcement Learning

When the MDP parameters, the transitions and the rewards,
are unknown, one cannot use value iteration directly. Com-
puting a policy under unknown model parameters is typ-
ically known as reinforcement learning (RL)(Sutton and
Barto 1998). There are two main approaches to RL; In
model-based RL, the model parameters are learned from the
data, allowing us to use value iteration. In model-free RL
the value function is computed directly without learning the
model parameters first. Perhaps the most popular model-free

method is Q-learning (Watkins and Dayan 1992), where af-
ter executing an action a, at state s, receiving a reward r and
transitioning to state s′, the value function is updated:

Q(s, a) = (1−α) ·Q(s, a)+α · (r+ γmax
a

Q(s′, a)) (5)

Q(s, a) is typically called the Q function.

3 MDP-based Classification

We now describe our classification method, which uses an
MDP to decide on the next attribute to test, or which class to
classify an example. Our method uses a set of decision trees,
each over a different subset of attributes. During classifica-
tion, at each step there is a single active tree, corresponding
to the set of already observed attributes, and a single active
leaf in that tree, defining the current MDP state. The MDP
can decide to transition to another tree and leaf by testing the
value of another attributes, or classify the current example.

Let A = {a1, ..., an} be the set of attributes, and let
C = {c1, c2, ..., cm} be the set of classes of the current
classification problem. We begin by learning a decision tree
for every subset of A, including the empty set. The deci-
sion trees are constructed using the standard C4.5 algorithm
(Quinlan 2014). When constructing the trees we maintain in
each leaf l of every tree the set of examples El that were
associated with this leaf during learning.

In cases where there are too many attributes to construct
decision trees for all subsets, and some attributes are signif-
icantly less costly than others, we can reduce the construc-
tion costs by assuming that the less costly attributes are al-
ways tested. Let A1 ⊂ A be the set of costly attributes,
and A2 ⊂ A be the set of low cost attributes, such that
A1 ∪ A2 = A,A1 ∩ A2 = ∅. For each subset P ⊂ A1

we learn a decision tree for P ∪A2. That is, we learn a deci-
sion tree for each subset of the high cost attributes, together
with the set of low cost attributes.

3.1 Constructing the MDP

Let TP be the decision tree over an attribute subset P ∈
P(A) — the power set of A. Let LTP

be the set of leaves
of a tree TP . Each state of the MDP corresponds to a leaf in
one of the trees. In addition there is a single terminal state
st. Hence, the set of states of the MDP is defined by:

S = st
⋃

P∈P(A)

LTP
(6)

When classifying an example e, the execution always starts
with the single leaf of the empty set tree T∅. Hence, the start
state is the single leaf of T∅.

There are two types of actions in our MDP — testing the
value of an unknown attribute, and classifying the exam-
ple. Testing the value of an attribute a transitions the MDP
from a leaf l in tree TP1 to a leaf l′ in the tree TP2 , where
P2 = P1 ∪{a}. We abuse notation by denoting by a both an
attribute and the action that tests the value of that attribute.
We can describe the transition as a two phase operation. In
the first phase, we deterministically move from TP1

to TP2
.

Then, we use the values of all tested attributes in P2 as well
as a to traverse TP2 towards a single leaf.

3748

We can potentially transition from a leaf l in TP1 to a num-
ber of leaves in TP2 , given different values for the tested at-
tribute. However, once the value for that attribute is known,
the transition is deterministic to a single leaf. We denote
by τ(l, a, e) the deterministic transition function between
leaves, i.e. l′ = τ(l, a, e) is the leaf that is reached given
the value of a for an example e at leaf l. The cost (nega-
tive reward) for executing a at a leaf in a tree over a set of
attributes P is ra|P .

The second action type is a classification action. We fur-
ther abuse notation by denoting by c both a class, and the
action of classifying an example as class c. Following such
a classification action c, we transition to the terminal state
with probability 1, and the reward depends on the misclassi-
fication cost for c — if the current example was successfully
classified into class c, then the reward is rc,c. If an example
of class c′ was misclassified as c, then the cost is rc,c′ .

All costs are given as part of the problem description.

3.2 Solving the MDP

We take here a model-free approach — instead of learning
the transition and reward functions from the given exam-
ples, we compute a value function and policy directly. As
can be seen, the transitions in our model are acyclic, as we
always transition to a tree over a set of attributes which is a
superset of the already observed attributes, or to the termi-
nal state. We can hence construct the value function, starting
from states corresponding to the leaves of the tree built us-
ing the entire attribute set A, moving backwards. This means
that at iteration i we update only the states associated with
the trees of attributes sets of size n− i. There is never a need
to update the value of a state twice, making the computation
of the value function in our case extremely efficient.

For the states corresponding to the leaves of the tree TA,
the decision tree over the entire attributes set, where the
only available actions are classification actions — we set the
value function given the average misclassification cost. That
is, for each leaf of TA and each classification action c:

Q(l, c) = pr(c|l)rc,c +
∑

c′
pr(c′|l)rc′,c (7)

where pr(c|l) is the maximum likelihood estimator com-
puted using the set of examples associated with the leaf l.

We now compute a value function for trees over smaller
sets of attributes, starting with the leaves of the trees over
|A| − 1 attributes and moving down to the single leaf of
the tree over the empty set T∅. For leaves of a tree over an
attribute set P , such that |P | = i, we use the value function
computed for leaves of trees over attribute sets P ′ = P∪{a}
for a ∈ A \ P , where |P ′| = i + 1. We use the already
computed value function of the larger trees to estimate the
future rewards for each example in the currently evaluated
leaf. Given an example e and a leaf l for which the value
function was already computed, we can define the sum of
future rewards for e as follows:

V (e, l) = rce,c′ : c
′ = π(l) (8)

V (e, l) = ra|P + V (e, τ(l, a, e)) : a = π(l) (9)

where ce is the class of the example e, P is the set of at-
tributes in the tree of leaf l, and τ(l, a, e) is the new leaf in

the tree over P ∪ {a} that is reached for example e after
testing the value of a.

We compute the Q function and the optimal policy for a
leaf l in the tree TP , after computing the optimal policy for
all leaves in the trees for each P ′ s.t. |P ′| > |P | using:

Q(l, c) = pr(c|l)rc,c +
∑

c′
pr(c′|l)rc′,c (10)

Q(l, a) = ra|P +

∑
e∈El

V (e, τ(l, a, e))

|El| (11)

π(l) = argmax
act∈A∪C

Q(l, act) (12)

After the policy π was computed for a leaf l, we can com-
pute V (e, l) for all examples in that leaf.

If we cache the computed value for V (e, l), the compu-
tation time for a tree TP is

∑
l∈leaves(TP) O((|C| + (|A| −

|P |)) · |El| = O((|C|+(|A|−|P |)) · |E|), where E is the set
of all examples. An upper bound for the entire computation
of the value function is O(2|A| · (|C|+ |A|) · |E|).

We note that our transitions are not truly Markovian. The
non-Markovian behavior manifests when we compute the Q
values for a leaf l based on the policy of other leaves, whose
distribution of examples is different than that of l. As such,
our Markovian assumption is only a useful approximation,
allowing us to construct a strong cost sensitive classifier.

3.3 Refining the MDP Online

After observing the value of some attributes, we can have
a better estimation of the Q function. Specifically, for each
leaf there exist a set of constraints over the values of some at-
tributes in A. After observing the values of some attributes,
we can avoid considering possible future leaves whose con-
straints are violated by the observed values of these at-
tributes. We remove these leaves from the state space, and
recompute π(l), ignoring examples that fall into one of the
removed leaves. As the computation of the Q function is
very fast, this recomputation does not pose a significant bar-
rier, and we repeat it after every observation of an attribute
value. After classification, we reset the trees back to their
original state, undoing all the leaf removals, so that future
classifications use the original, rather than the pruned trees.

Table 1: A set of example instances, their attribute values,
and their class.

a1 a2 a3 C

e1 8 7 4 c2

e2 9 7 4 c2

e3 12 8 4 c2

e4 4 6 4 c1

e5 0 5 4 c1

e6 −5 7 4 c1

e7 7 7 4 c1

e8 −7 7 2 c1

e9 5 7 4 c2

a1 a2 a3 C

e10 7 7 4 c2

e11 7 0 2 c1

e12 7 8 2 c1

e13 −1 6 2 c2

e14 4 8 4 c1

e15 7 6 4 c1

e16 7 6 4 c2

e17 7 7 2 c2

e18 7 3 2 c2

3749

(a) ∅

(b) {a1} (c) {a2} (d) {a3}

(e) {a1, a2} (f) {a1, a3} (g) {a2, a3}

(h) {a1, a2, a3}

Figure 1: Constructed decision trees for all attribute subsets,
constructed using the train data in Table 1.

3.4 Example

We now demonstrate our methods over a given set of exam-
ple instances, specified in Table 1. Figure 1 shows the set of
decision trees that were constructed using these examples.
In some cases, the trees are identical, because learning the
value of a single attribute does not sufficiently help the pre-
diction problem. For example, learning only the value of a3
does not significantly improve the class prediction, and the
tree is identical to T∅.

The set of leaves of these trees is the set of the MDP states.
Hence, our MDP has 18 states. From a leaf in the tree for
a1 (Figure 1b), for example, we can only apply 4 actions
— (1,2) classify, for the two possible classes (c1, c2), (3)
test the value of a2, transitioning to the tree over {a1, a2}
(Figure 1e), (4) test the value of a3, transition to the tree
over {a1, a3} (Figure 1f).

Figure 2 provides an example of the transition from the
leaves of the tree T{a1}, using the action a3, revealing the
value of the attribute a3. The transition is hence to the leaves
of the tree T{a1,a3}. In this example τ(l3, a3, e1) = l11, and
τ(l3, a3, e11) = l10.

Let us further assume that the test cost for attribute ai is
i, and symmetric misclassification cost for all classes of 10
(and a reward of 10 for successful classification).

We can now begin computing the policy backward from
the largest tree to the smaller ones. Looking at T{a1,a2,a3},
given symmetric misclassification costs it is always best to
predict the most popular class in each leaf (specified in the
leaves in Figure 1).

Turning our attention now to Ta1,a3 , the only available
non-classification action is testing a2. For l11 we must com-
pute the values using Equations 7 to 12, where El11 =

Figure 2: Possible transitions from the leaves in T{a1} to the
leaves in the tree for T{a1,a3}, using the test a3 action.

{e1, e2, e3, e4, e7, e9, e10, e14, e15, e16}. We first compute
the misclassification action value for l11 using Equation 7:

pr(c1|l11) =
4

10
(13)

pr(c2|l11) =
6

10
(14)

Q(l11, c1) =
4

10
· 10 + 6

10
· (−10) = −2 (15)

Q(l11, c2) =
6

10
· 10 + 4

10
· (−10) = 2 (16)

We now compute Q(l, a) using Equation 11. Examples
e4, e15, e16 transition to l17, where they are classified as
c1, which is correct for e4, e15 but not for e16. Examples
e1, e2, e3, e7, e9, e10, e14 transition to l18, where 5 of them
are correctly classified as c2, and two (e7, e14) is misclassi-
fied. Computing Q(l, a) we get:

Q(l11, a2) = −2 +
5 · 10 + 2 · (−10) + 2 · 10 + 1 · (−10)

10
= 2

(17)
Hence, for l11, argmaxact∈A∪C Q(l11, act) = c2 / a2, so
we are indifferent between classify as c2 to test a2 value.

For the leaf l9, all examples transition to leaf l14, with the
same class distribution. Hence:

Q(l9, c1) = Q(l14, c1) =
3

4
· 10 + 1

4
· (−10) = 5 (18)

Q(l9, a2) = −2 + 5 = 3 (19)

and therefore π(l9) = c1.
For l10, El10 = {e11, e12, e17, e18}, and the examples are

evenly split between the classes, but after sensing the value
of a2, moving to l15 and l16, we improve the classification
accuracy, misclassifying only a single example (e12):

Q(l10, c1) = Q(l10, c2) =
2

4
· 10 + 2

4
· (−10) = 0 (20)

Q(l10, a2) = −2 +
1 · 10 + 2 · 10 + 1 · (−10)

4
= 3 (21)

and therefore π(l10) = a2.

4 Empirical Evaluation

We now provide an experimental evaluation to compare
our MDP-based cost sensitive classification method to other

3750

(a) Glass

(b) Heart.

Figure 3: Comparing the expected reward and accuracy for
varying misclassification costs (x-axis). In Heart, IDX and
EG2 have identical performance and are reported together.

methods. We experiments with all domains from the recent
cost sensitive survey (Lomax and Vadera 2013; 2011), com-
paring our approach to the leading methods in the survey.

Methods We base our implementation on Weka (Hall et
al. 2009), except for ICET. The C4.5 algorithm that ignores
costs provides an indication of the achievable accuracy, and
an illustration on the expected cost when optimizing accu-
racy. We modified the Weka implementation of C4.5 to con-
sider costs following 3 cost sensitive rules — CS-ID3, IDX,
EG2. All three originally consider only test costs, and we
modified them to consider misclassification cost when mak-
ing a classification decision in a leaf. We also use Weka’s
implementation of MetaCost (Domingos 1999). In addition,
we compare to ICET (Turney 1995), which showed the best
performance in the survey (Lomax and Vadera 2011). ICET
and MetaCost consider also the misclassification costs.

The experiments were run on a Windows 10 machine, i5
CPU, and 8GB RAM. Our method is implemented in C#,
ICET is implemented in C over a Linux virtual machine, and
all other methods except for ICET are implemented in Java.

Procedure The ratio between the test costs and misclassi-
fication costs results in different behaviors. When the mis-
classification cost is much lower than the test costs, execut-
ing any tests results in suboptimal behavior. When the mis-
classification cost, at the other extreme, is much larger than
test costs, it is often better to execute all informative tests.
Hence, the behavior is most interesting in between.

We therefore experiment in each domain with 3 selected
misclassification costs — one that is on the same order of
the test costs, encouraging the algorithm to classify before
executing many tests, one where the misclassification cost
is sufficiently high to encourage the algorithm to execute
many tests, and one where the misclassification cost is in be-
tween the two extremes. While we vary the misclassification
costs we keep the test costs constant, as specified by Lomax
and Vadera (2011). MDP, ICET and MetaCost that consider
misclassification costs during construction were trained sep-
arately for each classification cost matrix.

We use a standard 80% − 20% train-test split. Results
are paired, that is, all algorithms were run on the same
split. Dataset statistics are reported in Table 5. For the larger
datasets — Heart, Wine and Hepatitis, we learned decision
trees only over subsets of the 10 most costly attributes to-
gether with the low cost attributes.

Due to the lack of space, we present here just a part of the
results. Complete tables and all graphs can be found in the
supplementary material, showing that our method performs
well over all domain and over a wide cost range.

Results We first experiment with symmetric rewards and
costs, that is, the cost of a misclassification is the negative
of the reward for a successful classification. We also assume
here that all misclassifications have the same cost. Symmet-
ric misclassification costs are convenient for all methods (in-
cluding ours) that ignore these costs when constructing the
trees, as for symmetric costs, accuracy is completely corre-
lated with the misclassification cost.

Table 2 shows the average reward per classification,
and the prediction accuracy for each classification method,
given varying misclassification costs. It is obvious that the
MDP approach has a much better reward than any other
method, often sacrificing accuracy to achieve better reward.
For medium misclassification costs, which arguably require
the most sophisticated balancing of accuracy and cost, our
method is always best. It is also always best at the extremes,
except for one domain (Car).

C4.5 is almost never best. It is obviously worst at low mis-
classification costs, when running multiple test is not worth-
while. It is also not good when the misclassification costs
are high, and all attributes are tested, because it does not
order the tests with respect to the cost. The cost-sensitive al-
gorithms based on C4.5 work well when misclassification
costs are high, but preform badly when costs are low, and
are also far from optimal for the medium costs.

Considering accuracy, ICET and MDP have reduced ac-
curacy when the misclassification cost is low, because it is
not worthwhile to test more attributes in order to improve ac-
curacy. It is interesting to see, though, that the MDP method
often has better accuracy than even C4.5, when the misclas-
sification costs are sufficiently high to warrant expensive
tests for improving accuracy. This is most pronounced on
tictactoe, but occurs in other domains as well. We attribute
the high accuracy to the MDP ability to consider all future
tests, while C4.5 is making greedy decisions at each split.

Figure 3 compares the behavior of our MDP approach,
ICET, and C4.5 methods as the misclassification costs (and

3751

Table 2: Average classification reward (Rw) and average accuracy (Ac) with symmetric (rc,c = −rc,c′) misclassification costs.
rc,c′ shows the varying misclassification cost that we use, and ra is the average cost for testing an attribute. MDP is our approach.
IDX, CSID3, EG2 are the modification of C4.5 to cost sensitive splits. C4.5 is the original, cost insensitive algorithm.

MDP IDX CSID3 EG2 C45 MetaCost ICET
Domain rc,c ra Ac Rw Ac Rw Ac Rw Ac Rw Ac Rw Ac Rw Ac Rw

Car
10 43.12327 0.68 3.52 0.96 -128.49 0.98 -136.11 0.96 -128.79 0.96 -137.49 0.96 -137.57 0.68 3.52
100 0.69 35.23 0.96 -46.19 0.98 -50.14 0.96 -46.49 0.96 -54.82 0.96 -54.91 0.93 -47.00
300 0.96 129.45 0.96 136.70 0.98 140.89 0.96 136.41 0.96 128.88 0.96 128.80 0.96 140.00

Breast
100 41.71514 0.70 39.03 0.85 -94.21 0.84 -112.21 0.85 -94.21 0.85 -121.35 0.86 -173.10 0.79 -38.78
400 0.91 222.11 0.85 114.91 0.84 89.93 0.85 114.91 0.85 88.94 0.86 41.85 0.77 118.56
600 0.92 390.56 0.85 254.33 0.84 224.68 0.85 254.33 0.85 229.14 0.86 185.15 0.82 230.01

Hepatitis
5 2.24 0.93 -0.07 0.99 -1.95 0.99 -6.65 0.99 -1.95 0.99 -9.64 0.99 -10.83 0.91 -1.00
10 0.96 5.27 0.99 2.92 0.99 -1.79 0.99 2.92 0.99 -4.77 0.99 -5.96 0.92 1.30
30 0.98 27.47 0.99 22.39 0.99 17.69 0.99 22.39 0.99 14.70 0.99 13.51 0.98 22.86

Nursery
10 23.24092 0.42 -1.50 0.97 -119.12 0.98 -109.81 0.98 -118.81 0.98 -109.40 0.98 -110.29 0.42 -1.50
100 0.66 -11.14 0.97 -33.90 0.98 -22.84 0.98 -32.96 0.98 -22.35 0.98 -23.18 0.48 -18.40
150 0.98 18.70 0.97 3.97 0.98 16.33 0.98 5.19 0.98 16.33 0.98 16.33 0.94 2.42

Tictactoe
5 1 0.64 1.36 0.87 -0.57 0.82 -0.89 0.87 -0.57 0.87 -0.57 0.86 -0.58 0.64 1.36
10 0.84 4.70 0.87 3.08 0.82 2.29 0.87 3.08 0.87 3.08 0.86 3.04 0.83 3.40
100 0.93 86.63 0.87 68.84 0.82 59.56 0.87 68.84 0.87 68.84 0.86 68.19 0.83 62.00

Wine
10 53.5927 0.68 -38.68 0.95 -141.54 0.99 -163.93 0.98 -148.00 0.99 -183.30 0.99 -183.30 0.98 -189.43
100 0.91 13.41 0.95 -60.39 0.99 -74.91 0.98 -60.95 0.99 -95.26 0.99 -95.26 0.99 -130.40
500 0.99 394.92 0.95 300.26 0.99 320.72 0.98 325.93 0.99 295.99 0.99 295.99 0.99 265.50

Table 3: Average reward (Rw) and average accuracy (Ac) asymmetric misclassification costs. rc,c′ shows the range from which
misclassification costs were randomly selected, and ra is the average cost for attribute testing. IDX, CSID3, EG2 are the
modification of C4.5 to cost sensitive splits. C4.5 is the original, cost insensitive algorithm.

MDP IDX CSID3 EG2 C45 MetaCost ICET
Domain rc,c ra Ac Rw Ac Rw Ac Rw Ac Rw Ac Rw Ac Rw Ac Rw

Car
15-45 43.12327 0.68 22.61 0.95 -103.72 0.97 -110.49 0.95 -104.01 0.96 -112.60 0.96 -112.55 0.68 22.61
25-155 0.23 6.57 0.96 -74.25 0.97 -79.73 0.96 -74.54 0.95 -81.62 0.95 -82.78 0.68 -7.84
300-480 0.96 176.15 0.95 182.34 0.97 188.92 0.95 182.05 0.96 176.36 0.96 176.36 0.95 138.00

Breast
350-400 41.71514 0.75 92.24 0.74 12.01 0.72 32.11 0.74 12.01 0.74 44.03 0.74 45.29 0.73 37.14
350-450 0.76 212.04 0.74 128.83 0.72 143.28 0.74 128.83 0.74 174.50 0.74 174.49 0.73 155.30
500-800 0.66 148.53 0.74 42.19 0.72 65.99 0.74 42.19 0.74 81.21 0.74 82.46 0.75 94.10

Hepatitis
0-9 2.24 0.95 2.94 0.99 1.13 0.99 -3.58 0.99 1.13 0.99 -6.56 0.98 -6.51 0.94 1.50
0-20 0.97 9.00 0.99 6.40 0.99 1.69 0.99 6.40 0.99 -1.29 0.99 -2.48 0.94 8.00

25-70 0.99 26.00 0.99 19.11 0.84 10.84 0.99 19.11 0.96 11.64 0.98 7.40 0.99 23.00

Nursery
0-70 23.24092 0.98 62.06 0.97 44.36 0.98 58.58 0.98 46.95 0.98 58.85 0.98 46.95 0.94 44.27

10-130 0.59 46.32 0.97 0.67 0.98 16.72 0.98 3.25 0.99 16.99 0.98 3.25 0.55 15.40
10-170 0.66 80.69 0.97 40.52 0.98 55.62 0.98 42.87 0.98 56.01 0.98 42.87 0.53 53.00

Tictactoe
0-13 1 0.95 54.00 0.87 45.44 0.82 41.31 0.87 45.44 0.87 45.44 0.86 45.58 0.83 44.00

13-25 0.82 6.28 0.87 3.81 0.81 3.14 0.87 3.81 0.87 3.81 0.90 4.10 0.64 5.73
35-70 0.95 10.50 0.87 8.17 0.82 6.45 0.87 8.17 0.87 8.17 0.87 8.17 0.83 7.65

Wine
100-200 53.5927 0.94 83.70 0.95 9.44 0.99 2.30 0.98 14.29 0.99 -19.53 0.99 -19.53 0.98 -25.20
50-300 0.95 47.56 0.95 -32.20 0.99 -39.17 0.98 -29.04 0.99 -60.73 0.99 -60.73 0.99 -94.10
70-500 0.92 184.78 0.95 118.84 0.99 119.95 0.98 134.78 0.99 93.70 0.99 93.70 0.99 64.45

Table 4: Model construction time (sec.) for all methods. For
our MDP approach we also report classification time.

Dom
ain

M
DP Clas

sifi
ca

tio
n

M
DP Con

str
uc

tio
n

ID
X

CSID
3

EG2
C45 M

eta
Cos

t

IC
ET

Car 0.29 6.4 0.015 0.243 0.022 0.017 0.004 8
Breast 0.38 8.81 0.003 0.122 0.005 0.003 0.002 4
Hepati 0.06 45.86 0.015 0.247 0.019 0.018 0.004 6

Nursery 3.9 100.4 0.023 0.34 0.03 0.03 0.004 50
Tictac 2.65 95.73 0.016 0.265 0.015 0.015 0.003 8
Wine 0.01 5.63 0.003 0.125 0.006 0.005 0.003 4

rewards) increase. C4.5 based methods (IDX and EG2) ig-
nore these costs, and hence maintain fixed accuracy. ICET
fluctuates for different costs, which is typical for local search

Table 5: Dataset statistics
Domain Attributes Train Test

Iris 4 500 250
Car 6 700 300

Glass 8 500 200
Nursery 8 6500 2500
Tictactoe 9 700 300

Breast 9 300 100
Heart 12 200 100
Wine 13 400 200

Hepatitis 17 700 300

methods that often get stuck at local maxima. In Glass ICET
is sometimes only slightly below the MDP. In Heart ICET
finds a tree with excellent accuracy, but very low expected
reward. IDX offers very low expected cost in Glass, but con-

3752

verges towards our MDP approach in Heart, when the mis-
classification costs are high, because in these cases it is ad-
vantageous to invest in additional testing for improving ac-
curacy. The MDP accuracy curve contains several thresh-
olds where the MDP policy changes to test more attributes,
resulting in a significant increase in accuracy.

We also experimented with asymmetric misclassification
costs. We choose the costs and rewards uniformly from 3
ranges — small, medium, and large — all with respect to
the test costs, as above. Table 3 shows these results for the
asymmetric costs. Here, our MDP approach is almost always
the best method. All other methods, while performing well
in some cases, perform very poorly in other domains. For
example, ICET does well on hepatitis, but does not perform
well on breast. Overall, this table demonstrates, again, the
superiority of our MDP approach over all other methods in
most cases. MetaCost does much better on the asymmetric
than the symmetric misclassification costs, and is sometimes
better than ICET, but is best only rarely.

Table 4 shows the model construction time of the vari-
ous methods. As can be expected, ICET takes much longer
than the C4.5 methods, and our MDP approach takes the
longest. In classification, all methods that use a single tree
operate very rapidly, while our approach that recomputes
the MDP policy after each test (Section 3.3) is significantly
slower. Still, in many applications, such as medical diagno-
sis, spending a few minutes constructing the model, and a
few seconds during classification is reasonable, given the
considerable improvement in expected reward.

5 Conclusion

In this paper we have suggested an MDP-based approach
to cost sensitive classification, considering both test costs
and misclassification costs. The MDP approach provides a
sound method for reasoning about future actions, instead of
considering only the myopic value of information.

We construct standard decision trees over all attribute sub-
sets, and the leaves of these trees become the state space of
our MDP. We explain how transition probabilities can be es-
timated from the data, and define the costs and rewards of
the MDP. We explain how our method enforces the Marko-
vian property, and how the value iteration algorithm can be
augmented to take our relaxation into consideration.

We analyze the sensitivity of our MDP method for test-
misclassification cost ratios, and to symmetric and asymmet-
ric costs. We provide extensive comparison with all methods
and all domains from (Lomax and Vadera 2011), showing
that our MDP approach is almost always best.

In the future we intend to replace the naive creation of the
decision trees with a method that takes into consideration
the misclassification costs during tree construction. We also
intend to investigate POMDPs instead of MDPs, as a better
method for modeling the value of information.

Acknowledgments: Supported by ISF Grant 933/13, by
the Helmsley Charitable Trust through the Agricultural, Bi-
ological and Cognitive Robotics Center, and by the Lynn and
William Frankel Center for Computer Science.

References

Banfield, R. E.; Hall, L. O.; Bowyer, K. W.; and Kegelmeyer,
W. P. 2007. A comparison of decision tree ensemble cre-
ation techniques. IEEE transactions on pattern analysis and
machine intelligence 29(1):173–180.
Bellman, R. 1957. Dynamic programming. Courier Corpo-
ration.
Domingos, P. 1999. Metacost: A general method for making
classifiers cost-sensitive. In Proceedings of the fifth ACM
SIGKDD international conference on Knowledge discovery
and data mining, 155–164. ACM.
Elkan, C. 2001. The foundations of cost-sensitive learning.
In International joint conference on artificial intelligence,
volume 17, 973–978. Lawrence Erlbaum Associates Ltd.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The weka data mining software:
an update. ACM SIGKDD explorations newsletter 11(1):10–
18.
He, H.; Daumé III, H.; and Eisner, J. 2012. Cost-sensitive
dynamic feature selection. In ICML Inferring Workshop.
Lomax, S., and Vadera, S. 2011. An empirical comparison
of cost-sensitive decision tree induction algorithms. Expert
Systems 28(3):227–268.
Lomax, S., and Vadera, S. 2013. A survey of cost-sensitive
decision tree induction algorithms. ACM Comput. Surv.
45(2):16:1–16:35.
Norton, S. W. 1989. Generating better decision trees. In
IJCAI, volume 89, 800–805.
Núñez, M. 1991. The use of background knowledge in de-
cision tree induction. Machine learning 6(3):231–250.
Puterman, M. L. 2014. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Quinlan, J. R. 2014. C4.5: programs for machine learning.
Elsevier.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction, volume 1. MIT press Cambridge.
Tan, M. 1993. Cost-sensitive learning of classification
knowledge and its applications in robotics. Machine Learn-
ing 13(1):7–33.
Turney, P. D. 1995. Cost-sensitive classification: Empirical
evaluation of a hybrid genetic decision tree induction algo-
rithm. Journal of artificial intelligence research 2:369–409.
Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4):279–292.
Zadrozny, B.; Langford, J.; and Abe, N. 2003. Cost-sensitive
learning by cost-proportionate example weighting. In Data
Mining, 2003. ICDM 2003. Third IEEE International Con-
ference on, 435–442. IEEE.

3753

