
τ -FPL: Tolerance-Constrained Learning in Linear Time

Ao Zhang,1 Nan Li,2 Jian Pu,1 Jun Wang,1 Junchi Yan,31 Hongyuan Zha14

1Shanghai Key Laboratory of Trustworthy Computing, MOE International Joint Lab of Trustworthy Software,
School of Computer Science and Software Engineering, East China Normal University, Shanghai, China

2Institute of Data Science and Technologies, Alibaba Group, Hangzhou, China
3IBM Research – China 4Georgia Institute of Technology, Atlante, USA

az.aozhang@gmail.com, nanli.ln@alibaba-inc.com, {jianpu,jwang,zha}@sei.ecnu.edu.cn, yanesta@163.com

Abstract

In many real-world applications, learning a classifier with
false-positive rate under a specified tolerance is appealing.
Existing approaches either introduce prior knowledge depen-
dent label cost or tune parameters based on traditional classi-
fiers, which are of limitation in methodology since they do not
directly incorporate the false-positive rate tolerance. In this
paper, we propose a novel scoring-thresholding approach, τ -
False Positive Learning (τ -FPL) to address this problem. We
show that the scoring problem which takes the false-positive
rate tolerance into accounts can be efficiently solved in linear
time, also an out-of-bootstrap thresholding method can trans-
form the learned ranking function into a low false-positive
classifier. Both theoretical analysis and experimental results
show superior performance of the proposed τ -FPL over the
existing approaches.

Introduction

In real-world applications, such as spam filtering (Drucker,
Wu, and Vapnik 1999) and medical diagnosing (Huang, Liu,
and Zhou 2010), the loss of misclassifying a positive in-
stance and negative instance can be rather different. For in-
stance, in medical diagnosing, misdiagnosing a patient as
healthy is more dangerous than misclassifying healthy per-
son as sick. Meanwhile, in reality, it is often infeasible to
define an accurate cost for these two kinds of errors (Liu
and Zhou 2010; Zhou and Zhou 2016). In such situations, it
is often needed to keep the classifier working under a small
tolerance of false-positive rate (FPR) τ , i.e., only allow the
classifier to misclassify no larger than τ percent of nega-
tive instances. Traditional classifiers trained by maximizing
classification accuracy or AUC are not suitable due to mis-
matched goal.

In the literature, classification under constrained false-
positive rate is known as Neyman-Pearson (NP) Classi-
fication problem (Scott and Nowak 2005; Lehmann and
Romano 2006; Rigollet and Tong 2011), and existing ap-
proaches can be roughly grouped into several categories.
One common approach is to use cost-sensitive learning,
which assigns different costs for different classes, and repre-
sentatives include cost-sensitive SVM (Osuna, Freund, and
Girosi 1997; Davenport, Baraniuk, and Scott 2006; 2010),

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cost-interval SVM (Liu and Zhou 2010) and cost-sensitive
boosting (Masnadi-Shirazi and Vasconcelos 2007; 2011).
Though effective and efficient in handling different misclas-
sification costs, it is usually not easy to find appropriate
misclassification cost for specific FPR tolerance. Another
group of methods formulates this problem as a constrained
optimization problem, which has the FPR tolerance as an
explicit constraint (Mozer et al. 2002; Gasso et al. 2011;
Mahdavi, Yang, and Jin 2013). These methods often need to
find the saddle point of Lagrange function, leading to time-
consuming alternate optimization. Moreover, a surrogate
loss is often used to simplify the optimization problem, pos-
sibly making the tolerance constraint not satisfied in prac-
tice. The third line of research is scoring-thresholding meth-
ods, which train a scoring function first, then find a threshold
to meet the target FPR tolerance (Drucker, Wu, and Vapnik
1999). In practice, the scoring function can be trained by
either class conditional density estimation (Tong 2013) or
bipartite ranking (Narasimhan and Agarwal 2013a). How-
ever, density estimation itself is another difficulty. Also most
bipartite ranking methods have super-linear training com-
plexity, which limits their scalability. Meanwhile, there are
some methods paying special attention to the positive class.
For example, asymmetric SVM (Wu et al. 2008) maximizes
the margin between negative samples and the core of posi-
tive samples, one-class SVM (Ben-Hur et al. 2001) finds the
smallest ball to enclose positive samples. However, they do
not incorporate the FPR tolerance into the learning proce-
dure either.

In this paper, we address the tolerance constrained learn-
ing problem by proposing τ-False Positive Learning (τ-
FPL). Specifically, τ-FPL is a scoring-thresholding method.
In the scoring stage, we explicitly learn a ranking function
which optimizes the probability of ranking any positive in-
stance above the centroid of the worst τ percent of negative
instances. Whereafter, it is shown that, with the help of our
newly proposed Euclidean projection algorithm, this rank-
ing problem can be solved in linear time under the projected
gradient framework. It is worth noting that the Euclidean
projection problem is a generalization of a large family of
projection problems, and our proposed linear-time algorithm
based on bisection and divide-and-conquer is one to three
orders faster than existing state-of-the-art methods. In the
thresholding stage, we devise an out-of-bootstrap threshold-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

4398

ing method to transform aforementioned ranking function
into a low false-positive classifier, which is more stable com-
pared to existing thresholding method. Theoretical analy-
sis and experimental results show that the proposed method
achieves superior performance over existing approaches.

From Constrained Optimization to Ranking

In this section, we show that the FPR tolerance problem can
be transformed into a ranking problem, then give a convex
ranking loss function.

Let X = {x | x ∈ R
d : ||x|| ≤ 1} be the instance space,

and S = S+ ∪ S− be a set of training instances, where
S+ = {x+

i ∈ X}mi=1 and S− = {x−j ∈ X}nj=1 contains m and n

instances independently sampled from distributions P
+ and

P
−, respectively. Let 0 ≤ τ � 1 be the maximum tolerance

of false-positive rate. Consider the following optimization
problem with false-positive rate constraint, which is known
as Neyman-Pearson classification criteria1:

min
f,b

Px+∼P+ (f(x+) < b) (1)

s.t. Px−∼P− (f(x−) > b) ≤ τ

where f : X → R is a scoring function and b ∈ R a threshold.
With finite training instances, the corresponding empirical
risk minimization problem is

min
f,b

Lemp(f, b) =
1

m

∑m

i=1
I(f(x+

i) < b) (2)

s.t.
1

n

∑n

j=1
I(f(x−j) > b) ≤ τ

where I(u) is the indicator function. Although directly opti-
mizing by finding a saddle point of Lagrangian function is
available, it usually falls into a time consuming alternate op-
timization framework (Mozer et al. 2002; Gasso et al. 2011).
Indeed, there have been considerable efforts on approximat-
ing this problem by introducing asymmetric costs for dif-
ferent type of error into classification learning framework
(Davenport, Baraniuk, and Scott 2010)

min
f,b

LC
emp(f, b) =

1

m

m∑
i=1

I(f(x+
i) < b) +

C

n

n∑
j=1

I(f(x−j) > b)

where C ≥ 0 is a hyper-parameter that punishes the gain of
false positive instance. Although reasonable, here we point
out that, all methods under this framework indeed minimize
a lower bound of problem (2). This can be verified by for-
mulating (2) into unconstrained form L′emp(f, b)

L′emp(f, b)

� max
λ≥0

1

m

m∑
i=1

I(f(x+
i) < b) + λ

⎛
⎝ 1

n

n∑
j=1

I(f(x−j) > b)− τ

⎞
⎠

≥ 1

m

m∑
i=1

I(f(x+
i) < b) + C

⎛
⎝ 1

n

n∑
j=1

I(f(x−j) > b)− τ

⎞
⎠

= LC
emp(f, b)− Cτ.

Thus, for a fixed C, minimizing LC
emp is equivalent to mini-

mize a lower bound of Lemp. In other words, cost-sensitive
learning methods are insecure in this setting.

1The case of f(x) = b is omit for simplicity .

On the other hand, very few work tries to minimize a more
reasonable upper bound of (2) or its equivalent problems. It
is also lack of clear formulation for such upper bound. We
address these problems in detail below.

Proposition 1. Denote f(x−
[j]

) the j-th largest value in set
{f(xi) | xi ∈ S−}, and �.	 the ceil function. Then the con-
strained optimization problem (2) share the same optimal
solution f∗ with following ranking problem

min
f

1

m

m∑
i=1

I

(
f(x+

i)− f(x−
[�τn�]) < 0

)
. (3)

Proof. For a fixed f , it is clear that the constraint in (2) is
equivalent to b ≥ f(x−

[�τn�]). Since the objective in (2) is a
non-increasing function of b, its minimum is achieved at b =
f(x−

[�τn�]). From this, we can transform the original problem
(2) into its equivalent form (3) by substituting.

Proposition 1 constructs the connection between con-
strained optimization (2) and ranking problem (3). Optimiz-
ing (3) is very difficult due to the participation of operation
[·], which is non-convex when �τn	 ≥ 2. Hence, we consider
to optimize following upper bound of (3)

min
f

1

m

m∑
i=1

I

⎛
⎝f(x+

i)− 1

�τn	
�τn�∑
i=1

f(x−
[i]
) < 0

⎞
⎠ . (4)

which prefers scores on positive examples to exceed the
mean of scores on the worst τ-proportion of negative exam-
ples. If τ = 0, it is equivalent to the original problem (3). In
general cases, equality also could hold when both the scores
of the worst τ-proportion negative examples are the same.

The advantages of considering ranking problem (4) in-
clude: by replacing I(·) by its convex surrogate, it produces a
tight convex upper bound of the original minimization prob-
lem, in contrast to cost-sensitive classification which may
only offer an unstable lower bound; its formulation leads
to a linear time ranking algorithm, which remains the same
training time complexity compared with cost-sensitive clas-
sification, and outperforms most of the traditional ranking
algorithms; It is also cost-free, and the generalization per-
formance is not depending on additional hyper-parameters.

Tolerance-Constrained False Positive Learning

Based on previous discussion, our framework can be divided
into two stages, namely scoring and thresholding. In scor-
ing, a function f(·) is learnt to maximize the probability of
giving higher a score to positive instances than the centroid
of top τ percent of the negative instances. In thresholding, a
suitable threshold b will be chosen, and the final prediction
of an instance x can be obtained by

y = sgn(f(x)− b) . (5)

Tolerance-Constrained Ranking

In (4), we consider linear scoring function f(x) = wTx,
where w ∈ R

d is the weight vector to be learned, and replace
I(u < 0) by its convex surrogate function l(u) = [1−u]2+. Here

4399

Algorithm 1 τ-FPL Ranking
Require: X+ ∈ R

m×d, X− ∈ R
n×d, maximal FPR tolerance

τ , regularization parameter R, stopping condition ε

1: Randomly initialize α0 and β0

2: Set counter: t ← 0

3: while t = 0 or |g(αt,βt)− g(αt−1,βt−1)| > ε do
4: Compute gradient of g(·) at point (αt,βt)

5: Compute α′t+1,β
′
t+1 by gradient descent;

6: Project α′t+1,β
′
t+1 onto the feasible set Γk:

(αt+1,βt+1) ← ΠΓk
(α′t+1,β

′
t+1)

7: Update counter: t ← t+ 1;
8: end while
9: Return w ← (mR)−1(αT

t X+ − βT
t X−)T

[x]+ � max{x, 0}. Kernel methods can be used for nonlinear
ranking functions. As a result, the learning problem is

min
w

1

m

∑m

i=1

[
1−wTx+

i +
1

k

∑k

j=1
wTx−

[j]

]2
+

+
R

2
‖w‖2 (6)

where R > 0 is the regularization parameter, and k = �τn	.
Directly minimizing (6) can be challenging due to the [·]

operator, we address it by developing its dual.

Theorem 1. Define X+ = [x+
1 , ...,x+

m]T and X− =

[x−1 , ...,x−m]T be the matrix containing positive and negative
instances in their rows respectively, the dual problem of (6)
can be written by

min
(α,β∈Γk)

g(α,β)=
1

2mR
||αTX+−βTX−||2 +

m∑
i=1

l∗(−αi) (7)

where α and β are dual variables, l∗(·) is the convex conju-
gate of l(·), and the domain Γk is defined as

Γk =

⎧⎨
⎩α ∈ R

m
+ ,β ∈ R

n
+ |

m∑
i=1

αi =
n∑

j=1

βj ; βj ≤ 1

k

m∑
i=1

αi, ∀j
⎫⎬
⎭ .

Let α∗ and β∗ be the optimal solution of (7), the optimal

w∗ = (mR)−1(α∗TX+ − β∗TX−)T (8)

Proof. Due to space limit, the proof is put in appendix.

According to Theorem 1, learning scoring function f is
equivalent to learning the dual variables α and β by solv-
ing problem (7). Its optimization naturally falls into the area
of projected gradient method. The key steps are summa-
rized in Algorithm 1. At each iteration, we first update solu-
tion by the gradients of the objective function g(α,β), then
project the dual solution onto feasible set Γk. In the sequel,
we will show that this projection problem can be efficiently
solved in linear time. In practice, since g(·) is smooth, we
also leverage Nesterov’s method to further accelerate the
convergence of our algorithm. Nesterov’s method (Nesterov
2003) achieves O(1/T 2) convergence rate for smooth objec-
tive function, where T is the number of iterations.

Linear Time Projection onto the Top-k Simplex

One of our main technical results is a linear time projection
algorithm onto Γk, even in the case of k → n. For clear nota-
tions, we reformulate the projection problem as

min
α≥0,β≥0

1

2
||α−α0||2 +

1

2
||β − β0||2 (9)

s.t.
∑m

i=1
αi =

∑n

j=1
βj , βj ≤ 1

k

∑m

i=1
αi, ∀j.

It should be noted that, many Euclidean projection problems
studied in literature can be seen as a special case of this prob-
lem. If the term ∑m

i=1 αi is fixed, or replaced by a constant
upper bound C, we obtain a well studied case of continuous
quadratic knapsack problem (CQKP)

min
β

||β − β0||2 s.t.
∑n

i=1
βi ≤ C, 0 ≤ βi ≤ C1 ,

where C1 = C/k. Several efficient methods based on median-
selecting or variable fixing techniques are available (Patriks-
son 2008). On the other hand, if k = 1, all upper bounded
constraints are automatically satisfied and can be omitted.
Such special case has been well studied, for example, in (Liu
and Ye 2009) and (Li, Jin, and Zhou 2014), both of which
achieve O(n) complexity.

Unfortunately, none of those above methods can be di-
rectly applied to solving the generalized case (9), due to
its property of unfixed upper-bound constraint on β when
k > 1. To our knowledge, the only one attempt to address the
problem of unfixed upper bound is (Lapin, Hein, and Schiele
2015). They solve a similar (but simpler) problem

min
β

||β − β0||2 s.t. 0 ≤ βj ≤ 1

k

∑n

i=1
βi

based on sorting and exhaustive search and their method
achieves a runtime complexity O(n log(n) + kn), which is
super-linear and even quadratic when k and n are linearly
dependent. By contrast, our proposed method can be ap-
plied to both of aforementioned special cases with slight
changes and remains O(n) complexity. The notable charac-
teristic of our method is the efficient combination of bisec-
tion and divide-and-conquer: the former offers the guarantee
of worst complexity, and the latter significantly reduces the
large constant factor of bisection method.

We first introduce the following theorem, which gives a
detailed description of the solution for (9).
Theorem 2. (α∗ ∈ R

m,β∗ ∈ R
n) is the optimal solution of

(9) if and only if there exist dual variables C∗ ≥ 0, λ∗, μ∗ ∈ R

satisfy the following system of linear constraints:

C∗ =
∑m

i=1
[α0

i − λ∗]+ (10)

C∗ =
∑n

j=1
min{[β0

j − μ∗]+, C∗/k} (11)

0 = λ∗ + μ∗ +
1

k

∑n

j=1

[
β0
j − μ∗ − C∗/k

]
+

(12)

and α∗i = [α0
i − λ∗]+, β∗j = min{[β0

j − μ∗]+, C∗/k}.

Proof. Due to space limit, the proof is put in appendix.

Based on Theorem 2, the projection problem can be
solved by finding the value of three dual variables C, λ and μ

4400

that satisfy the above linear system. Here we first propose a
baseline bisection method which guarantees the worst time
complexity. Similar method has also been used in (Liu and
Ye 2009). For brevity, we denote α0

[i]
and β0

[i]
the i-largest di-

mension in α0 and β0 respectively, and define function C(λ),
μ(C), δ(C) and f(λ) as follows2:

C(λ) =
∑m

i=1
[α0

i − λ]+ (13)

μ(C) = μ satisfies (11) (14)
δ(C) = μ(C) + C/k (15)
f(λ) = kλ+ kμ(C(λ)) +

∑n

j=1
[β0

j − δ(C(λ))]+ (16)

The main idea of leveraging bisection to solve the sys-
tem in theorem 2 is to find the root of f(λ) = 0. In order to
make bisection works, we need three guarantees: f should
be continuous; root of f should be efficiently bounded in a
interval; the value of f at the two endpoints of this interval
should have opposite signs. Fortunately, based on following
three lemmas, both of these requirements can be ensured.
Lemma 1. (Zero case) (0m,0n) is an optimal solution of
(9) if and only if kα0

[1]
+

∑k
j=1 β

0
[j]

≤ 0.

Lemma 2. (Bounding λ∗) If C∗ > 0, λ∗ ∈ (−β0
[1]

, α0
[1]

).

Lemma 3. (Monotonicity and convexity)

1. C(λ) is convex, continuous and strictly decreasing in
(−∞, α0

[1]
);

2. μ(C) is continuous, monotonically decreasing in (0,+∞);
3. δ(C) is continuous, strictly increasing in (0,+∞);
4. f(λ) is continuous, strictly increasing in (−∞, α0

[1]
).

Furthermore, we can define the inverse function of C(λ) as
λ(C), and rewrite f(λ) as:

f(λ(C)) = kλ(C) + kμ(C) +
∑n

j=1
[β0

j − δ(C)]+ (17)

it is a convex function of C, strictly decreasing in (0,+∞).

Lemma 1 deal with the special case of C∗ = 0. Lemma
2 and 3 jointly ensure that bisection works when C∗ > 0;
Lemma 2 bounds λ∗; Lemma 3 shows that f is continuous,
and since it is also strictly increasing, the value of f at two
endpoints must has opposite sign.

Baseline method We start from select current λ in range
(−β0

[1]
, α0

[1]
) � [l, u]. Then compute corresponding C by (13)

in O(m), and use current C to compute μ by (14). Comput-
ing μ can be completed in O(n) by a well-designed median-
selecting algorithm (Kiwiel 2007). With current (i.e. up-
dated) C, λ and μ in hand, we can evaluate the sign of f(λ) in
O(n) and determine the new bound of λ. In addition, the spe-
cial case of C = 0 can be checked using Lemma 1 in O(m+n)

by a linear-time k-largest element selecting algorithm (Ki-
wiel 2005). Since the bound of λ is irrelevant to m and n,
the number of iteration for finding λ∗ is log(u−l

ε
), where ε is

the maximum tolerance of the error. Thus, the worst runtime
of this algorithm is O(m+ n). Furthermore, we also leverage

2Indeed, for some C, μ(C) is not one-valued and thus need
more strict definition. Here we omit it for brevity, and leave details
in supplement materials.

Algorithm 2 Linear-time Projection on Top-k simplex
Require: α0 ∈ R

m,β0 ∈ R
n, maximal accuracy ε

1: Calculate initial uncertainly intervals for λ, C, δ and μ;
2: Initialize breakpoint caches for C(λ), μ(C), δ(C), f(λ):

CacheC ← {α0
i | ∀i}, Cacheμ, Cacheδ , Cachef ← {β0

j | ∀j}

3: Initialize partial sums of C(λ), μ(C), δ(C), f(λ) with
zero;

4: Set t ← 0 and λ0 ← (α0
[1]

− β0
[1]

)/2;
5: while t = 0 or |λt − λt−1| > ε do
6: Calculate Ct, μt, δt, ft(by leveraging corresponding

caches and partial sums);
7: Prune caches and update partial sums;
8: Shrink intervals of λ, C, δ and μ based on sign of

f(λt);
9: t ← t+ 1;

10: Set λt as midpoint of current new interval
11: end while
12: Return λ∗ ← λt, μ∗ ← μt, C∗ ← Ct

the convexity of f(λ(C)) and C(λ) to further improve this al-
gorithm, please refer to (Liu and Ye 2009) for more details
about related technologies.

Although bisection solves the projections in linear time,
it may lead to a slow convergence rate. We further improve
runtime complexity by reducing the constant factor log(u−l

ε
).

This technology benefits from exploiting the monotonicity
of both functions C(λ), μ(C), δ(C) and f(λ), which have been
stated in Lemma 3.

Improved method by endpoints Divide & Conquer
Lemma 3 reveals an important chain monotonicity between
the dual variables, which can used to improve the perfor-
mance of our baseline method. The key steps are summa-
rized in Algorithm 2. Denote the value of a variable z in
iteration t as zt. For instance, if λt > λt−1, from emma 3
we have Ct < Ct−1, μt > μt−1 and δt < δt−1. This implies
that we can set uncertainty intervals for both λ, C, μ and
δ. As the interval of λ shrinking, lengths of these four in-
tervals can be reduced simultaneously. On the other hand,
notice that C(λ) is indeed piecewise linear function (at most
m + 1 segments), the computation of its value only contains
a comparison between λt and all of the α0

i s. By keeping a
cache of α0

i s and discard those elements which are out of the
current bound of λ in advance, in each iteration we can re-
duce the expected comparison counts by half. A more com-
plex but similar procedure can also be applied for comput-
ing μ(C), δ(C), and f(λ), because both of these functions
are piecewise linear and the main cost is the comparison
with O(m+ n) endpoints. As a result, for approximately lin-
ear function (convexity not required) and evenly distributed
breakpoints, if the first iteration of bisection costs γ(m + n)

time, the overall runtime of the projection algorithm will
be γ(m + n) + γ(m + n)/2 + ... ≤ 2γ(m + n), which is much
less than the original bisection algorithm whose runtime is
log(u−l

ε
)γ(m+ n).

4401

Algorithm Training Validation
τ -FPL O(d(m+ n)/T 2) Linear
TopPush O(d(m+ n)/T 2) Linear
CS-SVM O(d(m+ n)/T) Quadratic
SVMpAUC

tight O((m logm+ n logn+ d(m+ n))/T) Linear
Bipartite O((d(m+ n) + (m+ n) log(m+ n))/T)

Ranking ∼ O(dmn+mn log(mn)/
√
T) Linear

Table 1: Complexity comparison with SOTA approaches

Convergence and Computational Complexity

Follows immediately from the convergence result of Nes-
terov’s method, we have:

Theorem 3. Let αT and βT be the output from the τ-FPL
algorithm after T iterations, then g(αT ,βT) ≤ min g(α,β)+ε,
where T ≥ O(1/

√
ε).

Finally, the computational cost of each iteration is dom-
inated by the gradient evaluation and the projection step.
Since the complexity of projection step is O(m + n) and
the cost of computing the gradient is O(d(m + n)), combin-
ing with Theorem 3 we have that: to find an ε-suboptimal
solution, the total computational complexity of τ-FPL is
O(d(m + n)/

√
ε). Table 1 compares the computational com-

plexity of τ-FPL with that of some state-of-the-art methods.
The order of validation complexity corresponds to the num-
ber of hyper-parameters. From this, it is easy to see that τ-
FPL is asymptotically more efficient.

Out-of-Bootstrap Thresholding

In the thresholding stage, the task is to identify the bound-
ary between the positive instances and (1− τ) percent of the
negative instances. Though thresholding on the training set
is commonly used in (Joachims 1996; Davenport, Baraniuk,
and Scott 2010; Scheirer et al. 2013), it may introduce over-
fitting. Hence, we propose an out-of-bootstrap method to
find a more accurate and stable threshold. At each time, we
randomly split the training set into two sets S1 and S2, and
then train on S1 as well as the select threshold on S2. The
procedure can be running multiple rounds to make use of
all the training data. Once the process is completed, we can
obtain the final threshold by averaging. On the other hand,
the final scoring function can be obtained by two ways:
learn a scoring function using the full set of training data,
or gather the weights learned in each previous round and av-
erage them. This method combines both the advantages of
out-of-bootstrap and soft-thresholding techniques: accurate
error estimating and reduced variance with little sacrifice on
bias, thus fits the setting of thresholding near the risk area.

Theoretical Guarantees

Now we develop the theoretical guarantee for the scoring
function, which bounds the probability of giving any posi-
tive instances higher score than 1− τ proportion of negative
instances. To this end, we first define h(x, f), the probabil-
ity for any negative instance to be ranked above x using f ,
i.e. h(x, f) = Ex−∼P− [I(f(x) ≤ f(x−))], and then measure the
quality of f by P (f, τ) = Px+∼P+ (h(x+, f) ≥ τ), which is

the probability of giving any positive instances lower score
than τ percent of negative instances. The following theorem
bounds P (f, τ) by the empirical loss Lk̄.
Theorem 4. Given training data S consisting of m inde-
pendent instances from distribution P

+ and n independent
instances from distribution P

−, let f∗ be the optimal solution
to the problem (6). Assume m ≥ 12 and n � s. We have, for
any k ≤ n, with a probability at least 1− 2e−s,

P (f∗, τ) ≤ Lk̄ +O(
√

(s+ log(m)/m)) (18)

where τ = O(
√

logm/n+ k/n), and Lk̄ = 1
m

∑m
i=1 l(f

∗(x+
i)−

1
k

∑k
j=1 f

∗(x−
[j]

)).

Proof. Due to space limit, the proof is put in appendix.

Theorem 4 implies that if Lk̄ is upper bounded by
O(log(m)/m)), the probability of ranking any positive sam-
ples below τ percent of negative samples is also bounded by
O(log(m)/m)). If m is approaching infinity, P (f∗, τ) would be
close to 0, which means in that case, we can almost ensure
that by thresholding at a suitable point, the true-positive
rate will get close to 1. Moreover, we observe that m and
n play different roles in this bound. For instance, it is well
known that the largest absolute value of Gaussian random
instances grows in log(n). Thus we believe that the growth
of n only slightly affects both the largest and the centroid
of top-proportion scores of negatives samples. This leads
to a conclusion that increasing n only slightly raise Lk̄, but
significant reduce the margin between target τ and k/n. On
the other hand, increasing m will reduce upper bound of P ,
thus increasing the chance of finding positive instances at
the top. In sum, n and m control τ and P respectively.

Experiment Results

Effectiveness of the Linear-time Projection

We first demonstrate the effectiveness of our projection al-
gorithm. Following the settings of (Liu and Ye 2009), we
randomly sample 1000 samples from the normal distribu-
tion N (0, 1) and solve the projection problem. The compar-
ing method is ibis (Liu and Ye 2009), an improved bisec-
tion algorithm which also makes use of the convexity and
monotonicity. All experiments are running on an Intel Core
i5 Processor. As shown in Fig.1, thanks to the efficient re-
duction of the constant factor, our method outperforms ibis
by saving almost 75% of the running time in the limit case.

We also solve the projection problem proposed in (Lapin,
Hein, and Schiele 2015) by using a simplified version of
our method, and compare it with the method presented in
(Lapin, Hein, and Schiele 2015) (PTkC), whose complexity
is O(n log(n) + kn). As one can observe from Fig.1(b), our
method is linear in complexity regarding with n and does
not suffer from the growth of k. In the limit case (both large
k and n), it is even 3-order faster than the competitors.

Ranking Performance

Next, we validate the ranking performance of our τ-FPL
method, i.e. scoring and sorting test samples, and then eval-
uate the proportion of positive samples ranked above 1 − τ

4402

Dataset
heart spambase real-sim w8a

120/150,d:13 1813/2788,d:57 22238/50071,d:20958 2933/62767,d:300
τ(%) 5 10 0.1 0.5 1 5 10 0.01 0.1 1 5 10 0.05 0.1 0.5 1 5 10

CS-SVM .526 .691 .109 .302 .487 .811 .920 .376 .748 .921 .972 .990 .501 .520 .649 .695 .828 .885
TopPush .541 .711 .112 .303 .484 .774 .845 .391 .747 .920 .968 .983 .508 .551 .627 .656 .761 .842
SVM

pAUC

tight .509 .728 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
τ -Rank .541 .740 .112 .305 .460 .842 .929 .391 .747 .920 .975 .991 .508 .551 .645 .710 .832 .894
2τ -Rank .547 .734 .112 .311 .477 .862 .936 .391 .747 .922 .978 .992 .508 .549 .675 .739 .841 .902

Table 2: Ranking performance by different values of the tolerance τ . The number of positive/negative instances and feature
dimensions (‘d’) is shown together with the name of each dataset. The best results are shown in bold. ’N/A’s denote the
experiments that require more than one week for training.

Dataset(+/-) τ (%) BS-SVM CS-LR CS-SVM CS-SVM-OOB τ -FPL 2τ -FPL

heart 5 (.069, .675), .713 (.035, .394), .606 (.027, .327), .673 (.058, .553), .609 (.053, .582), .468 (.055, .584), .514
120/150,d:13 10 (.121, .774), .435 (.058, .615), .385 (.078, .666), .334 (.088, .682), .318 (.086, .686), .314 (.080, .679), .317

breast-cancer 1 (.015, .964), .559 (.007, .884), .116 (.006, .870), .130 (.014, .955), .451 (.013, .955), .324 (.011, .949), .192
239/444 5 (.063, .978), .276 (.013, .965), .035 (.017, .965), .034 (.046, .974), .026 (.041, .976), .025 (.045, .974), .026

d:10 10 (.113, .985), .142 (.035, .970), .030 (.044, .973), .027 (.095, .981), .020 (.098, .982), .018 (.094, .982), .018
spambase 0.5 (.008, .426), 1.220 (.007, .011), 1.362 (.002, .109), .891 (.005, .275), .790 (.005, .278), .722 (.004, .268), .732
1813/2788 1 (.013, .583), .748 (.007, .011), .989 (.004, .256), .744 (.009, .418), .582 (.008, .416), .584 (.008, .440), .560

d:57 5 (.054, .895), .192 (.007, .011), .989 (.020, .667), .333 (.047, .793), .207 (.041, .822), .178 (.046, .845), .155
10 (.103, .941), .087 (.007, .011), .989 (.051, .716), .284 (.090, .902), .099 (.087, .925), .075 (.090, .928), .072

real-sim 0.01 (.002, .813), 22.376 (.001, .207), 7.939 (.000, .209), .791 (.000, .268), .833 (.000, .270), .730 (.000, .270), .730
22238/50071 0.1 (.008, .919), 7.09 (.001, .207), .826 (.001, .700), .428 (.001, .584), .416 (.001, .585), .415 (.001, .585), .415

d:20958 0.5 (.023, .966), 3.680 (.001, .207), .794 (.001, .755), .245 (.003, .810), .190 (.003, .829), .174 (.003, .827), .181
1 (.036, .978), 2.570 (.001, .207), .794 (.007, .880), .121 (.007, .875), .125 (.007, .894), .115 (.006, .891), .109
5 (.094, .994), .878 (.078, .994), .575 (.029, .931), .139 (.039, .965), .035 (.041, .972), .028 (.044, .974), .028

10 (.133, 0.997), .336 (.078, .994), .007 (.069, .993), .007 (.099, .986), .019 (.092, .991), .009 (.094, .991), .009
w8a 0.05 (.001, .525), .966 (.000, .101), .900 (.000, .420), .580 (.000, .438), .562 (.000, .428), .572 (.000, .428), .572

1933/62767 0.1 (.001, .585), .710 (.000, .119), .881 (.000, .447), .553 (.001, .493), .507 (.001, .495), .505 (.001, .499), .501
d:123 0.5 (.006, .710), .437 (.000, .119), .881 (.002, .595), .405 (.003, .634), .366 (.003, .654), .347 (.003, .667), .333

1 (.011, .749), .341 (.014, .696), .715 (.006, .642), .358 (.006, .695), .305 (.006, .702), .298 (.007, .726), .274
5 (.048, .823), .177 (.014, .696), .305 (.013, .701), .299 (.046, .805), .195 (.033, .818), .182 (.036, .827), .173

10 (.049, .823), .177 (.014, .696), .305 (.013, .701), .299 (.053, .814), .186 (.042, .833), .167 (.038, .826), .174

Table 3: [(mean false positive rate, mean true positive rate), NP-score] on real-world datasets by different values of the tolerance
τ . In the leftmost column, the number of positive/negative instances and feature dimensions (‘d’) in each dataset. For each
dataset, the best results are shown in bold.

(a) Run time against the
method ibis (log-log).

(b) Run time against PTkC
(log-log).

Figure 1: Running time against two peer projection methods.

proportion of negative samples. Considering ranking per-
formance independently can avoid the practical problem of
mismatching the constraint in (2) on testing set, and always
offer us the optimal threshold.

Specifically, we choose (3) as evaluation and validation
criterion. Compared methods include cost-sensitive SVM
(CS-SVM) (Osuna, Freund, and Girosi 1997), which has
been shown a lower bound approximation of (3); TopPush

(Li, Jin, and Zhou 2014) ranking, which focus on optimiz-
ing the absolute top of the ranking list, also a special case
of our model (τ = 0); SVMpAUC

tight (Narasimhan and Agarwal
2013b), a more general method which designed for optimiz-
ing arbitrary partial-AUC. We test two version of our algo-
rithms: τ-Rank and 2τ-Rank, which correspond to the differ-
ent choice of τ in learning scheme. Intuitively, enlarge τ in
training phase can be seen as a top-down approximation—
from upper bound to the original objective (2). On the other
hand, the reason for choosing 2τ is that, roughly speaking,
the average score of the top 2τ proportion of negative sam-
ples may close to the score of �nτ	-th negative sample.

Settings. We evaluate the performance on publicly bench-
mark datasets with different domains and various sizes3. For
small scale datasets(≤ 10, 000 instances), 30 times stratified
hold-out tests are carried out, with 2/3 data as train set and
1/3 data as test set. For large datasets, we instead run 10
rounds. In each round, hyper-parameters are chosen by 5-
fold cross validation from grid, and the search scope is ex-
tended if the optimal is at the boundary.

Results. Table 2 reports the experimental results. We note
that at most cases, our proposed method outperforms other

3https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary

4403

peer methods. It confirms the theoretical analysis that our
methods can extract the capacity of the model better. For
TopPush, it is highly-competitive in the case of extremely
small τ , but gradually lose its advantage as τ increase. The
algorithm of SVMpAUC

tight is based on cutting-plane methods
with exponential number of constraints, similar technolo-
gies are also used in many other ranking or structured pre-
diction methods, e.g. Structured SVM (Tsochantaridis et
al. 2005). The time complexity of this kind of methods is
O((m+ n) log(m+ n)), and we found that even for thousands
of training samples, it is hard to finish experiments in al-
lowed time.

Overall Classification Accuracy

In this section we compare the performance of different
models by jointly learning the scoring function and thresh-
old in training phase, i.e. output a classifier. To evaluate a
classifier under the maximum tolerance, we use Neyman-
Pearson score (NP-score) (Scott 2007). The NP-score is de-
fined by 1

τ
max{fpr, τ} − tpr where fpr and tpr are false-

positive rate and true-positive rate of the classifier respec-
tively, and τ is the maximum tolerance. This measure pun-
ishes classifiers whose false-positive rates exceed τ , and the
punishment becomes higher as τ → 0.

Settings. We use the similar setting for classification
as for ranking experiments, i.e., for small scale datasets,
30 times stratified hold-out tests are carried out; for large
datasets, we instead run 10 rounds. Comparison baselines
include: Cost-Sensitive Logistic Regression (CS-LR) which
choose a surrogate function that different from CS-SVM;
Bias-Shifting Support Vector Machine (BS-SVM), which
first training a standard SVM and then tuning threshold
to meet specified false-positive rate; cost-sensitive SVM
(CS-SVM). For complete comparison, we also construct a
CS-SVM by our out-of-bootstrap thresholding (CS-SVM-
OOB), to eliminate possible performance gains comes from
different thresholding method, and focus on the training al-
gorithm itself. For all of comparing methods, the hyper-
parameters are selected by 5-fold cross-validation with grid
search, aims at minimizing the NP-score, and the search
scope is extended when the optimal value is at the boundary.
For our τ-FPL, in the ranking stage the regularization param-
eter R is selected to minimize (3) , and then the threshold is
chosen to minimize NP-score. We test two variants of our al-
gorithms: τ-FPL and 2τ-FPL, which corresponding different
choice of τ in learning scheme. As mentioned previously,
enlarge τ can be seen as a top-down approximation towards
the original objective.

Results. The NP-score results are given in Table 3. First,
we note that both our methods can achieve the best perfor-
mance in most of the tests, compared to various compar-
ing methods. Moreover, it is clear that even using the same
method to select the threshold, the performance of cost sen-
sitive method is still limited. Another observation is that
both of the three algorithms which using out-of-bootstrap
thresholding can efficiently control the false positive rate un-
der the constraint. Moreover, τ-FPLs are more stable than
other algorithms, which we believe benefits from the accu-
rate splitting of the positive-negative instances and stable

105 106Data size

10

102

Tr
ai

ni
ng

 ti
m

e
(s

)

Figure 2: Training time of τ-FPL versus training data size
for different τ (log-log).

thresholding techniques.

Scalability

We study how τ-FPL scales to a different number of train-
ing examples by using the largest dataset real-sim. In or-
der to simulate the limit situation, we construct six datasets
with different data size, by up-sampling original dataset. The
sampling ratio is {1, 2, 22, ...25}, thus results in six datasets
with data size from 72309 to 2313888. We running τ-FPL
ranking algorithm on these datasets with different τ and op-
timal R (chosen by cross-validation), and report correspond-
ing training time. Up-sampling technology ensures that, for
a fixed τ , all the six datasets share the same optimal regular-
ization parameter R. Thus the unique variable can be fixed
as data size. Figure 2 shows the log-log plot for the training
time of τ-FPL versus the size of training data, where differ-
ent lines correspond to different τ . It is clear that the training
time of τ-FPL is indeed linear dependent in the number of
training data. This is consistent with our theoretical analysis
and also demonstrate the scalability of τ-FPL.

Conclusion

In this paper, we focus on learning binary classifier under
the specified tolerance τ . To this end, we have proposed a
novel ranking method which directly optimizes the probabil-
ity of ranking positive samples above 1 − τ percent of neg-
ative samples. The ranking optimization is then efficiently
solved using projected gradient method with the proposed
linear time projection. Moreover, an out-of-bootstrap thresh-
olding is applied to transform the learned ranking model into
a classifier with a low false-positive rate. We demonstrate the
superiority of our method using both theoretical analysis and
extensive experiments on several benchmark datasets.

Acknowledgments

The mainly work was done when the first author was
an intern at iDST of Alibaba. This work is supported by
the National Natural Science Foundation of China (NSFC)
(61702186, 61672236, 61602176, 61672231), the NSFC-
Zhejiang Joint Fund for the Integration of Industrialization
and Information (U1609220), the Key Program of Shang-
hai Science and Technology Commission (15JC1401700)
and the Joint Research Grant Proposal for Overseas Chinese
Scholars (61628203).

4404

References

Ben-Hur, A.; Horn, D.; Siegelmann, H. T.; and Vapnik, V.
2001. Support vector clustering. JMLR 2(Dec):125–137.
Davenport, M. A.; Baraniuk, R. G.; and Scott, C. D. 2006.
Controlling false alarms with support vector machines. In
ICASSP, volume 5, V–V.
Davenport, M. A.; Baraniuk, R. G.; and Scott, C. D. 2010.
Tuning support vector machines for minimax and neyman-
pearson classification. TPAMI 32(10):1888–1898.
Drucker, H.; Wu, D.; and Vapnik, V. N. 1999. Support vector
machines for spam categorization. IEEE Transactions on
Neural Networks 10(5):1048–1054.
Gasso, G.; Pappaioannou, A.; Spivak, M.; and Bottou, L.
2011. Batch and online learning algorithms for nonconvex
neyman-pearson classification. ACM Transactions on Intel-
ligent Systems and Technology (TIST) 2(3):28.
Huang, H.; Liu, C.-C.; and Zhou, X. J. 2010. Bayesian ap-
proach to transforming public gene expression repositories
into disease diagnosis databases. PNAS 107(15):6823–6828.
Joachims, T. 1996. A probabilistic analysis of the rocchio
algorithm with tfidf for text categorization. Technical report,
DTIC Document.
Kiwiel, K. C. 2005. On floyd and rivest’s select algorithm.
Theoretical Computer Science 347(1-2):214–238.
Kiwiel, K. C. 2007. On linear-time algorithms for the con-
tinuous quadratic knapsack problem. Journal of Optimiza-
tion Theory and Applications 134(3):549–554.
Lapin, M.; Hein, M.; and Schiele, B. 2015. Top-k multiclass
SVM. In NIPS, 325–333.
Lehmann, E. L., and Romano, J. P. 2006. Testing statistical
hypotheses. Springer Science & Business Media.
Li, N.; Jin, R.; and Zhou, Z.-H. 2014. Top rank optimization
in linear time. In NIPS, 1502–1510.
Liu, J., and Ye, J. 2009. Efficient euclidean projections in
linear time. In ICML, 657–664.
Liu, X.-Y., and Zhou, Z.-H. 2010. Learning with cost inter-
vals. In KDD, 403–412.
Mahdavi, M.; Yang, T.; and Jin, R. 2013. Stochastic convex
optimization with multiple objectives. In NIPS. 1115–1123.
Masnadi-Shirazi, H., and Vasconcelos, N. 2007. Asymmet-
ric boosting. In ICML, 609–619.
Masnadi-Shirazi, H., and Vasconcelos, N. 2011. Cost-
sensitive boosting. TPAMI 33(2):294–309.
Mozer, M. C.; Dodier, R.; Colagrosso, M. D.; Guerra-
Salcedo, C.; and Wolniewicz, R. 2002. Prodding the roc
curve: Constrained optimization of classifier performance.
In NIPS, 1409–1415.
Narasimhan, H., and Agarwal, S. 2013a. On the relationship
between binary classification, bipartite ranking, and binary
class probability estimation. In NIPS, 2913–2921.
Narasimhan, H., and Agarwal, S. 2013b. A structural svm
based approach for optimizing partial auc. In ICML.
Nesterov, Y. 2003. Introductory Lectures on Convex Opti-
mization: A Basic Course. Kluwer Academic Publishers.

Osuna, E.; Freund, R.; and Girosi, F. 1997. Support vec-
tor machines: Training and applications. Technical Report
AIM-1602.
Patriksson, M. 2008. A survey on the continuous nonlinear
resource allocation problem. European Journal of Opera-
tional Research 185(1):1–46.
Rigollet, P., and Tong, X. 2011. Neyman-pearson clas-
sification, convexity and stochastic constraints. JMLR
12(Oct):2831–2855.
Scheirer, W. J.; de Rezende Rocha, A.; Sapkota, A.; and
Boult, T. E. 2013. Toward open set recognition. TPAMI
35(7):1757–1772.
Scott, C., and Nowak, R. 2005. A neyman-pearson approach
to statistical learning. IEEE Transactions on Information
Theory (TIT) 51(11):3806–3819.
Scott, C. 2007. Performance measures for neyman–pearson
classification. IEEE Transactions on Information Theory
(TIT) 53(8):2852–2863.
Tong, X. 2013. A plug-in approach to neyman-pearson clas-
sification. JMLR 14(Oct):3011–3040.
Tsochantaridis, I.; Joachims, T.; Hofmann, T.; and Altun, Y.
2005. Large margin methods for structured and interdepen-
dent output variables. JMLR 6(Sep):1453–1484.
Wu, S.-H.; Lin, K.-P.; Chen, C.-M.; and Chen, M.-S. 2008.
Asymmetric support vector machines: low false-positive
learning under the user tolerance. In KDD, 749–757.
Zhou, Y.-H., and Zhou, Z.-H. 2016. Large margin distribu-
tion learning with cost interval and unlabeled data. TKDE
28(7):1749–1763.

4405

