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Abstract

Domain adaptation generalizes a learning model across
source domain and target domain that follow different dis-
tributions. Most existing work follows a two-step procedure:
first, explores either feature matching or instance reweighting
independently, and second, train the transfer classifier sepa-
rately. In this paper, we show that either feature matching
or instance reweighting can only reduce, but not remove, the
cross-domain discrepancy, and the knowledge hidden in the
relations between the data labels from the source and target
domains is important for unsupervised domain adaptation.
We propose a new Distribution Matching Machine (DMM)
based on the structural risk minimization principle, which
learns a transfer support vector machine by extracting invari-
ant feature representations and estimating unbiased instance
weights that jointly minimize the cross-domain distribution
discrepancy. This leads to a robust transfer learner that per-
forms well against both mismatched features and irrelevant
instances. Our theoretical analysis proves that the proposed
approach further reduces the generalization error bound of
related domain adaptation methods. Comprehensive experi-
ments validate that the DMM approach significantly outper-
forms competitive methods on standard domain adaptation
benchmarks.

Introduction

Standard supervised learning machines will encounter poor
generalization performance with limited training data, while
manual labeling of sufficient training data for emerging ap-
plication domains is prohibitive. Hence there is motivation
to design effective algorithms to reduce the labeling cost by
leveraging rich labeled data from relevant source domains to
the target domains. Domain adaptation (Quionero-Candela
et al. 2009; Pan and Yang 2010) addresses the problem that
we have data from two related domains but under different
distributions. The domain discrepancy poses a major obsta-
cle for adapting predictive models across domains. Domain
adaptation establishes knowledge transfer from the labeled
source domain to the unlabeled target domain by explor-
ing domain-invariant knowledge structures that manifest the
similarity between domains under substantial discrepancy.
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The major computational problem of domain adaptation is
how to reduce the distribution difference between domains.
One successful approach to this problem is learning domain-
invariant features by jointly minimizing a distance metric
that well characterizes the cross-domain discrepancy (Pan,
Kwok, and Yang 2008; Pan et al. 2011; Duan, Xu, and Tsang
2012; Duan, Tsang, and Xu 2012; Long et al. 2013; Zhang
et al. 2013; Long et al. 2015a; Ganin and Lempitsky 2015;
Sun, Feng, and Saenko 2016). However, when the cross-
domain discrepancy is substantially large, there will always
be some source instances that are irrelevant to the target do-
main even using domain-invariant features, which may in-
troduce large bias to the transfer-classifier (Long et al. 2014;
Aljundi et al. 2015). Another principled strategy is to esti-
mate the weights (importance) of the source instances such
that the distribution discrepancy can be minimized for the
empirical risk minimization learning (Huang et al. 2006;
Bruzzone and Marconcini 2010; Chen, Weinberger, and
Blitzer 2011; Yu and Szepesvári 2012; Chu, De la Torre, and
Cohn 2013). However, when the cross-domain discrepancy
is substantially large, a large number of source instances will
be down-weighed, leading to a smaller set of effective in-
stances for training the transfer-classifier. This will result
in a domain-unbiased but high-variance transfer-classifier,
which is not robust to large cross-domain discrepancy.

In the aforementioned challenging scenario, either fea-
ture matching or instance reweighting can only reduce, but
not remove, the cross-domain discrepancy, and it is in-
evitable to perform feature matching and instance reweight-
ing jointly for robust unsupervised domain adaptation (Long
et al. 2014; Aljundi et al. 2015). FurthSRMore, the knowl-
edge hidden in the relations between the data labels from
the source and target domains is important for learning a
transfer classifier that is coherent with discriminative struc-
ture underlying the data distributions. However, most exist-
ing work follows a two-step procedure: first, explores either
feature matching or instance reweighting independently, and
second, train the transfer classifier separately. All in all, the
knowledge that is safely transferable across domains should
be (1) invariant to feature representations, (2) unbiased to ir-
relevant instances, and (3) consistent with the discriminative
structure. To our best knowledge, there is no previous work
that can optimize all the three inevitable learning criteria in a
unified learning model for unsupervised domain adaptation.
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In this paper, we tackle a more challenging domain adap-
tation scenario where the source and target are different
due to both mismatched features and irrelevant instances.
We propose a new Distribution Matching Machine (DMM)
based on the structural risk minimization principle (Vapnik
1998), which learns a transfer support vector machine by
extracting invariant feature representations and estimating
unbiased instance weights that jointly minimize the cross-
domain distribution discrepancy. Specifically, DMM is im-
plemented by jointly minimizing the structural risk and a
nonparametric cross-domain distribution discrepancy, the
Maximum Mean Discrepancy (MMD) (Gretton et al. 2012).
From the DMM model, we can jointly learn a transfer sup-
port vector machine, an invariant feature transformation and
an unbiased instance reweighting. Our theoretical analysis
based on (Ben-David et al. 2007) proves that the proposed
approach further reduces the generalization error bound of
related domain adaptation methods. Extensive experiments
validate that DMM can outperform state of the art methods.

Related Work
According to the survey (Pan and Yang 2010), existing do-
main adaptation methods can be roughly organized into two
categories: feature matching and instance reweighting. Fea-
ture matching methods aim to reduce the distribution dif-
ference by learning a new feature representation, which can
be learned via (1) extracting domain-invariant latent factors
(Jhuo et al. 2012; Qiu et al. 2012; Fernando et al. 2013), (2)
minimizing proper distance measures (Pan, Kwok, and Yang
2008; Pan et al. 2011; Long et al. 2013), and (3) reweighting
relevant features with sparsity-promoting regularization (Ar-
gyriou and Evgeniou 2006; Masaeli, Fung, and Dy 2010).
Instance reweighting methods aim to reduce the distribution
difference by reweighting the source instances according to
their relevance to the target instances (Huang et al. 2006;
Bruzzone and Marconcini 2010; Chen, Weinberger, and
Blitzer 2011; Chu, De la Torre, and Cohn 2013). How-
ever, these methods explored feature matching and instance
reweighting independently, which is ineffective when the
domain difference is substantially large.

Recent advances show that deep networks can learn ab-
stract feature representations that can only reduce, but not
remove, the cross-domain discrepancy (Glorot, Bordes, and
Bengio 2011), resulting in unbounded risk for target tasks
(Mansour, Mohri, and Rostamizadeh 2009; Ben-David et al.
2010). Some recent work bridges deep learning and domain
adaptation (Long et al. 2015a; Ganin and Lempitsky 2015;
Tzeng et al. 2015; Long et al. 2016; 2017; Tzeng et al. 2017),
which extends deep convolutional networks (CNNs) to do-
main adaptation by adding adaptation layers through which
the mean embeddings of distributions are matched (Long et
al. 2015a; 2016; 2017), or by adding a subnetwork as do-
main discriminator while the deep features are learned to
confuse the discriminator in a domain-adversarial training
paradigm (Ganin and Lempitsky 2015; Tzeng et al. 2015;
2017). While performance was significantly improved, these
state of the art methods may be restricted by the assumption
that all the source instances may be useful for the target task.
This assumption is violated in some difficult transfer setting

where there may be some outlier source instances that are
irrelevant to the target domain.

The most similar work to the proposed DMM approach
is Transfer Joint Matching (TJM) (Long et al. 2014) and
Landmarks Selection-based Subspace Alignment (LSSA)
(Aljundi et al. 2015). However, DMM clearly contrasts from
TJM and LSSA (Long et al. 2014; Aljundi et al. 2015) in
two key aspects: (1) DMM jointly learns the transfer classi-
fier and the transferable knowledge (invariant feature repre-
sentations and unbiased instance weights) in an end-to-end
learning paradigm, while TJM and LSSA require a two-step
procedure where the first step learns the transferable knowl-
edge and the second step learns the transfer classifier. This
is suboptimal as the learned transferable knowledge may not
be consistent with the discriminative structure. (2) DMM
learns the unbiased instance reweighting by the principled
density ratio estimation (Huang et al. 2006) that is more
theoretically guaranteed, while TJM and LSSA learn the
reweighting by landmarks selection heuristics. All in all, the
proposed DMM approach can jointly learn the transfer clas-
sifier and transferable knowledge with statistical guarantees.

Distribution Matching Machine

In unsupervised domain adaptation, we are given a source
domain Xs = {(xi, yi)}ni=1 with n labeled examples, and a
target domain Xt = {xj}n+n′

j=n+1 with n′ unlabeled examples,
where the source domain and target domain follow different
probability distributions p and q, respectively. In this paper,
we propose a new Distribution Matching Machine (DMM)
based on the structural risk minimization principle, which
learns a transfer support vector machine y = f(x) that min-
imizes target risk RXt

(f) = Pr(x,y)∼q [f (x) �= y] from
source and target data by jointly extracting invariant feature
representations and estimating unbiased instance weights.
Notations and their descriptions are summarized in Table 1.

Table 1: Notations and their descriptions used in this paper.
Notation Description Notation Description
Xs,Xt source/target domain k, κ kernel functions
n, n′ #source/target examples φ, ψ kernel feature maps
d feature dimension A feature transformation
r subspace dimension α instance weights
C SVM penalty parameter λ MMD penalty parameter

Model

Structural Risk Minimization Domain adaptation is
challenging since the target domain has no (or only limited)
labeled information while the source domain follows differ-
ent distributions with the target domain. To approach this
problem, many existing methods aim to bound the target er-
ror by the source error plus a discrepancy metric between
the source and the target, which is theoretically supported by
domain adaptation learning bounds (Ben-David et al. 2007;
Mansour, Mohri, and Rostamizadeh 2009). In this paper, we
propose to jointly learn a transfer support vector machine
with invariant feature transformation A ∈ R

d×r and unbi-
ased instance reweighting α ∈ R

n under the structural risk
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Figure 1: An illustration of the proposed Distribution Matching Machine (DMM) model for unsupervised domain adaptation.

minimization (SRM) framework, such that both mismatched
features and irrelevant instances can be adapted by minimiz-
ing the distribution discrepancy. Based on the SRM prin-
ciple (Vapnik 1998), we propose to learn a domain-transfer
support vector machine (SVM) f so that the structural target
risk R̂Xt

(f) =
∑

(x,y)∈Xt
q (x) � (y, f (x)) is minimized as

R̂Xt (f) =
∑

(x,y)∈Xt

q (Ax) � (y, f (Ax)) +
1

C
Ω (f)

≈
∑

(x,y)∈Xs

p (Ax)α (Ax) � (y, f (Ax)) +
1

C
Ω (f)

≈
∑

(x,y)∈Xs

α (Ax) � (y, f (Ax)) +
1

C
Ω (f) ,

(1)

where � and Ω are loss function and complexity term of clas-
sifier f , C is the tradeoff parameter, and α (Ax) � q(Ax)

p(Ax)

is the importance weight of source instance x after feature
transformation A. Consistent with previous work (Pan et
al. 2011), we utilize the assumption that the conditional dis-
tribution remains unchanged in the new feature space trans-
formed by matrix A, i.e. p(y|Ax) = q(y|Ax). This is more
general than most importance reweighting methods (Huang
et al. 2006), which requires the assumption that the condi-
tional distribution remains unchanged in the original feature
space, i.e. p(y|x) = q(y|x). In the structural risk mini-
mization (SRM) framework (1), by adopting the Hinge loss
� (y, f (x)) = max (0, 1− yf (x)) and integrating feature
transformation A and instance weights α, we obtain trans-
fer support vector machine (SVM) for domain adaptation as

min
θ,ξ,α,A

1

2
‖θ‖2ψ + C

n∑

i=1

αiξi

s.t. yi
(
θTψ (Axi) + b

)
� 1− ξi

ξi � 0, i = 1, . . . , n,

(2)

where θ, b and ξ are the weight, bias parameters and slack
variables of SVM, respectively, and ψ(·) is the kernel map,
κ (x,x′) = 〈ψ (x) , ψ (x′)〉. Based on the SRM principle,
transfer SVM (2) trained on source labeled data can perform
accurate prediction for target unlabeled data, given invariant
feature transformation A and unbiased instance weights α.

Dual Distribution Matching However, only minimizing
transfer SVM (2) is not enough to extract invariant feature
transformation A and estimate unbiased instance weights α,
since the cross-domain distribution discrepancy is not taken
into account. To this end, we propose a new dual distribution
matching strategy by minimizing a distance metric of cross-
domain distribution discrepancy. Let Hk be the reproducing

kernel Hilbert space (RKHS) induced with a characteristic
kernel k. The kernel mean embedding of distribution p in Hk

is a unique element μk(p) = Ep [φ (x)] so that expectation
satisfies Ex∼pf (x) = 〈f (x) , μk (p)〉Hk

for all f ∈ Hk.
That is, all important information in distribution p is en-
coded into embedding μk(p) and thus we can learn through
μk(p) instead of p, which removes the nontrivial density es-
timation. The Maximum Mean Discrepancy (MMD) (Gret-
ton et al. 2012) that measures the discrepancy between dis-
tributions p and q is defined as the squared RKHS-distance
between the kernel mean embeddings of p and q as follows

Dk (p, q) � ‖Ep [φ (x)]− Eq [φ (x′)]‖2Hk
, (3)

where φ(·) is a nonlinear feature map that induces RKHS
Hk, and k (x,x′) = 〈φ (x) , φ (x′)〉. The two-sample test
ensures that p = q iff Dk (p, q) = 0 (Gretton et al. 2012).
By minimizing MMD, we can match distributions p and q.

Using MMD (3) as the cross-domain distribution discrep-
ancy, we can perform dual distribution matching that jointly
minimizes MMD with respect to both feature transformation
A and instance weights α, which can yield invariant feature
transformation A and unbiased instance weights α as

min
A,α

Dk(p, q) = ‖Ep [α (x)φ (Ax)]− Eq [φ (Ax′)]‖2Hk
.

(4)
As directly computing the expectations of p and q in the
infinite-dimensional kernel space φ(x) is difficult, we adopt
the empirical estimate of MMD on all training data Xs ∪Xt,

min
A,α

Dk (Xs,Xt) =

∥
∥
∥
∥
∑n

i=1
αiφ(Axi)

n
−∑n+n′

j=n+1

φ(Axj)
n′

∥
∥
∥
∥

2

Hk

,

(5)
where we denote αi = α(ATxi) for notation conciseness.
Using kernel trick k (x,x′) = 〈φ (x) , φ (x′)〉 and Gaussian
kernel k (x,x′) = e−‖x−x′‖2/σ with parameter σ, we obtain

min
A,α

Dk (Xs,Xt) =
∑n+n′

i=1

∑n+n′
j=1 α′

iα
′
jeiejk (Axi,Axj),

(6)
where α′ is the vector of weights for all the source and target
instances, α′

i = αi if xi ∈ Xs and α′
i = 1 if xi ∈ Xt. Also,

e is the MMD indicator vector, ei = 1/n if xi ∈ Xs and
ei = −1/n′ if xi ∈ Xt. We introduce these two notations to
avoid cluttered summation forms as (Gretton et al. 2012).

Distribution Matching Machine To enable unsupervised
domain adaptation, the safely-transferable knowledge across
domains should be (1) invariant to feature representations,
i.e. optimal A, (2) unbiased to irrelevant instances, i.e. opti-
mal α, and (3) consistent with the discriminative structure,
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i.e. optimal θ and b. In structural risk minimization (SRM)
framework (1), by integrating the feature transformation A
and instance weights α learned by dual distribution match-
ing (5) into transfer SVM (2), we can obtain the Distribution
Matching Machine (DMM) for robust domain adaptation as

min
θ,ξ,α,A

1

2
‖θ‖2ψ + C

n∑

i=1

αiξi + λDk (Xs,Xt)

s.t. yi
(
θTψ (Axi) + b

)
� 1− ξi

ξi � 0, i = 1, . . . , n

0 � α � B,1Tα = n,

(7)

where θ, b and ξ are the weight, bias parameters and slack
variables of SVM, respectively, and ψ(·) is the kernel fea-
ture map for SVM; A is the invariant feature transformation
and α is the unbiased instance weights; C is the tradeoff
parameter between empirical risk and complexity term, and
λ is the relative importance of the MMD penalty term (5).
The bounding constraint on α guarantees that the instance
weights are within proper ranges, and the equality constraint
on α guarantees that the learned instance weights α follow a
valid probability distribution (Huang et al. 2006). All these
variables can be jointly learned by minimizing the DMM op-
timization problem (7). Based on the SRM principle, DMM
trained on the source labeled data can perform accurate clas-
sification for the target unlabeled data, and can be robust
to substantially large cross-domain distribution discrepancy
caused by the mismatched features and irrelevant instances.

Algorithm

The DMM optimization problem in Equation (7) consists of
three variables, θ, α and A. Hence we adopt an alternating
optimization paradigm, a variant of Coordinate Descent, to
iteratively update one variable with the rest variables fixed.

Update θ and b We update θ and b, the weight and bias
parameters of SVM, by fixing α and A and rewrite (7) as

min
θ,ξ

1

2
‖θ‖2ψ + C

n∑

i=1

αiξi

s.t. yi
(
θTψ (Axi) + b

)
� 1− ξi

ξi � 0, i = 1, . . . , n,

(8)

which is a standard SVM readily solvable via its dual form.
By representation theorem, θ =

∑n
i=1 ϑiyiψ (Axi), we get

max
ϑ

n∑

i=1

ϑi −
n∑

i=1

n∑

j=1

yiyjϑiϑjκ (Axi,Axj)

n∑

i=1

ϑiyi = 0, 0 � ϑi � Cαi.

(9)

This problem can be efficiently solved by LIBSVM package.

Update α We update α, the unbiased instance weights of
DMM, by fixing θ, b and A and rewrite (7) as

min
α

1

2
αTKα− (h− C�i)

T
α

0 � αi � B,1Tα = n,
(10)

where �i = max (0, 1− yif (Axi)) is the loss of point xi;
quadratic coefficients Kij = k (Axi,Axj) and linear coef-
ficients hi =

n
n′

∑n+n′

j=n+1 k (Axi,Axj). This is a standard
convex quadratic program (QP) and can be efficiently solved
by off-the-shelf QP solvers, e.g. quadprog in MATLAB.

Update A We update A, the invariant feature transforma-
tion of DMM, by fixing θ, b and α and rewrite (7) as

min
A

n∑

i=1

n∑

j=1

yiyjϑiϑjκ (Axi,Axj)

+λ
n+n′∑

i=1

n+n′∑

j=1

α′
iα

′
jeiejk (Axi,Axj).

(11)

This is a non-convex optimization problem which can be
solved by the (mini-batch) Gradient Descent algorithm1.

Each iteration takes O(n2.3) to solve the weighted kernel
SVM in (9), O(n3) to solve the quadratic program in (10),
and O(Tr(n+ n′)2) to solve the non-convex optimization
problem in (11), where T is the number of iterations in Gra-
dient Descent. The overall complexity O(n3) is comparable
to related methods (Huang et al. 2006; Pan et al. 2011).

Analysis

We analyze target risk by theory of domain adaptation (Ben-
David et al. 2007; Mansour, Mohri, and Rostamizadeh 2009)
and kernel embedding of distributions (Gretton et al. 2012).
Theorem 1. Let h ∈ H be a hypothesis, εs(h) and εt(h) be
the expected risks of the source and target respectively, then

εt(h) � εs(h) + 2Dk(Xs,Xt) + C, (12)

where C is a constant for the complexity of hypothesis space
and plus the risk of an ideal hypothesis for both domains.

Proof sketch: The theoretical result from (Ben-David et
al. 2007) shows that εt(h) � εs(h) + dH(p, q) + C0, where
dH(p, q) is the H-divergence between distributions p and q,

dH(p, q) � 2 sup
η∈H

∣∣∣∣ Prxs∼p
[η(xs) = 1]− Pr

xt∼q

[
η(xt) = 1

]∣∣∣∣ .

(13)
The H-divergence relies on the capacity of the hypothesis
space H to distinguish distributions p from q, and η ∈ H
can be viewed as a two-sample classifier. By choosing η as a
one-class SVM classifier (Huang et al. 2006), dH(p, q) can
be bounded by its empirical estimate and thus by MMD (5),

dH(p, q) � d̂H(Xs,Xt) + C1

� 2

(
1− inf

η∈H

[
n∑

i=1

�+1[η(xi)]
n +

n′∑
j=1

�−1[η(x′
j)]

n′

])
+C1

= 2 (1 +Dk(Xs,Xt)) + C1,
(14)

where �(·) is the loss function for one-class SVM classifier
η, and �+1[η] � max(0, 1 − η), �−1[η] � max(0, 1 + η).
DMM (7) decreases the target risk bound by (1) minimiz-
ing MMD w.r.t. feature transformation A, which learns the

1http://www.manopt.org/
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Table 2: Accuracy (%) on 12 transfer tasks of Office10-Caltech10 with DeCAF6 features.
Dataset SVM KMM TCA TJM LSSA DMMA DMM2 DMM
C→A 91.6 91.5 90.3 91.4 91.6 92.2 92.7 92.4
C→W 80.7 81.0 83.7 84.7 85.2 83.7 85.4 87.5
C→D 86.0 85.4 88.5 91.7 90.4 88.5 91.1 90.4
A→C 82.2 82.2 82.0 82.1 82.5 85.1 84.8 84.8
A→W 71.9 72.2 75.6 76.3 79.4 79.7 84.1 84.7
A→D 80.9 82.2 85.4 81.5 86.6 89.8 89.8 92.4
W→C 67.9 67.3 68.5 70.2 73.2 78.4 78.4 81.7
W→A 73.4 74.4 74.5 79.5 81.4 85.7 89.7 86.5
W→D 100.0 100.0 99.4 99.4 99.4 98.7 99.4 98.7
D→C 72.8 72.0 76.9 77.1 80.4 80.9 82.3 83.3
D→A 78.7 79.6 82.7 83.9 83.4 88.3 90.3 90.7
D→W 98.3 98.3 98.0 98.3 98.0 98.0 98.0 99.3

Average 82.0 82.2 83.8 84.7 85.5 87.4 88.8 89.4

domain-invariant features; (2) minimizing MMD w.r.t. in-
stance weights α, which learns the one-class SVM classifier
parametrized by α for optimal two-sample discrimination.
As instance weights α are the parameters of the one-class
SVM classifier η, we use SVM-like constraints for α in (7).

Experiments

We perform extensive experiments to evaluate DMM against
state of the art methods on standard domain adaptation
benchmarks including both image and text datasets. Codes,
datasets and configurations will be made available online.

Setup

Datasets Office-31 (Saenko et al. 2010) is the standard
benchmark for domain adaptation, which consists of 4,652
images within 31 categories collected from three distinct do-
mains: Amazon (A), which are images downloaded from
amazon.com, Webcam (W) and DSLR (D), which are images
taken by web camera and digital SLR camera under differ-
ent environmental and photography variations. Caltech-256
(Griffin, Holub, and Perona 2007) is a standard database for
object recognition with 30,607 images and 256 classes.

In experiments, we adopt Office-10 + Caltech-10 (Fer-
nando et al. 2013; Long et al. 2013), which consists of the
10 common categories shared by the Office-31 and Caltech-
256 datasets and is widely adopted in transfer learning meth-
ods (Long et al. 2013; 2014). From these two datasets, we
can construct 12 transfer tasks for empirical evaluation: A
→ C, W → C, D → C, C → A, C → W, C → D, A →
W, D → W, W → D, A → D, D → A, and W → A. The
dataset is represented with the DeCAF features (Donahue et
al. 2014), which are the 4,096-dimensional activations of the
FC6-layer (DeCAF6) or FC7-layer (DeCAF7) extracted by
the deep convolutional neural network (CNN) (Krizhevsky,
Sutskever, and Hinton 2012). We use a common practice to
normalize the input features by both z-score and �2-norm.

Reuters-21578 is a text dataset of Reuters news articles.
The three top categories are orgs (O), people (P) and place
(Q), each of which containing of many subcategories, mak-
ing domain adaptation more difficult. We generate 6 transfer
tasks O → P, P → O, O → Q, Q → O, P → Q, Q → P. For

fair comparison, we directly adopt the preprocessed version
of Reuters-21578 with TF-IDF features (Long et al. 2015b).

Comparison Methods We evaluate DMM against state of
the art domain adaptation methods and the variants of DMM.
• SVM is used as base classifier for adaptation methods.
• KMM (Huang et al. 2006) is a seminal instance-based

method that reweighs the importance of source instances
to minimize the MMD between the source and target.

• TCA (Pan et al. 2011) is a seminal feature-based method
that learns kernel-PCA components to minimize MMD.

• TJM (Long et al. 2014) jointly performs feature matching
and instance reweighting through �2,1-structural regular-
ized Kernel PCA, which is the most relevant baseline.

• LSSA (Aljundi et al. 2015) selects landmarks to reduce
the discrepancy between domains and then use kernel sub-
space alignment to perform feature-based adaptation.

• DMMA is the variant of DMM that only performs feature
matching without instance reweighting, i.e. set α = 1.

• DMM2 is the variant of DMM that performs distribution
matching and weighted SVM (2) in a two-step procedure.
We adopt the same evaluation protocol for all comparison

methods (Long et al. 2014; Aljundi et al. 2015). We use all
source examples with labels and all target examples without
labels for training, and report the average classification ac-
curacy. For all comparison methods, we select their optimal
hyper-parameters by cross-validation on labeled source data
as (Pan et al. 2011). We give parameter sensitivity analysis
for DMM, which will validate that DMM can achieve stable
performance for a wide range of hyper-parameter settings.

Results

Image Classification The classification accuracy of all
comparison methods on the 12 transfer tasks of Office-10 +
Caltech-10 using DeCAF6 and DeCAF7 features are shown
in Tables 2 and 3, respectively. DMM significantly outper-
forms the five baseline methods and its two variants on most
of the transfer tasks, setting a new state of the art record on
this dataset. More specifically, DMM achieves the following
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Table 3: Accuracy (%) on 12 transfer tasks of Office10-Caltech10 with DeCAF7 features.
Dataset SVM KMM TCA TJM LSSA DMMA DMM2 DMM
C→A 92.0 91.0 90.9 91.5 91.9 92.7 91.9 92.6
C→W 84.4 81.0 85.8 88.8 88.8 88.8 88.8 90.5
C→D 86.6 83.4 87.3 91.1 90.4 90.4 91.1 91.7
A→C 82.4 82.5 80.3 80.8 82.4 84.3 84.0 83.3
A→W 84.1 84.4 82.4 83.4 86.4 91.5 86.4 92.2
A→D 86.6 86.6 81.5 88.5 86.4 91.1 91.7 93.0
W→C 73.0 73.2 78.6 78.7 81.6 85.5 85.1 85.8
W→A 79.4 81.4 85.6 87.2 88.4 90.8 90.7 92.5
W→D 99.4 99.4 98.7 100.0 99.4 89.8 98.7 100.0
D→C 76.0 78.3 80.5 80.4 82.5 85.0 84.1 84.3
D→A 83.1 86.7 87.2 86.8 86.7 91.4 92.2 93.2
D→W 96.9 98.3 97.6 97.3 97.3 91.9 99.0 99.7

Average 85.3 85.5 86.4 87.9 88.5 89.4 90.3 91.6

Table 4: Classification accuracy (%) on 6 transfer tasks of the Reuters-21578 dataset.
Dataset SVM KMM TCA TJM LSSA DMMA DMM2 DMM
O → P 77.4 77.8 78.0 81.8 80.4 79.6 80.5 80.9
O → Q 75.7 69.5 71.8 73.8 75.3 77.8 77.3 77.6
P → Q 68.5 61.6 61.9 68.3 68.5 68.2 69.4 69.5
P → O 69.0 77.9 82.5 83.7 83.5 83.8 83.1 85.0
Q → O 61.6 67.9 70.8 75.0 76.2 79.5 77.3 79.9
Q → P 58.3 59.5 64.5 66.4 67.3 68.0 65.5 67.8

Average 68.4 69.0 71.6 74.8 75.2 76.1 75.5 76.8

performance gains compared against the best baselines: (1)
3.9% on the 12 transfer tasks with DeCAF6 features, and
(2) 3.1% on the 12 transfer tasks with DeCAF7 features.
Although DMM cannot perform the best on all tasks, it is
desirable that (1) if DMM performs the best, then it usually
outperforms the best baseline by a large margin; (2) other-
wise, it performs only slightly worse than the best baseline.
This verifies that DMM is more robust to both feature shift
and instance bias for domain adaptation.

We can make more observations. (1) Domain adaptation
methods generally outperform SVM, showing that reduc-
ing the distribution discrepancy is key to domain adaptation.
(2) Feature-based adaptation methods TCA and DMMA per-
form much better than instance-based adaptation method
KMM. This implies that reweighting source instances can
remove the domain shift, but at the expense of larger estima-
tion variance, as many source labeled examples are down-
weighed and are no longer effective for training the source
classifier. (3) DMMA further outperforms TCA, validat-
ing the efficacy of minimizing the distribution discrepancy
in the infinite-dimension reproducing kernel Hilbert space
(DMM) instead of the dimension-reduced kernel PCA space
(TCA). (4) By dual distribution matching of both features
and instances, TJM outperforms TCA, while DMM per-
forms the best in most cases. Only feature matching is not
good enough for domain adaptation when the domain dif-
ference is substantially large, as there may be some source
instances that are irrelevant to the target instances even using
invariant features. TJM and DMM address this limitation by
reweighting the source instances according to their relevance

to the target instances in the new invariant feature space.
While TJM and LSSA perform distribution matching of

features and instances, the superiority of DMM over TJM
and LSSA are two important aspects. (1) DMM corrects the
domain mismatch by reweighting the source instances in the
structural risk minimization framework, where the instance
importance is directly related to generalization error, as stud-
ied in our theoretical analysis. DMM further performs fea-
ture matching to guarantee more source instances are effec-
tive for classifying the target data. In TJM and LSSA, the
instance reweighting is neither related to the empirical risk
nor to the instance importance. (2) DMM jointly learns the
transfer classifier and the transferable knowledge (invariant
feature representations and unbiased instance weights) in an
end-to-end learning paradigm, while TJM and LSSA require
a two-step procedure where the first step learns the transfer-
able knowledge and the second step learns the transfer clas-
sifier. This is suboptimal as the learned transferable knowl-
edge may not be consistent with the discriminative structure.
This is evidenced by the superiority of DMM over DMM2.

Text Categorization The average classification accuracy
of the 6 transfer tasks of Reuters-21578 are reported in Ta-
ble 4. The overall accuracy of DMM is 76.8%, and the ac-
curacy boost over the best baseline LSSA is 1.6%. Both
TJM and DMM significantly outperform the other baselines,
which validates the effectiveness of dual distribution match-
ing. An interesting observation is that DMM2 outperforms
DMMA, implying that learning a joint transfer SVM is more
important than dual distribution matching. DMM performs
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Figure 2: t-SNE visualization of source and target data on tasks A → W and Q → O: KMM (a)–(b), TCA (e)–(f), DMM (c)–(d)
& (g)–(h). Color markers denote different classes, and gray circles denote source instances down-weighed by KMM or DMM.
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Figure 3: Effectiveness analysis, parameter sensitivity and convergence analysis of the proposed DMM approach.

best, showing significance of optimizing all transfer criteria.

Discussion

Feature Visualization: We visualize in Figures 2(a)–2(b),
Figures 2(e)–2(f), and Figures 2(c)–2(d), 2(g)–2(h) the t-
SNE embeddings (Donahue et al. 2014) of images on trans-
fer tasks A → W and Q → O with features of KMM, TCA,
and DMM, respectively. We make interesting observations.
(1) KMM does not learn the invariant features, thus the dis-
crepancy between source and target are still large. (2) TCA
does not learn the unbiased weights of source instances,
thus the source instances that are dissimilar to the target in-
stances will not be down-weighed, leading to large domain
bias. These observations explain the inferior performance of
KMM and TCA, and highlight the superiority of DMM.

Distribution Discrepancy: We show the MMD of SVM,
KMM, TCA, and DMM on transfer task A → W in Fig-
ure 3(a). Smaller distribution discrepancy lower generaliza-
tion error. (1) Without performing distribution matching, the
distribution discrepancy of SVM in original feature space is
largest. (2) KMM and TCA explicitly reduce the distribution
difference, thus they can outperform SVM. (3) DMM per-

forms dual distribution matching of features and instances,
hence it can maximally reduce the distribution discrepancy.

Parameter Sensitivity: We check sensitivity of subspace
dimension r and penalty parameter λ. Figures 3(b) and 3(c)
show DMM outperforms baselines for wide ranges of pa-
rameters r ∈ [10, 70], λ ∈ [10−6, 10−4]. The convergence
of DMM on W → C, D → A in Figure 3(d) shows the accu-
racy increases with iterations and converges in 10 iterations.

Conclusion

We proposed a new Distribution Matching Machine (DMM)
for domain adaptation. Using the structural risk minimiza-
tion principle, DMM learns a transfer learner by extracting
invariant feature representations and estimating unbiased in-
stance weights that jointly minimize the cross-domain distri-
bution discrepancy. Extensive experiments show that DMM
significantly outperforms state of the art adaptation methods.
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