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Abstract

We study the problem of within network classification, where
given a partially labeled network, we infer the labels of the re-
maining nodes based on the link structure. Conventional loss
functions penalize a node based on a function of its predicted
label and target label. Such loss functions under-perform
while learning on a network having overlapping classes. In re-
lational setting, even though the ground truth is not known for
the unlabeled nodes, some evidence is present in the form of
labeling acquired by the nodes in their neighborhood. We pro-
pose a structural loss function for learning in networks based
on the hypothesis that loss is induced when a node fails to
acquire a label that is consistent with the labels of the major-
ity of the nodes in its neighborhood. We further combine this
with a novel semantic regularizer, which we call homophily
regularizer, to capture the smooth transition of discriminatory
power and behavior of semantically similar nodes. The pro-
posed structural loss along with the regularizer permits re-
laxation labeling. Through extensive comparative study on
different real-world datasets, we found that our method im-
proves over the state-of-the-art approaches.

1 Introduction

The omnipresence of networks has led to a recent paradigm
shift towards the analysis of network data. This has been
witnessed by an influx of advancements for efficient storage
and retrieval of such data. Presence of networks in day to
day life is better observed through social networking sites
(like Facebook, Twitter), e-Commerce sites (like Amazon,
eBay), review sites (like Yelp, IMDb), etc. Network data
models the relationship between the entities of a network,
like the friendship between users, products co-purchased by
customers, products reviewed by reviewers, etc. It is custom-
ary to represent network data in the form of a graph which
is defined as follows:
Definition 1 A network is modeled as a graph G(V, E),
where V is the set of |V| = n interacting entities or nodes,
E ⊆ V × V is the set of edges indicating relationship or in-
teractions among the nodes.
Modeling and analyzing the data in the form of networks
has been shown to be effective across various domains; be
it product recommendation (McAuley et al. 2015; Baluja et
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al. 2008), language models (Tang et al. 2015), web search
(Page et al. 1999), patent analysis (Chakrabarti, Dom, and
Indyk 1998), etc. However, analyzing these large complex
networks is non-trivial and poses many challenges. Some of
the key challenges involve social influence analysis, commu-
nity detection in large graphs, inference of social ties, classi-
fication of entities in a network, etc. In this paper, we focus
on the problem of within-network classification of entities.
Entities in a network can be tagged based on their character-
istic properties. These tags or labels are generally assigned
manually. Nevertheless, it is very common to come across
entities in a network which are not labeled. Inferring la-
bels for such entities becomes crucial in many applications.
Given a partially labeled network, the within-network classi-
fication problem is concerned with labeling unlabeled nodes.
Formally it can be stated as

Definition 2 Given a graph G(V, E) and a set of labeled
nodes Vl(⊂ V) with respective set of labels Yl ∈ Γ|Vl| where
Γ = 2{C1,C2,...,Ck}, for k classes labeled C1, . . . , Ck, the ob-
jective is to learn a model for inferring labels of unlabeled
nodes Vu ⊂ V , where Vu = V \ Vl.

Classification of nodes in a relational setting is exemplified
by graph-based semi-supervised learning methods (Mac-
skassy, Provost, and Provost 2005), which infer label in-
formation of all the nodes collectively; collective classifiers
are known to perform well. On the contrary, conventional
classifiers like Support Vector Machine (SVM), which are
known for their robustness, fail to deliver. These classifiers
work on the assumption of independent and identically dis-
tributed patterns, which does not hold in a relational setting.
In relational data, patterns to be classified are related to one
another. Because of homophily in a network, it is expected
that nodes related to each other will have similar behavior
and hence the same class label.

Graph kernel based approaches (Kandola, Cristianini, and
Shawe-taylor 2002; Smola and Kondor 2003; Kondor and
Lafferty 2002) exploit homophily and capture network-
based global similarity among nodes using a graph ker-
nel. However, these methods do not scale well to deal with
large networks. Nandanwar et al. proposed structural neigh-
borhood based classification (Nandanwar and Murty 2016),
which performs recursive classification using a global neigh-
borhood of the node under consideration. However, the ap-
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proach fails on networks with overlapping classes. In these
cases although only few labels are observed for majority of
the nodes, they can actually have significant soft member-
ship in many more classes. Conventional hinge loss infers
a zero loss if the predicted label matches with the observed
label. Due to this unobserved soft membership, when a clas-
sifier makes correct prediction for a node, it simultaneously
also makes an error by not predicting other classes. In this
work, we define a structural loss function and its efficient
minimization for learning the optimal decision boundary in
networks with overlapping classes. The proposed structural
loss function is based on the principle of homophily and en-
sures that the neighborhood of a node exhibits the same be-
havior as the node. The main contributions of our work are:

• We propose for the first time a structural loss function
which exploits the network structure for penalizing mis-
classification of nodes in a novel manner, while simulta-
neously offering a practical treatment of boundary nodes.

• We provide an efficient algorithm for minimizing the pro-
posed structural loss combined with a novel homophily
regularizer.

• We carry out an extensive comparative study and show the
effectiveness of the proposed approach.

The rest of this paper is organized as follows. In Sec-
tion 2 we briefly survey current state-of-the-art. We de-
fine structural loss for classification in Section 3, and
propose an algorithm for the same. Section 4 describes
the experimental setup. We present our empirical find-
ings in Section 5, followed by conclusion in Section 6.
We make our code and datasets publicly available at
https://github.com/sharadnandanwar/ReSLMin.

2 Related Work

Classification of linked entities in a network has been an ac-
tive area of research in machine learning since long. The
problem is often referred to as collective classification be-
cause of the involved transductive setting, where labels of
all the unlabeled nodes are determined simultaneously. Col-
lective classification leads to a significant reduction in clas-
sification error (Jensen, Neville, and Gallagher 2004). Our
problem falls under the broad purview of semi-supervised
learning. One of the seminal works on graph based semi-
supervised learning includes (Zhou et al. 2004).

Classification of scientific patents was studied by
Chakrabarti et al. (Chakrabarti, Dom, and Indyk 1998),
where local features of documents were augmented using
features from small-radii neighborhoods. Macskassy and
Provost(Macskassy, Provost, and Provost 2005) described
Network-Only-Bayes classifier similar to the above but
without using local features. Collective classification ap-
proaches can be broadly categorized into iterative classifica-
tion and relaxation labeling. Lu and Getoor (Lu and Getoor
2003) proposed an iterative algorithm for link based classifi-
cation where features based on link and object are computed
at each iteration and a new labeling is inferred using conven-
tional learning approaches like logistic regression. In (Mac-
skassy and Provost 2003) weighted-vote relational neighbor

(wvRN) classifier was introduced which defines the class
membership as a weighted average of the class membership
probabilities of the neighboring nodes. Another relational
classifier Multi Rank Walk (Lin and Cohen 2010) adopts
a random walk perspective identical to the Page Rank al-
gorithm. (Zhou et al. 2004) borrows the idea from spectral
clustering that linked nodes should have a smooth transition-
ing. It proposes an iterative method for updating label infor-
mation of a node using information from neighboring nodes
and exploits further a regularization framework for the same.
Label propagation algorithm (Zhu and Ghahramani 2002)
defines a probabilistic process for labels to transit between
nodes with a combination of random walk and clamping.
For discovering and suggesting videos, Baluja et al. pro-
posed Adsorption algorithm (Baluja et al. 2008) which takes
a controlled random walk over the graph. Talukdar et al. ob-
served that Adsorption algorithm does not guarantee conver-
gence and proposed a modification to it (Talukdar and Cram-
mer 2009) by defining a well-behaved objective function for
minimization.

Collective classification strongly relies on the homophily
assumption. In (Sen et al. 2008) the authors argued that in a
sparsely labeled network relational summary of a node may
be meaningless and proposed a collective prediction frame-
work by exploiting latent linkages in a network. According
to cluster hypothesis in a network, nodes in the same com-
munity are likely to be of the same class. SocioDim (Tang
and Liu 2009; 2011) attempts to learn from social dimen-
sions which capture hidden semantics discovered using link-
age structure of the network. However, these approaches fail
on networks where cross linkages are significantly high. In
(Wang and Sukthankar 2013) a probabilistic method similar
to weighted vote relational neighbor classifier is proposed
which exploits the social context features while computing
posterior probability for each node. A generalized frame-
work for unsupervised feature learning, DeepWalk (Perozzi,
Al-Rfou, and Skiena 2014), computes social representation
by taking short random walks. Related to this, LINE(Tang et
al. 2015) suggests an efficient scalable alternative for com-
puting low dimensional network embedding using second
order proximity in the network. These embeddings captur-
ing the neighborhood and cluster property are further used
in node classification. More recently node2vec (Grover and
Leskovec 2016) was proposed which preserves the neigh-
borhood of nodes in a low-dimensional embedding.

Another class of methods which advocate homophily as-
sumption are graph kernel based approaches. A graph kernel
captures the similarity between nodes in a network. Graph
kernels like Von-Neumann and exponential graph kernels
(Kandola, Cristianini, and Shawe-taylor 2002) find similar-
ity between nodes by aggregating the number of paths be-
tween two nodes while giving lesser importance to longer
paths. Laplacian counterparts of the above were introduced
on similar lines (Smola and Kondor 2003; Kondor and Laf-
ferty 2002). A similar discriminative random walk based ap-
proach which relies on betweenness w.r.t. a class was de-
scribed in (Callut et al. 2008). The disadvantage, however,
is that graph kernel based approaches do not scale well to
handle large networks.
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3 Regularized Structural Loss Minimization

Conventional learning approaches based on Support Vec-
tor Machine, Logistic Regression, k-Nearest Neighbors, etc.,
when applied to a network setting, use local adjacency in-
formation of nodes as features. While doing so, these ap-
proaches emphasize that if node vi having label y is related
to node vj , and node vk is related to vj then vi and vk should
have the same class label y. While this sounds intuitive and
in accordance with common neighbor similarity, still it fails
to emphasize on facts like vj should have the same class la-
bel as vi and vk. This approach works well if the number of
labeled nodes in the network is sufficiently large. However,
when a network is sparsely labeled, this fails. This is be-
cause, the pairs of labeled nodes having common neighbors
become increasingly rare with increase in sparsity.

We introduce the notation and conventions employed in
this paper now. Consider an undirected binary weighted
graph G(V, E) with V = {v1, v2, . . . , vn} and E ⊂ V × V .
The adjacency matrix A corresponding to G is defined as,

Aij =

{
1 if (vi, vj) ∈ E
0 otherwise .

Column ai of A represents the adjacency vector of
node vi. Further, let Ni represent the immediate (first-level)
neighborhood of node vi i.e. Ni = {vj : aij = 1}. We de-
fine a more generalized kth-level neighborhood of a node as
follows

Definition 3 The kth-Level Neighborhood of a node vp is
defined as a multiset N k

p s.t. vr ∈ N k
p if and only if there is

an edge in graph G connecting nodes vr and vq , where node
vq ∈ N k−1

p

Throughout this section, we would be working with the
binary classification problem. Let C+ and C− represent the
positive and negative classes. In our experiments we deal
with multi-class classification, which can be handled by
a combination of binary classifiers using “one-vs-one” or
“one-vs-rest” approach (Bishop 2006).

3.1 Structural Loss

For a collection of patterns {x1, x2 . . . , xN} with labels
{y1, y2, . . . , yN} respectively, where, xi ∈ R

n and yi ∈
{+1,−1}, the objective of classification is to learn a func-
tion f : Rn → R which minimizes the empirical risk given
by

R =
1

N

N∑
i=1

L(f(xi), yi).

Depending on the application and geometry of data, many
loss functions have been introduced in the past. Some of the
popular ones include Hinge Loss, Squared Loss, and Lo-
gistic Loss. Earlier, many studies have established the ro-
bust behavior of the hinge loss function compared to others.
Henceforth, while explaining the proposed structural loss
function, we will use a function similar to the hinge loss.

The hinge loss function for a node vi for classification
based on its adjacency representation ai is given as follows

ξi = max(0, 1− f(ai)yi).

Figure 1: A labeled toy network for binary classificaiton
problem.

Since we would be interested in a linear decision boundary,
the function f can be written as f(ai) = wTai+ b, where w
is the weight vector and b is the threshold. Thus,

ξi = max(0, 1− yi(w
Tai + b)). (1)

Let us denote this self-induced loss (i.e. loss induced by
its own misclassification) for node vi by L0

i . Then, we have
L0
i = ξi.
In accordance with the principle of homophily, the neigh-

boring nodes of a node are expected to have the same class
label. A loss is induced if any of the neighbors of a node fail
to have the same label as the node. Let ξij be the loss when
node vj fails to acquire the same class label as its neighbor
vi. We define ξij as follows

ξij = max(0, 1− yi(w
Taj + b)),

Based on this, L0
i can be equivalently written as L0

i = ξi =
ξii. The expected loss (L1

i ) induced by labeled node vi in its
first level neighborhood is given by,

L1
i =

1

|Ni|
∑

vj∈Ni

ξij

Similarly, as we move further away from the labeled node
under consideration, for second level neighborhood of vi,
the expected induced loss (L2

i ) is given by

L2
i =

1

|Ni|
∑

vj1∈Ni

1

|Nj1 |
∑

vj2∈Nj1

ξij2

Generalizing this to kth-level neighborhood we have

Lk
i =

1

|Ni|
∑

vj1∈Ni

1

|Nj1 |
∑

vj2∈Nj1

. . .
1

|Njk−1
|

∑
vjk

∈Njk−1

ξijk

For further clarity, we illustrate the notation using a toy
network shown in Figure 1. While classifying nodes in the
above network, a loss is incurred if a node belonging to C+
is predicted to be in C− or vice versa. For instance, con-
sider the labeled node 1, hinge loss corresponding to which
is given by ξ1, where ξ1 is defined by equation 1. As ex-
plained above, in a network setting the labeled node 1 in-
duces a loss for its neighbors also. For first level neighbors,

the loss is given by L1
1 =

ξ1,2 + ξ1,4
2

. Similarly we have

L2
1 =

1

2

(
ξ1,1 + ξ1,4 + ξ1,5 + ξ1,6

4
+

ξ1,1 + ξ1,2 + ξ1,3 + ξ1,5 + ξ1,9
5

)
, for

second level neighbors and so on.
Aggregating all these losses using α ∈ [0, 1] for weighing

the neighborhood effect, the final observed empirical risk is

R =
1

|Vl|
∑
i∈Vl

(
α0L0

i + α1L1
i + α2L2

i + . . .
)
.

3846



For a given undirected graph, by rearranging the terms the
above can be rewritten as

R =
1

|Vl|
∑

vi∈Vl

⎛
⎝α0ξii + α1

∑
i1∈Ni∩Vl

ξi1i
|Ni1 |

+

α2
∑

i1∈Ni

1

|Ni1 |
∑

i2∈Ni1
∩Vl

ξi2i
|Ni2 |

+ · · · +

αk
∑

i1∈Ni

1

|Ni1 |
. . .

∑
ik∈Nik−1

∩Vl

ξiki
|Nik |

+ · · ·
⎞
⎠

The above can also be seen as reverse cascading of loss in a
network. Ignoring the constant part 1

|Vl| , we call the term in
the outer summation of the above equation as the structural
loss for node vi and denote it by σi. The set of labeled nodes
Vl can be partitioned into two sets based on C+ and C−. Let
us denote the loss induced on node vi by positively labeled
nodes (⊂ C+) as σ+

i and loss induced by negatively labeled
nodes (⊂ C−) as σ−

i , s.t. σi = σ+
i + σ−

i . Then

σ+
i =

⎛
⎝α0ξii + α1

∑
i1∈Ni∩Vl∩C+

ξi1i
|Ni1 |

+

α2
∑

i1∈Ni

1

|Ni1 |
∑

i2∈Ni1
∩Vl∩C+

ξi2i
|Ni2 |

+ · · · +

αk
∑

i1∈Ni

1

|Ni1 |
. . .

∑
ik∈Nik−1

∩Vl∩C+

ξiki
|Nik |

+ · · ·
⎞
⎠ .

Let �c+ be the vector defined as c+i =

{
1 if vi ∈ Vl ∩ C+
0 otherwise .

Then vector �σ+ corresponding to the above can be written
using matrix algebra as

�σ+ = �β+
⊙

max
(
�0,�1− (A�w + b�1)

)
,

where
⊙

represents element-wise (Hadamard) product op-
erator for vectors and

�β+ = (α0I + α1AD−1 + α2(AD−1)2 + . . . ) �c+.
where D is a diagonal matrix given by

D = diag(|N1|, |N2|, . . . , |N|V||).
Similarly, �c− is defined as c−i =

{
1 if vi ∈ Vl ∩ C−
0 otherwise ,

and vector �σ− will be
�σ− = �β− ⊙

max
(
�0,�1 + (A�w + b�1)

)
where

�β− =
(
α0I + α1AD−1 + α2(AD−1)2 + . . .

)
�c−

Thus structural loss for each node is given by,

σi = σ+
i + σ−

i

= β+
i max

(
0, 1− (�ai

T �w + b)
)

+

β−
i max

(
0, 1 + (�ai

T �w + b)
) (2)

A node with higher degree will have larger number of la-
beled neighbors as well as larger number of short paths to
labeled nodes. So, it is easy to observe that for such high
degree nodes, value of β+

i or β−
i will be much higher com-

pared to those of low degree nodes. To remove this bias we
normalize βi’s for all nodes so that β+

i + β−
i = 1. Figure 2

illustrates the proposed structural loss function graphically.

Figure 2: Illustration of Structural Loss Function. The dotted
red (green) line represents the loss function σ+ (σ−), corre-
sponding to +ve (−ve) class. And, the solid blue line is the
overall loss (σ).

3.2 Homophily Regularization

Minimizing empirical risk alone overfits the model and does
not generalize well. Regularization is a popular technique
used for controlling the model complexity. The most com-
monly used regularizer is �2 (ridge) regularizer, which also
corresponds to maximum margin regularization. However,
in a relational setting regularizers like laplacian regularizer
(Smola and Kondor 2003) have been found to perform well.
Laplacian regularizer emphasizes on the smoothness of pre-
dicted function value by penalizing sudden jumps in the
function values of connected nodes.

In relational learning, the small number of labeled exam-
ples combined with sparse neighborhood of nodes may pro-
hibit the learning of actual discriminative behavior of nodes.
To counter this effect we use a regularizer and coin it as ho-
mophily regularizer. The regularizer minimizes∑

(vi,vj)∈E
(wi − wj)

2 = wTLw

L is the graph laplacian matrix given by L = D−A, where
D is the degree matrix and A is the adjacency matrix of the
graph. The homophily regularizer term reinforces a smooth
transition in the discrimination power (captured by w) of
connected nodes. In addition, it is also desired to attenuate
the effect of noisy links to outlier nodes. Considering this
we retain the conventional �2 regularizer, which helps in di-
luting the weights assigned to such outlier nodes.

3.3 Learning Objective

The objective for the proposed structural loss function along
with homophily regularizer is given by,

min
�w,b

λ

2
||w||2 + μ

2
wTLw +

1

|Vl|
∑
vi∈V

σi

where σi is defined by equation 2.
Note that the proposed objective function is convex as it is

expressed as a non-negative sum of convex functions. How-
ever, the loss function is not smooth. Using gradient descent
method the update rules for �w and b are derived as

�wt+1 = �wt−ηt

(
λ�wt + μL�wt +

1

|Vl|
∑
vi∈V

[∇�wσi]t

)

bt+1 = bt − ηt
|Vl|

∑
vi∈V

[∇bσi]t
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Algorithm 1 Training ReSLMin using SGD.
Given: Adjacency matrix A, Training set Tr, Label
vector y, Learning parameters λ, μ.
D ← diag(

#            »

degree)

�c+ ← (c+1 , c
+
2 , . . . , c

+
n ) where, c+i =

{
1 if yi = 1,
0 otherwise.

�c− ← (c−1 , c
−
2 , . . . , c

−
n ) where, c−i =

{
1 if yi = −1,
0 otherwise.

�β+, �β− ← �0n×1

while change( �β+) > ε or change( �β−) > ε do
�β+ ← �β+ + αi(AD−1)i�c+

�β− ← �β− + αi(AD−1)i�c−

�w0 ← �0n×1, b ← 0
while not converged do

Randomly choose Smp ⊆ Tr, of size k
Mc+ ← {i ∈ Smp : (�xT

i �wt−1 + b) < 1}
Mc− ← {i ∈ Smp : (�xT

i �wt−1 + b) > −1}
�wt ← (I − ηtλI − ηtμL)�wt−1 +

ηt
|Tr| ·

n

k

( ∑
i∈Mc−

β−
i �xi −

∑
i∈Mc+

β+
i �xi

)

bt ← bt−1 +
ηt
|Tr| ·

n

k

( ∑
i∈Mc−

β−
i −

∑
i∈Mc+

β+
i

)

return �w, b (w and b are entities after convergence)

where [∇�wσi]t and [∇bσi]t denote the sub-gradient of struc-
tural loss for node vi w.r.t �w and b respectively at tth itera-
tion, and is computed as,

∇�wσi =

⎧⎨
⎩

β−
i �ai if �aTi �w + b > 1

(β−
i − β+

i )�ai if − 1 < �aTi �w + b < 1
−β+

i �ai if �aTi �w + b < −1

∇bσi =

⎧⎨
⎩

β−
i if �aTi �w + b > 1

(β−
i − β+

i ) if − 1 < �aTi �w + b < 1
−β+

i if �aTi �w + b < −1

3.4 Algorithm and Complexity

Algorithm 1 summarizes the pseudo-code for training the
proposed model ReSLMin. We next analyze the run time
complexity of the proposed algorithm. For obtaining an ε-
accurate solution to a strongly convex objective, the num-
ber of iterations required by stochastic gradient descent is
O( 1ε ). In ReSLMin, prior generation of relaxed labels re-
quires O(nd) computation at each level of neighborhood,
where n is the number of nodes and d(<< n) is average
degree of nodes in the given network. For a batch of size k,
each epoch requires O(kn) computation in the case of ridge
regularizer and O(kn+nd) in case of homophily regularizer.
The overall complexity of proposed algorithms is O(ndε ). In
Figure 3 depicts the behavior of generalization error, mea-
sured as (1− Hamming Score) at each iteration.
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Figure 3: Convergence behavior of ReSLMin Algorithm,
shown by plotting (1-Hamming Score) vs. number of SGD
iterations.

Dataset #Nodes #Edges #Classes
Label

Cardinality

PubMed 19,717 44,324 3 1.000
CoRA 24,519 92,207 10 1.004
Wikipedia 35,633 495,388 16 1.312
Amazon 83,742 190,097 30 1.546

Table 1: Datasets used in Experiments.

4 Experiments

We evaluate the impact of using the proposed structural loss
function using different regularizers by observing its perfor-
mance on various real-world datasets. To make our experi-
mental study exhaustive, we compare with various state-of-
the-art techniques for within network classification.

4.1 Data Sets

We next describe the datasets used in our experiments.
Co-citation Graph: We take two different instances of

academic co-citation graph viz. CoRA and PubMed (Sen
et al. 2008). Classes are assigned based on the subtopic
or field-of-study the papers belong to. In both the datasets,
edges correspond to the references made by the papers.

Product Graph:We extracted a subset of books (with
> 5 reviews) from Amazon co-purchasing network data
(Leskovec, Adamic, and Huberman 2007). For each book,
we define the edges using list of similar books. We use gen-
res of the book as class labels.

Web Graph: We constructed a web-graph of
Wikipedia pages. Articles from different areas of
computer science were crawled using WikiMedia API.
While crawling we used 16 top level category pages, which
also form the class labels.

For networks having directional edges, we remove the di-
rectionality by adding an edge in the opposite direction also.
Table 1 summarizes some of the statistics of datasets used.

4.2 Approaches

We make a comparative study of ReSLMin, combined with
different regularizers. Further, we also evaluate the perfor-
mance of our proposed approach with the state-of-the-art
techniques mentioned in (Nandanwar and Murty 2016). We
briefly mention these approaches below.
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Dataset Measure ReSLMin
SDEC SCRN DW SNBC

Lap. Ridge Homo. Ridge +
Homo.

Hamming 75.58±0.09 80.23±0.10 80.58±0.04 80.83±0.04 56.89±0.01 79.56±0.14 78.06±0.09 80.04±0.19
PubMed Micro F1 75.58±0.09 80.23±0.10 80.58±0.04 80.83±0.04 56.89±0.01 79.56±0.14 78.06±0.09 80.04±0.19

Macro F1 74.10±0.13 78.55±0.13 78.91±0.07 79.33±0.05 42.25±0.01 77.99±0.19 76.21±0.10 78.28±0.24
Hamming 74.67±0.09 76.45±0.07 75.25±0.14 77.52±0.07 55.32±0.07 74.93±0.17 71.82±0.20 67.39±2.23

CoRA Micro F1 74.67±0.09 76.43±0.07 75.24±0.15 77.49±0.07 55.36±0.07 74.93±0.17 71.82±0.20 67.39±2.24
Macro F1 66.30±0.29 70.05±0.14 66.52±0.22 71.03±0.24 33.14±3.61 66.16±0.35 62.93±0.51 57.47±3.96
Hamming 67.45±0.10 69.94±0.14 71.06±0.25 72.25±0.11 53.04±0.08 70.40±1.82 72.12±0.08 69.92±0.16

Wikipedia Micro F1 69.19±0.08 71.67±0.12 72.38±0.32 73.65±0.11 55.27±0.05 71.98±1.22 73.65±0.07 71.32±0.12
Macro F1 61.06±0.54 64.16±0.44 65.81±0.65 66.58±0.53 39.49±0.08 63.59±1.24 64.99±0.65 61.38±1.58
Hamming 66.19±0.06 66.44±0.08 66.95±0.05 66.49±0.05 35.85±0.06 65.31±0.07 29.77±0.03 61.24±0.19

Amazon Micro F1 66.56±0.04 66.77±0.06 67.03±0.04 66.75±0.03 37.58±0.06 66.51±0.05 31.98±0.03 61.71±0.25
Macro F1 63.07±0.13 63.46±0.12 63.72±0.08 63.86±0.05 23.62±0.21 63.14±0.06 20.25±0.10 59.69±0.31

Table 2: Performance evaluation of various approaches. The rightmost four approaches correspond to the different regularization
techniques used with the structural loss. The remaining four on the left, are state-of-the-art approaches chosen for comparison.

DeepWalk (DW) (Perozzi, Al-Rfou, and Skiena 2014):
We use Deepwalk for learning a deep representation
of nodes in the network. Empirically we found 128-
dimensional representations to have the best behavior for our
classification problem. These representations cater to the in-
put for multi-class support vector machine.

SocioDim Edge Clustering (SDEC) (Tang and Liu
2011): SDEC generates a k- dimensional representation
based on the clustering of edges in the network. We empiri-
cally determined the best value of k as 5000 for all datasets.

Social Context Relational Neighbor (SCRN) (Wang
and Sukthankar 2013): SCRN computes low dimensional
embedding by combining ideas from wvRN classifier and
edge clustering. We empirically fix the number of edge clus-
ters as 5000.

Structural Neighborhood Based Classification
(SNBC) (Nandanwar and Murty 2016): We use the SNBC
source code available from authors repository. We tune the
parameters using grid search to learn a model for multilabel
classification.

4.3 Setup

The datasets used in our experiments have a set of labels
assigned to each node. We handle multilabel classification
problem by training a series of binary classifiers using “one-
vs-rest” approach. The scores returned by functional classi-
fier are turned into probabilities using “Platt scaling”. This
is required to enable comparison of scores from different
classifiers for a given node.

The hypothesis of our approach is that a loss should be
induced from a neighboring node when the neighbor node
fails to acquire a similar label. In Section 3 we work with a
uniformly induced loss i.e. an equal weight is given to loss
induced by any neighboring node. However, it is well estab-
lished that connections to low degree nodes are semantically
rich compared to their high degree counterparts. Consider-
ing this we assign non-uniform weights to loss from differ-
ent neighboring nodes. A node with degree d induces a loss
inversely proportional to log(d), thus underplaying the con-

tribution of loss induced from high degree neighbors.
Further, for the proposed structural loss function, we

experiment with different choices of regularizers, namely,
laplacian, ridge, and the proposed homophily regularizer
along with its combination with ridge regularizer. To de-
termine the optimal values of regularization parameter, we
perform 10-fold cross-validation with the given set of train-
ing nodes. The parameter values are chosen using grid
search technique where λ and μ both were in the range
{2−5, 2−6, . . . , 2−15}. Also, we set the value of parameter
α, responsible for neighborhood effect, as 0.5. For other
state-of-the-art approaches, to make a fair comparison, we
tune parameters in a similar manner.

In our multilabel setting, each node has a different number
of labels assigned to it. For an unlabeled node, we predict a
set of labels using predicted class membership probabilities.
The cardinality of the predicted label set is equal to that of its
original label set. For evaluation of multilabel classification,
we use three evaluation measures namely micro-F1 score,
macroF1 score, and hamming score (Sokolova and Lapalme
2009).

For each experiment, we perform 20 runs using different
realizations of the train and test sets, having 10% and 90%
of nodes respectively. We report the mean and deviation of
observed scores in Table 2.

5 Results

We first analyze the behavior of various state-of-the-art tech-
niques compared against the proposed ReSLMin algorithm.
From Table 2, it is easy to follow that ReSLMin combined
with ridge+homophily regularizer consistently outperforms
all other approaches for most of the datasets considered in
our experiments. This corroborates our homophily assump-
tion which controls both loss function and regularization.

We find that socioDim edge clustering (SDEC) loses in
almost every case. This hints that the semantics captured by
SDEC in spherical edge clusters are not sufficient for clas-
sification. However, SCRN which incorporates same edge
cluster information with collective classification tends to
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a) Ridge b) Homophily c) Ridge + Homophily

Figure 4: For Amazon dataset the plots highlight the role played by homophily regularizer. The scatter plots depict for all nodes
confidence in class vs. discriminative power. The middle plot corresponding to homophily regularizer corroborates that the
regularizer helps in achieving the proposed hypothesis i.e. Nodes having high confidence value should have high discriminative
power. The curve in plots indicates the least square fit of the form (1 − aebx). The other datasets also follow a similar trend
(omitted due to space constraint).

perform better.
The representations captured by DeepWalk perform com-

paratively better but fail drastically on Amazon dataset. Our
primary analysis reveals that the deepwalk embeddings fails
to capture the community structure because of high overlap
across genres of books.

Structural neighborhood based classification (SNBC) per-
forms poorly on all datasets but PubMed (which has least
class overlap). This is due to improper penalizing of bound-
ary nodes which we address in ReSLMin.

5.1 Comparative Study of Regularizers

We next study the effect of adding different regularizers to
structural loss. In all but Amazon dataset laplacian regu-
larizer lags by a heavy margin. Laplacian regularizer fails
to generalize well for unseen nodes as it directly tries
to smoothen the decision values, encouraging overfitting.
While, in the case of homophily regularizer, smoothening is
done on parameters determining the discriminative behav-
ior. Evaluation metrics reported in Table 2 clearly indicate
the superiority of combined regularizer over the individual
counterparts and laplacian regularizer. Surprisingly, in case
of Amazon dataset homophily regularizer does better than
the combination. This can be attributed to the discriminative
power getting highlighted by homophily regularizer.

We carry on this analysis, and plot the discriminative
power of node vs its confidence probability of being in a
class. For a node vi, we use the magnitude of its weight
(|wi|) as a measure of discriminative power. Since the
ground-truth about class membership probabilities of nodes
is not available to us, we use the predicted class membership
probabilities as a proxy to the confidence in class.

Figure 4 shows the plots corresponding to considered reg-
ularization techniques for Amazon dataset. It is easy to ob-
serve from the plots that ridge (�2) regularizer assigns lesser
importance to most of the points, even in cases where nodes
have high class membership values. On the other hand ho-
mophily regularizer emphasizing smooth transition assigns a
higher importance to nodes with high class membership val-
ues. The combination of the two tries to balance a trade-off.

Figure 5: Comparison of SNBC and ReSLMin Algorithms
as mixing coefficient is varied in LFR Benchmark Synthetic
data.

The combined regularizer allows a smooth transition among
nodes lying at the core of the network, while at the same
time assigning little or no importance to peripheral nodes.
The importance of peripheral nodes is shadowed by ridge
regularizer because of their insignificant role.

5.2 Robustness of ReSLMin

For studying the robustness of the proposed approach with
increase in class overlap, we synthesize a network of 10000
nodes using LFR benchmark (Lancichinetti, Fortunato, and
Radicchi 2008). We vary the degree of overlap in the net-
work by changing the value of mixing coefficient parameter
μ ∈ [0, 1]. Value μ = 0 corresponds to k connected compo-
nents in the network, while μ = 1 corresponds to k-partite
graph. Similar to the earlier described setting we randomly
choose 10% of nodes for training, and infer labeling of the
remaining 90% nodes. We make a comparative study with
SNBC, which is very similar in spirit to the proposed ap-
proach. It can be noticed from Figure 5 that both these algo-
rithms achieve the same performance when overlap is low.
As the mixing coefficient is increased beyond 0.25, the su-
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periority of ReSLMin becomes evident. However, on further
increasing the mixing coefficient value beyond 0.65 both al-
gorithms fail, and yield a performance equivalent to that of
random assignment.

6 Conclusion

In this paper, we proposed a structural loss function which
exploits the global neighborhood of a node in the network.
The proposed loss function introduced a novel way of pe-
nalizing the boundary nodes. We have shown the effective-
ness of the proposed structural loss function by combin-
ing it with the conventional ridge and laplacian regularizers.
We also propose and exploit a homophily regularizer for a
smooth transition in the discriminative behavior of nodes ly-
ing in dense parts of the network. The proposed regulariza-
tion scheme helps in highlighting the discriminative behav-
ior of nodes. We found that our stochastic gradient descent
based learning algorithm converges in a few hundred itera-
tions. Further, we observed that our approach outperforms
all other approaches reasonably.
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