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Abstract
This paper addresses the hyperlink prediction problem in
hypernetworks. Different from the traditional link predic-
tion problem where only pairwise relations are considered
as links, our task here is to predict the linkage of multiple
nodes, i.e., hyperlink. Each hyperlink is a set of an arbitrary
number of nodes which together form a multiway relation-
ship. Hyperlink prediction is challenging – since the cardi-
nality of a hyperlink is variable, existing classifiers based on
a fixed number of input features become infeasible. Heuris-
tic methods, such as the common neighbors and Katz index,
do not work for hyperlink prediction, since they are restricted
to pairwise similarities. In this paper, we formally define the
hyperlink prediction problem, and propose a new algorithm
called Coordinated Matrix Minimization (CMM), which al-
ternately performs nonnegative matrix factorization and least
square matching in the vertex adjacency space of the hyper-
network, in order to infer a subset of candidate hyperlinks that
are most suitable to fill the training hypernetwork. We eval-
uate CMM on two novel tasks: predicting recipes of Chinese
food, and finding missing reactions of metabolic networks.
Experimental results demonstrate the superior performance
of our method over many seemingly promising baselines.

Introduction
Link prediction (Liben-Nowell and Kleinberg 2007; Lü and
Zhou 2011) has been studied broadly in recent years (Chen
et al. 2015; Song, Meyer, and Tao 2015; Wu et al. 2016;
Zhang and Chen 2017). Existing methods can be grouped
into two types: topological feature-based approaches and la-
tent feature-based approaches. Popular approaches include
heuristic methods based on common neighbors, Jaccard
coefficient, Katz index etc. (Liben-Nowell and Kleinberg
2007), and latent feature models (Miller, Jordan, and Grif-
fiths 2009; Menon and Elkan 2011). These approaches, how-
ever, are restricted to predicting pairwise relations. None of
them is directly applicable to predicting hyperlinks. A hy-
perlink relaxes the restriction that only two nodes can form
a link. Instead, an arbitrary number of nodes are allowed to
jointly form a hyperlink. A network made up of hyperlinks
is called a hypernetwork or hypergraph.

Hypernetworks exist everywhere in our life. Exam-
ples include metabolic networks and citation networks. In
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metabolic networks, each reaction can be regarded as a hy-
perlink among its component metabolites. In citation net-
works, a hyperlink is a paper connecting all its authors. Due
to the ability to model higher-order interactions between ob-
jects, hypernetworks have gained more and more popular-
ity in application domains such as electronics (Karypis et
al. 1999), finance (Bautu et al. 2009), and bioinformatics
(Oyetunde et al. 2016).

Despite the popularity and importance of hypernetworks,
there is still limited research on hyperlink prediction, i.e.,
to predict if a set of nodes is likely to be a hyperlink. One
great challenge lies in the variable cardinality of hyperlinks.
Existing supervised link prediction models are based on a
fixed number of input features (features of the two target
vertices). However, the number of vertices in a hyperlink is
variable, making existing methods infeasible. On the other
hand, link prediction methods based on topological features,
such as common neighbors, cannot be applied to hyperlink
prediction either, since these measures are defined for pairs
of nodes instead of hyperlinks. As we will see in our exper-
iments, a few naive generalizations of these measures have
poor performance.

The variable cardinality problem not only prevents us
from using traditional link prediction techniques, but also
results in much larger inference space for hyperlink predic-
tion. For a network with n vertices, the total number of po-
tential links is only O(n2). As a regular procedure in link
prediction, we can list all the potential links and compute a
score for each one. The ones with the highest scores are se-
lected as predicted links. However, in hyperlink prediction,
for the same network, the total number of potential hyper-
links is O(2n). The exponential number of potential hyper-
links makes it impractical to list all the hyperlinks and give
a score to each one of them.

Fortunately, in most cases we do not need to really con-
sider all the potential hyperlinks, as most of them can be eas-
ily filtered out in particular problem settings. For example,
in the task of finding missing metabolic reactions, we do not
need to consider all 2n possible reactions since most of them
do not contain biological meanings. Instead, we can restrict
the candidate hyperlinks to be the set of all actually feasible
reactions. Also, in some problems, people may be interested
only in hyperlinks with cardinalities less than a small num-
ber. For instance, in citation networks of computer science,
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papers rarely have more than 10 authors. In such cases, the
candidate hyperlinks are limited instead of exponential, and
hyperlink prediction becomes a feasible problem.

Here, we formally define the hyperlink prediction prob-
lem. Let H = 〈V,E〉 be an incomplete hypernetwork,
where V = {v1, . . . , vn} is the set of n vertices, and
E = {e1, . . . , em} is the set of m observed hyperlinks with
each ei being a subset of vertices in V . We assume some
hyperlinks are missing from H . We use D to denote a set of
candidate hyperlinks where we assume all the missing hy-
perlinks are contained in D.

Problem 1. (Hyperlink Prediction) A hyperlink prediction
problem is a tuple (H,D), where H = 〈V,E〉 is a given
incomplete hypernetwork, and D is a set of candidate hyper-
links. The task is to find, among all hyperlinks in D, the most
likely hyperlinks that are missing from H.

A hypernetwork H can be conveniently represented as an
incidence matrix S ∈ {0, 1}n×m, where each column of S
represents a hyperlink and each row represents a vertex. We
use [·]ij to denote the (ith row, jth column) of a matrix. We
have: Sij = 1 if vi ∈ ej ; Sij = 0 otherwise. Since S is
incomplete, we let the missing hyperlinks be ΔS (also an
incidence matrix, but unknown). We use an n × m′ matrix
U to denote the incidence matrix of D, where m′ = |D| is
the number of candidate hyperlinks. Then, the hyperlink pre-
diction problem becomes finding as many columns of ΔS as
possible from U .

There are several seemingly promising baselines for hy-
perlink prediction. For instance, we may directly train a clas-
sifier on columns of S (with random negative sampling) and
use it to classify U . However, our experiments show that
such an approach has only slightly better performance than
random guess. The reason is that hypernetworks are often
extremely sparse, i.e., the number of observed hyperlinks
m is far less than 2n, which leads to a poor generalization
ability. Another approach is to view hyperlink prediction as
an information retrieval (IR) problem and use IR algorithms
to retrieve hyperlinks from U according to query S. As we
will show later, such an approach also has poor performance.
This is because IR aims at finding items similar to the query
instead of predicting unseen hyperlink relations.

The above observations suggest that it is inappropriate to
model hyperlink prediction as a standard classification or IR
problem. This implies the need to develop novel relationship
modeling methods. However, directly modeling high-order
relationships in the incidence space suffers from the variable
cardinality problem, which prevents us from using existing
link prediction techniques. In this paper, we propose to pre-
dict hyperlinks in the adjacency space. Our key observation
is that a hyperlink s (a column vector in an incidence matrix)
can be transformed into its equivalent matrix representation
in the vertex adjacency space by ss�. This observation mo-
tivates us to first infer the pairwise relationships in the adja-
cency space leveraging existing link prediction techniques,
and then find the missing hyperlinks through constrained
optimization. Based upon this, we propose a two-step EM-
style optimization method, Coordinated Matrix Minimiza-
tion (CMM), which alternately performs nonnegative matrix

factorization and least square matching to find a set of hy-
perlinks best suiting the given hypernetwork. We compare
CMM with extensive baseline methods on predicting recipes
and finding missing metabolic reactions, and demonstrate
that our algorithm is currently the best hyperlink prediction
algorithm for the considered tasks.

Coordinated Matrix Minimization
Since direct inference in incidence space is difficult, we
choose to project hyperlinks into their vertex adjacency
space and model hyperlinks in the adjacency space.

Given an incomplete hypernetwork S, we can calculate its
adjacency matrix representation by A = SS�, where Aij is
the cooccurrence count of vertex i and j in all hyperlinks1.
Since S is incomplete (some columns ΔS are missing), the
resulting A is also incomplete.

Let the complete incidence matrix be [S,ΔS], where we
use [·, ·] to denote horizontal concatenation. We can calcu-
late its adjacency matrix as follows:

[S,ΔS][S,ΔS]� = SS�+ΔSΔS�

= A+ΔA, (1)

where we define ΔA = ΔSΔS�. We notice that the adja-
cency matrix A is also subjected to a loss ΔA. The columns
of ΔS are missing from S and are in the candidate incidence
matrix U . Our task is to find out these missing columns.

For convenience, we write U = [u1,u2, . . . ,um′ ], where
ui is the ith column of U . Let a diagonal matrix Λ =
diag([λ1, . . . , λm′ ]) be an indicator matrix for columns of
U , where λi = 1 indicates that hyperlink ui is a column in
ΔS and λi = 0 otherwise. Then, assuming Λ is known, the
loss ΔA can be expressed as:

ΔA = UΛU�. (2)

To model the (nonnegative) complete adjacency ma-
trix A+UΛU�, we adopt a nonnegative matrix factoriza-
tion framework. Let an n × k nonnegative matrix W =
[w1,w2, . . . ,wn]

� be the latent factor matrix, where wi
� is

a row vector containing k latent features of vertex i (k � n).
We assume the complete adjacency matrix is factored by

A+UΛU� ≈ WW�, (3)

subject to some noise. To find the missing hyperlinks, we
propose the following optimization problem:

minimize
Λ,W

∥∥A+UΛU�−WW�∥∥2
F ,

subject to λi ∈ {0, 1}, i = 1, . . . ,m′

W ≥ 0.

(4)

1In general, Aij can represent a weighted count if we consider
hyperlink weights. Let V = diag([v1, . . . , vm]) be a real nonneg-
ative weight matrix. The weighted adjacency matrix of S becomes
A = SV S�, where A becomes a real matrix. In this paper, we
assume V = I , although weights can be handled as well.
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Intuitively, we aim to simultaneously find a subset of can-
didate hyperlinks (given by Λ) as well as a latent factor
matrix W that best explains the complete adjacency ma-
trix A+UΛU�. The proposed problem (4) also has a nice
EM formulation, which naturally leads to a two-step alter-
nate optimization algorithm. We explain it in the following.

EM formulation
We use Gaussian distribution to model the noise in (3) and
define the conditional distribution of A+UΛU� as

p
(
A+UΛU� | Λ,W, σ2

)

=
n∏

i=1

n∏

j=1

N (
[A+UΛU�]ij | wi

�wj , σ
2
)
. (5)

Consequently, we have the conditional distribution of the ob-
served adjacency matrix A:

p
(
A | Λ,W, σ2

)

=

n∏

i=1

n∏

j=1

N (
Aij | wi

�wj−[UΛU�]ij , σ2
)
. (6)

We also assume that each binary λi in Λ has an independent
Bernoulli distribution:

p(Λ | θ) =
m′∏

i=1

θλi(1− θ)1−λi . (7)

Now, the marginal distribution of A is

p
(
A | W,σ2, θ

)
=

∑

Λ

p
(
A | Λ,W, σ2

)
p(Λ | θ). (8)

We use maximum likelihood to estimate the parameters,
the goal of which is to maximize the likelihood function
of the observed data A given by (8). The hidden variable
Λ inside the summation reminds us of the Expectation-
Maximization (EM) algorithm (Dempster, Laird, and Rubin
1977). Let Θ = (W,σ2, θ) be the collection of all parame-
ters. The E-step involves calculating the expectation of the
complete data log-likelihood ln p(A,Λ | Θ) w.r.t. the poste-
rior distribution of Λ given the old parameter estimates. The
posterior distribution of Λ is given by

p
(
Λ | A,Θold) =

p
(
A | Λ,Θold

)
p(Λ | Θold)

∑
Λ′ p

(
A | Λ′,Θold

)
p(Λ′ | Θold)

=

exp{−∥∥A−WW�+UΛU�∥∥2
F/2σ

2}∏m′

i=1θ
λi(1−θ)1−λi

∑
Λ′exp{−‖A−WW�+UΛ′U�‖2F/2σ2}∏m′

i=1θ
λ′
i(1−θ)1−λ′

i

.

(9)

And the expectation of the complete data log-likelihood
which we aim to maximize is

Q(Θ) =
∑

Λ

p
(
Λ | A,Θold) ln p(A,Λ | Θ), (10)

where

ln p(A,Λ | Θ) = ln p
(
A | Λ,W, σ2

)
+ ln p(Λ | θ)

=
n∑

i=1

n∑

j=1

[−1

2
ln 2πσ2− 1

2σ2
(Aij−wi

�wj+[UΛU�]ij)2
]

+
m′∑

i=1

[λi ln θ + (1− λi) ln(1− θ)]. (11)

The difficulty in maximizing (10) is that the posterior dis-
tribution (9) of Λ does not factorize over its m′ components,
thus evaluating (10) requires the summation over all 2m

′

possible states of Λ, leading to prohibitively expensive cal-
culations.

To achieve a simple and elegant approximate solution, we
resort to a hard indicator matrix Λ. Consider the posterior
distribution of Λ given by (9). Assume the variance σ2 → 0,
and assume θ ∈ (0, 1). Then, both the numerator and the
denominator will go to zero. However, in the denominator,
the term with the smallest

∥∥A−WW�+UΛ′U�∥∥2
F will go to

zero most slowly. This means that p
(
Λ|A,Θold

)
will be zero

for all Λ except for argminΛ
∥∥A−WW�+UΛU�∥∥2

F, whose
probability will go to 1. Therefore, we obtain a hard indica-
tor Λ with all the posterior distribution centered at one point.

Our E-step becomes, under fixed W ,

minimize
Λ

∥∥A−WW�+UΛU�∥∥2
F ,

subject to λi ∈ {0, 1}, i = 1, . . . ,m′,
(12)

We still use Λ to denote the minimum optimized from
(12). After getting Λ, (10) reduces to

Q(Θ) = ln p(A,Λ | Θ), (13)

where the complete data log-likelihood is given by (11).
The M-step is maximizing Q(Θ) to update the parameter

estimates. Setting the derivative w.r.t. θ in (11) to be zero, we
obtain θ = (

∑m′

i=1 λi)/m
′. Under reasonable initializations,

θ will always be within (0, 1). Since σ is an (infinitesimally
small) constant, we can optimize W independently of θ and
σ, leaving us with the objective function
n∑

i=1

n∑

j=1

(Aij−wi
�wj+[UΛU�]ij)2=

∥∥A−WW�+UΛU�∥∥2
F.

(14)

Therefore, our M-step becomes, under fixed Λ,

minimize
W

∥∥A−WW�+UΛU�∥∥2
F ,

subject to W ≥ 0,
(15)

As we can see, by assuming σ2 → 0 we obtain a sim-
ple two-step optimization procedure with a single objec-
tive function

∥∥A−WW�+UΛU�∥∥2
F. The E-step optimizes Λ

with W fixed, while the M-step optimizes W with Λ fixed.
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Figure 1: An illustration of CMM. The incomplete incidence
matrix S is first transformed into its adjacency matrix. The
M-step optimizes W with Λ fixed. The E-step optimizes Λ
with W fixed. This procedure is iterated until convergence.

Thus, the EM steps exactly correspond to an alternate op-
timization over the two matrices Λ and W . We call the re-
sulting algorithm Coordinated Matrix Minimization (CMM),
which is shown in Algorithm 1. Since each of the two steps
decrease the objective function, CMM is guaranteed to con-
verge to a local minimum. We illustrate CMM in Figure 1.

Solving individual EM steps
Now we discuss how to solve the individual E and M steps.

For the E-step given by (12), we first show that it can be
transformed to an integer least square problem. Note that

UΛU� =
m′∑

i=1

λiuiui
�. (16)

We reshape the n × n matrix uiui
� into an n2 × 1 vec-

tor ci by vertically concatenating its columns, and let C =
[c1, . . . , cm′ ]. We also reshape the n × n matrix A−WW�
into an n2 × 1 vector −d, and use x to denote the vector
[λ1, . . . , λm′ ]�. Then, we can transform (12) into the fol-
lowing form:

minimize
x

‖Cx− d‖22 ,
subject to x ∈ {0, 1}m′

,
(17)

which is a standard integer least square form.
We know that integer least square problem is NP-hard.

When m′ is large, it is generally intractable. Therefore, we
follow a regular procedure to relax the constraint of λi to
be continuous within [0, 1]. The optimization problem be-
comes a constrained linear least square problem, which can
be solved very efficiently using off-the-shelf optimization
tools. These continuous scores λis can be viewed as soft in-
dicators of the candidate hyperlinks. Note that in order to
ensure convergence, we do not round Λ after each iteration,
but consistently optimize over the continuous Λ.

For the M-step given by (15), it is a symmetric nonnega-
tive matrix factorization problem. We use an improved pro-
jected Newton algorithm proposed by (Kuang, Ding, and

Algorithm 1 Coordinated Matrix Minimization
1: input: Observed hyperlinks S, candidate hyperlinks U .
2: output: Indicator matrix Λ.
3: Calculate A = SS�. Initialize W and Λ to zero.
4: while Λ has not converged do
5: E-step: solve (12).
6: M-step: solve (15).
7: end while
8: Select candidate hyperlinks according to Λ.

Park 2012). More specifically, the iterative update rule is:

xnew = [x− αH−1∇f(x)]+, (18)

where x is the vectorized W , f is the objective function in
(15), H−1 is a modified inverse Hessian matrix of f(x), α
is the step size, and [·]+ denotes the projection to the non-
negative orthant. The gradient ∇f(x) has an analytical form
of vec

(
4(WW�−A−UΛU�)W

)
. It is shown that with some

mild restrictions on H−1, the iterative algorithm is guaran-
teed to converge to a stationary point.

Our CMM algorithm iteratively performs the two steps un-
til a convergence threshold is satisfied or a maximum itera-
tion number is reached. We use the final scores Λ to rank all
candidate hyperlinks and select the top ones as predictions.

Related Work
Although hyperlinks are common in real world and can be
used to model multiway relationships, currently there are
still limited research on hyperlink prediction. Xu et al. (Xu,
Rockmore, and Kleinbaum 2013) proposed a supervised
HPLSF framework to predict hyperlinks in social networks.
To deal with the variable number of features, HPLSF uses
their entropy score as a fixed-length feature for training a
classification model. To the best of our knowledge, this is
the only algorithm that is specifically designed for hyperlink
prediction in arbitrary-cardinality hypernetworks.

Nevertheless, learning with hypergraphs as a special data
structure has been broadly studied in the machine learning
community, e.g., semi-supervised learning with hypergraph
regularization (Zhou, Huang, and Schölkopf 2006), model-
ing label correlations via hypernetworks in multi-label learn-
ing (Sun, Ji, and Ye 2008), and modeling communities to
improve recommender systems (Bu et al. 2010). Zhou et al.
(Zhou, Huang, and Schölkopf 2006) studied spectral clus-
tering in hypergraphs. They generalized the normalized cut
(Shi and Malik 2000) algorithm to hypergraph clustering
and proposed a hypergraph Laplacian. They also proposed a
semi-supervised hypergraph vertex classification algorithm
leveraging hyperlink regularization. These research mainly
aim to improve the learning performance on nodes by lever-
aging their hyperlink relations. However, none of them fo-
cuses on predicting the hyperlink relations. When dealing
with hyperlink relations, existing research typically reduce
hyperlinks to ordinary edges by clique expansion or star
expansion (Agarwal, Branson, and Belongie 2006), which
break the structure of a hyperlink as a whole.
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We notice that hyperlink prediction is similar to the prob-
lem of selecting a good column subset (Boutsidis, Mahoney,
and Drineas 2009). However, subset selection algorithms fo-
cus on selecting columns which best “capture ” the candidate
columns U , while hyperlink prediction requires the selected
columns to best fit into the observed network S.

Experimental Results
In this section, we evaluate the effectiveness of the proposed
Coordinated Matrix Minimization (CMM) algorithm on two
novel tasks: predicting recipes of traditional Chinese food,
and finding missing reactions of organisms’ metabolic net-
works, both of which exemplify the application scenarios of
hyperlink prediction. All the codes and data are available at
https://github.com/muhanzhang/HyperLinkPrediction.

Predicting recipes
To visualize CMM’s practical hyperlink prediction quality,
we consider a recipe prediction problem: suppose we have a
repository of cooking materials, which combinations of ma-
terials can produce delicious dishes? Given a hypernetwork
of recipes where each node is a material and each hyperlink
is a combination of materials that constitute a dish, we aim
to predict new dishes based on the existing dishes.

Traditional Chinese dishes have a long history. Thousands
of different dishes have been developed with various col-
ors, aromas, and tastes, including the popular ones such as
“Peking Duck”, “Spring Rolls”, “Kung Pao Chicken”, and
“Ma Po Tofu”. There are different styles of Chinese cuisine
based on regions. In this paper, we study the Sichuan cuisine
and the Cantonese cuisine. We downloaded 882 most popu-
lar Sichuan recipes and Cantonese recipes from meishij.net,
which is a professional platform to find Chinese recipes.
After removing duplicated recipes, we have 725 Sichuan
recipes (with 439 different materials) and 835 Cantonese
recipes (with 500 different materials). For each cuisine, we
delete 400 recipes and keep the remaining ones as the ob-
served hyperlinks. We further randomly generate 1000 fake
recipes according to the material distribution of the existing
recipes, and combine them with the 400 real recipes to con-
struct the set of candidate hyperlinks.

For evaluation, we rank all candidate hyperlinks with their
scores Λ, select the top 400 hyperlinks as predictions, and re-
port how many of them are real missing recipes. We also re-
port the AUC (area under the ROC curve) scores measuring
how likely a random real recipe is ranked higher than a ran-
dom fake one. The number of latent factors k in CMM is set
to 30. For Sichuan cuisine, our method can successfully pre-
dict 170 real recipes in the top 400 predictions, with an AUC
score 0.6368. For Cantonese cuisine, our method success-
fully predicts 178 real recipes, with an AUC score 0.6608.
For comparison, we test an information retrieval method,
Bayesian Set (Ghahramani and Heller 2006), which is ex-
plained in the next experiment. Bayesian Set only predicts
123 and 98 recipes, with AUC scores 0.5014 and 0.4463 re-
spectively. Our method significantly outperforms Bayesian
Set in both number of correct predictions and AUC.

We visualize the top 1-material, 2-material, and 3-
material predictions of both CMM and Bayesian Set for the
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(a) Top predictions by CMM.
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(b) Top predictions by Bayesian Set.

Figure 2: Top 1-material, 2-material, and 3-material predic-
tions of Cantonese cuisine.
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Figure 3: Created recipes by CMM.

Cantonese recipe prediction task in Figure 2. Our CMM pre-
dicts “Egg drop soup”, “Double skin milk with cherry”,
and “Prawn and bamboo shoots egg soup”, which are all
real recipes. In comparison, Bayesian Set returns created
recipes “Egg white”, “Mushroom + Orange”, and “Eel +
Bean sprout + Lily”, which are all strange combinations in
the sense of Chinese cuisine. The failure of Bayesian Set for
hyperlink prediction is because it treats hyperlinks as binary
vectors and retrieves candidate hyperlinks whose binary vec-
tors are most similar to those of the existing hyperlinks.
This similarity is measured element-wise by assuming inde-
pendent Bernoulli distributions of materials, which fails to
capture the correlations among materials. In contrast, CMM
does not aim to find hyperlinks similar to existing ones, but
predict hyperlinks that are most suitable to fit into the ob-
served hypernetwork. By modeling hyperlinks in the adja-
cency space, CMM also naturally considers the correlations
between materials.

We further examine the false positive predictions of CMM.
To our surprise, many of them are indeed meaningful dishes.
For example, CMM predicts “Flour + Dutch milk” (which
can be used to make “Milk-flavored golden rolls”), “Co-
conut milk + Egg” (which can be used to make “Coconut
milk egg custard”), and “Egg + Minced meat” (which can
be used to make “Scrambled eggs with meat”) etc. We illus-
trate these created recipes in Figure 3. Although these dishes
do not exist in the downloaded recipes, our method success-
fully predicts them. This shows that our method is able to
create meaningful recipes as well.
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Dataset Species Vertices Hyperlinks
(a) iJO1366 E. coli 1805 2583
(b) iAF1260b E. coli 1668 2388
(c) iAF692 M. barkeri 628 690
(d) iHN637 Cl. Ljungdahlii 698 785
(e) iIT341 H. pylori 485 554
(f) iAB RBC 283 H. sapiens 342 469

Table 1: Statistics of the six metabolic networks.

Predicting metabolic reactions
Reconstructed metabolic networks are important tools for
understanding the metabolic basis of human diseases, in-
creasing the yield of biologically engineered systems, and
discovering novel drug targets (Bordbar et al. 2014). Semi-
automated procedures have been recently developed to re-
construct metabolic networks from annotated genome se-
quences (Thiele and Palsson 2010). However, these net-
works are often incomplete – some vital reactions can be
missing from them, which can severely impair their utility
(Kumar, Dasika, and Maranas 2007). Thus, it is critical to
develop computational methods for completing metabolic
networks. Our task here is to find these missing reactions,
which can be elegantly modeled as a hyperlink prediction
problem, where each reaction is regarded as a hyperlink con-
necting its participating metabolites. Note that this systems
biology problem is never studied using a statistical approach
before. Previous approaches are based on gap-filling algo-
rithms (Thiele, Vlassis, and Fleming 2014) designed to add
reactions to an almost complete network to fill its functional
gaps, which lack the ability to recover a very incomplete
network in its initial reconstruction phase.

Datasets To evaluate the performance of CMM on find-
ing missing metabolic reactions, we conduct experiments on
six metabolic networks from five species: E. coli, M. bark-
eri, Cl. ljungdahlii, H. pylori and H. sapiens. The statistics
of each dataset are shown in Table 1. We downloaded all
11893 reactions from BIGG (http://bigg.ucsd.edu) to build a
candidate reaction pool. These reactions are collected from
79 metabolic networks of various organisms. We filter out
the candidate reactions which contain exotic metabolites or
already exist in the network.

For each metabolic network, we randomly delete some re-
actions as missing hyperlinks, and keep the remaining ones
as the observed data. The numbers of deleted reactions range
from 25 to 200 or from 50 to 400 according to network size.

We evaluate the reaction prediction performance using
AUC as one measure. We also use a second measure: when
N reactions are missing, we look at how many of the top-
N predictions are true positive. We call the second measure
“Number of recovered reactions”. Compared to AUC, this
measure only focuses on top predictions and better reflects
practical reaction prediction performance.

Baselines and experimental setting Although hyperlink
prediction is a fairly new problem, we come up with a wide
range of promising baseline methods explained as follows.
BS (Bayesian Set) is an IR algorithm in the Bayesian frame-

work. It takes a query consisting of a small set of items and
returns additional items that belong in this set (Ghahramani
and Heller 2006). Given a query S = {s1, . . . , sm}, BS
computes score(u) = p(u|S)

p(u) for all u ∈ U and retrieves
hyperlinks with the highest scores. For u and s, we assume
each of their elements has an independent Bernoulli distri-
bution with a common Beta prior distribution and use the
default hyperparameters.
SHC (Spectral Hypergraph Clustering) is a state-of-the-
art hypergraph learning algorithm (Zhou, Huang, and
Schölkopf 2006). SHC outputs classification scores by f =
(I−ξΘ)−1y. The hyperparameter ξ is determined by search-
ing over the grid {0.01,0.1,0.5,0.99,1} using cross valida-
tion. SHC is originally designed to classify hypergraph ver-
tices leveraging their hyperlink relations. Here we transpose
the incidence matrices to change each vertex into a hyper-
link and each hyperlink into a vertex, making SHC feasible
for hyperlink prediction.
HPLSF is a hyperlink prediction method using supervised
learning (Xu, Rockmore, and Kleinbaum 2013). It calculates
an entropy score along each latent feature dimension in or-
der to get a fixed-length feature input. We train a logistic re-
gression model on these entropy features in order to output
prediction scores.
FM (Factorization Machine) (Rendle 2012) is a flexible fac-
torization model. We use the classification function of FM,
where columns of the observed incidence matrix are used as
input features to the model.
Katz generalizes the traditional pairwise Katz index (Katz
1953) to hyperlinks. Concretely, a hyperlink containing
m vertices will have m(m − 1)/2 pairwise Katz indices.
We calculate their average as the hyperlink Katz index.
The damping factor β is determined by searching over
{0.001,0.005,0.01,0.1,0.5} using cross validation.
CN generalizes the traditional pairwise common neighbors
(Liben-Nowell and Kleinberg 2007) to hyperlinks, which
follows a similar calculation to Katz.
Random: a theoretical baseline for comparing algorithms’
performance against random. It is equal to assigning random
scores between [0,1] to all candidate hyperlinks.

We implement the proposed CMM in MATLAB. We
searched the latent feature number k in {10, 20, 30} for
small datasets by cross validation. For datasets (a) and (b),
k was set to the default 30. The maximum iteration num-
ber was set to 100. The convergence threshold was set to
1.0E-4. All experiments were done on a 12-core Intel Xeon
Linux server. All experiments were repeated 12 times and
the average results and standard deviations are presented.

Results We first show the number of recovered reactions
in Figure 4. CMM generally achieves the best performance.
We observe that CMM recovers a significantly larger num-
ber of reactions than other baselines in datasets (a), (c), (d)
and (e), and achieves highly competitive performance with
the best baselines in datasets (b) and (f). The large propor-
tion of true positive predictions can greatly reduce the net-
work reconstruction effort by providing biologists the most
likely reactions for later individual checking. We attribute
the superior performance of CMM to the following reasons:
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(a) iJO1366 dataset.
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(b) iAF1260b dataset.
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(c) iAF692 dataset.
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(d) iHN637 dataset.
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(e) iIT341 dataset.
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(f) iAB RBC 283 dataset.

Figure 4: Number of recovered reactions under different numbers of missing reactions.

Dataset CMM BS SHC HPLSF FM Katz CN
(a) 0.7092±0.0180 0.6817±0.0082 0.7105±0.0042 0.4834±0.0335 0.6309±0.0228 0.5438±0.0178 0.4371±0.0105
(b) 0.7021±0.0034 0.6698±0.0131 0.7150±0.0050 0.5418±0.0088 0.6149±0.0142 0.4990±0.0320 0.4679±0.0028
(c) 0.7035±0.0260 0.5056±0.0295 0.6165±0.0178 0.4719±0.0450 0.5465±0.0212 0.4486±0.0177 0.4300±0.0213
(d) 0.7050±0.0328 0.5258±0.0265 0.6170±0.0138 0.4711±0.0500 0.5786±0.0198 0.4845±0.0214 0.4240±0.0214
(e) 0.6794±0.0148 0.5114±0.0231 0.5978±0.0117 0.5212±0.0471 0.5692±0.0180 0.4254±0.0362 0.4399±0.0100
(f) 0.7098±0.0482 0.6087±0.0144 0.6963±0.0122 0.4351±0.0126 0.6620±0.0275 0.5529±0.0195 0.3881±0.0116

Table 2: AUC results.

1) CMM makes inference in the adjacency space, which
avoids directly performing inference in the incidence space
that has size O(2n). This transforms an O(2n) problem into
an O(n2) problem, which greatly reduces the problem size
and also addresses the variable cardinality problem; 2) CMM
jointly optimizes the indicator matrix Λ and the latent fac-
tor matrix W . It simultaneously finds a subset of candidate
hyperlinks that fit the network best as well as a latent factor
matrix that explains the network best. The joint optimization
procedure is derived from an EM optimization framework.

Now we analyze why the baselines do not perform well
for hyperlink prediction. Firstly, as we have explained, BS as
an information retrieval algorithm is not suitable for hyper-
link prediction, as it retrieves similar items instead of unseen
hyperlinks. For example, when encountering a candidate hy-
perlink already in the query, BS will give it a high score for
being similar to the query, while CMM knows there is al-
ready a same one in the network and is more likely to reject
it for other unseen hyperlinks which can complete the net-

work. SHC has a reasonable performance on (a), (b), and
(f), but is not comparable to CMM on (c), (d), and (e), since
SHC is originally a node classification algorithm leveraging
hyperlink relations, but not a hyperlink prediction algorithm.

HPLSF and FM are two classifier-based baselines which
directly infer hyperlinks in the incidence space. Not surpris-
ingly, they have much worse performance than CMM which
predicts hyperlinks in the adjacency space. This also implies
that hyperlink prediction is not suitable to be modeled as a
classification problem – the special problem structure and
the sparsity in hyperlinks require novel modeling schemes.

Katz and CN are two naive generalizations of traditional
link prediction heuristics. Their poor performance (often
worse than random guess) suggests that hyperlink predic-
tion is not a simple generalization of link prediction, but is
a significantly harder new problem. We may need to de-
sign new suitable heuristics for hyperlink prediction, or try
to learn hyperlink prediction heuristics automatically from
hypernetworks as suggested in (Zhang and Chen 2017).
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We further report the average final AUC performance (the
results under 400 or 200 missing reactions) in Table 2. The
AUC results are generally consistent with the numbers of
recovered reactions.

Conclusions
In this paper, we have considered the novel problem of pre-
dicting hyperlinks from a hypernetwork. Hyperlink predic-
tion is an interesting and challenging problem. We have pro-
posed a novel algorithm, Coordinated Matrix Minimization
(CMM), leveraging an EM optimization framework. CMM
first projects all hyperlinks into the adjacency space, and
then simultaneously finds the candidate hyperlinks that best
fit the network as well as the latent features that best ex-
plain the network. We have conducted comprehensive eval-
uation by comparing CMM with a wide range of baselines
on two novel tasks. Experimental results demonstrated that
our CMM algorithm is better than all the baseline methods.
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