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Abstract

The deep reinforcement learning community has made sev-
eral independent improvements to the DQN algorithm. How-
ever, it is unclear which of these extensions are complemen-
tary and can be fruitfully combined. This paper examines
six extensions to the DQN algorithm and empirically studies
their combination. Our experiments show that the combina-
tion provides state-of-the-art performance on the Atari 2600
benchmark, both in terms of data efficiency and final perfor-
mance. We also provide results from a detailed ablation study
that shows the contribution of each component to overall per-
formance.

Introduction
The many recent successes in scaling reinforcement learn-
ing (RL) to complex sequential decision-making problems
were kick-started by the Deep Q-Networks algorithm (DQN;
Mnih et al. 2013, 2015). Its combination of Q-learning with
convolutional neural networks and experience replay en-
abled it to learn, from raw pixels, how to play many Atari
games at human-level performance. Since then, many exten-
sions have been proposed that enhance its speed or stability.

Double DQN (DDQN; van Hasselt, Guez, and Silver
2016) addresses an overestimation bias of Q-learning (van
Hasselt 2010), by decoupling selection and evaluation of
the bootstrap action. Prioritized experience replay (Schaul
et al. 2015) improves data efficiency, by replaying more of-
ten transitions from which there is more to learn. The du-
eling network architecture (Wang et al. 2016) helps to gen-
eralize across actions by separately representing state val-
ues and action advantages. Learning from multi-step boot-
strap targets (Sutton 1988; Sutton and Barto 1998), as used
in A3C (Mnih et al. 2016), shifts the bias-variance trade-
off and helps to propagate newly observed rewards faster to
earlier visited states. Distributional Q-learning (Bellemare,
Dabney, and Munos 2017) learns a categorical distribution
of discounted returns, instead of estimating the mean. Noisy
DQN (Fortunato et al. 2017) uses stochastic network layers
for exploration. This list is, of course, far from exhaustive.

Each of these algorithms enables substantial performance
improvements in isolation. Since they address radically dif-
ferent issues, and since they build on a shared framework,
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Figure 1: Median human-normalized performance across 57
Atari games. We compare Rainbow (rainbow-colored) to
DQN and six published baselines. We match DQN’s best
performance after 7M frames, surpass any baseline in 44M
frames, reaching substantially improved final performance.
Curves are smoothed with a moving average of 5 points.

they could plausibly be combined. In some cases this has
been done: Prioritized DDQN and Dueling DDQN both use
double Q-learning, and Dueling DDQN was also combined
with prioritized replay. In this paper we propose to study an
agent that combines all the aforementioned ingredients. We
show how these different ideas can be integrated, and that
they are indeed complementary. In fact, their combination
results in new state-of-the-art results on the benchmark suite
of 57 Atari 2600 games from the Arcade Learning Environ-
ment (Bellemare et al. 2013), both in terms of data efficiency
and of final performance. Finally, we show results from ab-
lation studies to help understand the contributions of the in-
dividual components.
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Background

Reinforcement learning addresses the problem of an agent
learning to act in an environment in order to maximize a
scalar reward signal. No direct supervision is provided to the
agent, for instance it is never directly told the best action.

Agents and environments. At each discrete time step t =
0, 1, 2 . . ., the environment provides the agent with an ob-
servation St, the agent responds by selecting an action At,
and then the environment provides the next reward Rt+1,
discount γt+1, and state St+1. This interaction is formalized
as a Markov Decision Process, or MDP, which is a tuple
〈S,A, T, r, γ〉, where S is a finite set of states, A is a finite
set of actions, T (s, a, s′) = P [St+1 = s′ | St = s,At = a]
is the (stochastic) transition function, r(s, a) = E[Rt+1 |
St = s,At = a] is the reward function, and γ ∈ [0, 1] is
a discount factor. In our experiments MDPs will be episodic
with a constant γt = γ, except on episode termination where
γt = 0, but the algorithms are expressed in the general form.

On the agent side, action selection is given by a policy π
that defines a probability distribution over actions for each
state. From the state St encountered at time t, we define
the discounted return Gt =

∑∞
k=0 γ

(k)
t Rt+k+1 as the dis-

counted sum of future rewards collected by the agent, where
the discount for a reward k steps in the future is given by the
product of discounts before that time, γ(k)

t =
∏k

i=1 γt+i.
An agent aims to maximize the expected discounted return
by finding a good policy.

The policy may be learned directly, or it may be con-
structed as a function of some other learned quantities. In
value-based reinforcement learning, the agent learns an es-
timate of the expected discounted return, or value, when
following a policy π starting from a given state, vπ(s) =
Eπ[Gt|St = s], or state-action pair, qπ(s, a) = Eπ[Gt|St =
s,At = a]. A common way of deriving a new policy from a
state-action value function is to act ε-greedily with respect to
the action values. This corresponds to taking the action with
the highest value (the greedy action) with probability (1−ε),
and to otherwise act uniformly at random with probability ε.
Policies of this kind are used to introduce a form of explo-
ration: by randomly selecting actions that are sub-optimal
according to its current estimates, the agent can discover and
correct its estimates when appropriate. The main limitation
is that it is difficult to discover alternative courses of action
that extend far into the future; this has motivated research on
more directed forms of exploration.

Deep reinforcement learning and DQN. Large state
and/or action spaces make it intractable to learn Q value
estimates for each state and action pair independently. In
deep reinforcement learning, we represent the various com-
ponents of agents, such as policies π(s, a) or values q(s, a),
with deep (i.e., multi-layer) neural networks. The parameters
of these networks are trained by gradient descent to mini-
mize some suitable loss function.

In DQN (Mnih et al. 2015) deep networks and reinforce-
ment learning were successfully combined by using a con-
volutional neural net to approximate the action values for a

given state St (which is fed as input to the network in the
form of a stack of raw pixel frames). At each step, based
on the current state, the agent selects an action ε-greedily
with respect to the action values, and adds a transition
(St, At, Rt+1, γt+1, St+1) to a replay memory buffer (Lin
1992), that holds the last million transitions. The parame-
ters of the neural network are optimized by using stochastic
gradient descent to minimize the loss

(Rt+1 + γt+1 max
a′

qθ(St+1, a
′)− qθ(St, At))

2 , (1)

where t is a time step randomly picked from the replay
memory. The gradient of the loss is back-propagated only
into the parameters θ of the online network (which is also
used to select actions); the term θ represents the parame-
ters of a target network; a periodic copy of the online net-
work which is not directly optimized. The optimization is
performed using RMSprop (Tieleman and Hinton 2012), a
variant of stochastic gradient descent, on mini-batches sam-
pled uniformly from the experience replay. This means that
in the loss above, the time index t will be a random time in-
dex from the last million transitions, rather than the current
time. The use of experience replay and target networks en-
ables relatively stable learning of Q values, and led to super-
human performance on several Atari games.

Extensions to DQN

DQN has been an important milestone, but several limita-
tions of this algorithm are now known, and many extensions
have been proposed. We propose a selection of six exten-
sions that each have addressed a limitation and improved
overall performance. To keep the size of the selection man-
ageable, we picked a set of extensions that address distinct
concerns (e.g., just one of the many addressing exploration).

Double Q-learning. Conventional Q-learning is affected
by an overestimation bias, due to the maximization step in
Equation 1, and this can harm learning. Double Q-learning
(van Hasselt 2010), addresses this overestimation by decou-
pling, in the maximization performed for the bootstrap tar-
get, the selection of the action from its evaluation. It is pos-
sible to effectively combine this with DQN (van Hasselt,
Guez, and Silver 2016), using the loss

(Rt+1+γt+1qθ(St+1, argmax
a′

qθ(St+1, a
′))−qθ(St, At))

2.

This change was shown to reduce harmful overestimations
that were present for DQN, thereby improving performance.

Prioritized replay. DQN samples uniformly from the re-
play buffer. Ideally, we want to sample more frequently
those transitions from which there is much to learn. As a
proxy for learning potential, prioritized experience replay
(Schaul et al. 2015) samples transitions with probability pt
relative to the last encountered absolute TD error:

pt ∝
∣∣∣Rt+1 + γt+1 max

a′
qθ(St+1, a

′)− qθ(St, At)
∣∣∣
ω

,

where ω is a hyper-parameter that determines the shape of
the distribution. New transitions are inserted into the replay
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buffer with maximum priority, providing a bias towards re-
cent transitions. Note that stochastic transitions might also
be favoured, even when there is little left to learn about them.

Dueling networks. The dueling network is a neural net-
work architecture designed for value based RL. It fea-
tures two streams of computation, the value and advantage
streams, sharing a convolutional encoder, and merged by a
special aggregator (Wang et al. 2016). This corresponds to
the following factorization of action values:

qθ(s, a) = vη(fξ(s)) + aψ(fξ(s), a)−
∑

a′ aψ(fξ(s), a
′)

Nactions
,

where ξ, η, and ψ are, respectively, the parameters of the
shared encoder fξ, of the value stream vη , and of the advan-
tage stream aψ; and θ = {ξ, η, ψ} is their concatenation.

Multi-step learning. Q-learning accumulates a single re-
ward and then uses the greedy action at the next step to boot-
strap. Alternatively, forward-view multi-step targets can be
used (Sutton 1988). We define the truncated n-step return
from a given state St as

R
(n)
t ≡

n−1∑
k=0

γ
(k)
t Rt+k+1 . (2)

A multi-step variant of DQN is then defined by minimizing
the alternative loss,

(R
(n)
t + γ

(n)
t max

a′
qθ(St+n, a

′)− qθ(St, At))
2.

Multi-step targets with suitably tuned n often lead to faster
learning (Sutton and Barto 1998).

Distributional RL. We can learn to approximate the dis-
tribution of returns instead of the expected return. Recently
Bellemare, Dabney, and Munos (2017) proposed to model
such distributions with probability masses placed on a dis-
crete support z, where z is a vector with Natoms ∈ N

+

atoms, defined by zi = vmin + (i − 1) vmax−vmin

Natoms−1 for
i ∈ {1, . . . , Natoms}. The approximating distribution dt at
time t is defined on this support, with the probability mass
piθ(St, At) on each atom i, such that dt = (z,pθ(St, At)).
The goal is to update θ such that this distribution closely
matches the actual distribution of returns.

To learn the probability masses, the key insight is that
return distributions satisfy a variant of Bellman’s equation.
For a given state St and action At, the distribution of the
returns under the optimal policy π∗ should match a tar-
get distribution defined by taking the distribution for the
next state St+1 and action a∗t+1 = π∗(St+1), contracting
it towards zero according to the discount, and shifting it
by the reward (or distribution of rewards, in the stochas-
tic case). A distributional variant of Q-learning is then de-
rived by first constructing a new support for the target dis-
tribution, and then minimizing the Kullbeck-Leibler diver-
gence between the distribution dt and the target distribution
d′t ≡ (Rt+1 + γt+1z, pθ(St+1, a

∗
t+1)),

DKL(Φzd
′
t||dt) . (3)

Here Φz is a L2-projection of the target distribution onto
the fixed support z, and a∗t+1 = argmaxa qθ(St+1, a) is
the greedy action with respect to the mean action values
qθ(St+1, a) = z�pθ(St+1, a) in state St+1.

As in the non-distributional case, we can use a frozen
copy of the parameters θ to construct the target distribution.
The parametrized distribution can be represented by a neu-
ral network, as in DQN, but with Natoms×Nactions outputs. A
softmax is applied independently for each action dimension
of the output to ensure that the distribution for each action is
appropriately normalized.

Noisy Nets. The limitations of exploring using ε-greedy
policies are clear in games such as Montezuma’s Revenge,
where many actions must be executed to collect the first re-
ward. Noisy Nets (Fortunato et al. 2017) propose a noisy
linear layer that combines a deterministic and noisy stream,

y = (b+ Wx) + (bnoisy � εb + (Wnoisy � εw)x), (4)

where εb and εw are random variables, and � denotes the
element-wise product. This transformation can then be used
in place of the standard linear y = b + Wx. Over time, the
network can learn to ignore the noisy stream, but will do so
at different rates in different parts of the state space, allowing
state-conditional exploration with a form of self-annealing.

The Integrated Agent

In this paper we integrate all the aforementioned compo-
nents into a single integrated agent, which we call Rainbow.

First, we replace the 1-step distributional loss (3) with a
multi-step variant. We construct the target distribution by
contracting the value distribution in St+n according to the
cumulative discount, and shifting it by the truncated n-step
discounted return. This corresponds to defining the target
distribution as d

(n)
t = (R

(n)
t + γ

(n)
t z, pθ(St+n, a

∗
t+n)).

The resulting loss is

DKL(Φzd
(n)
t ||dt) ,

where, again, Φz is the projection onto z.
We combine the multi-step distributional loss with double

Q-learning by using the greedy action in St+n selected ac-
cording to the online network as the bootstrap action a∗t+n,
and evaluating such action using the target network.

In standard proportional prioritized replay (Schaul et al.
2015) the absolute TD error is used to prioritize the tran-
sitions. This can be computed in the distributional setting,
using the mean action values. However, in our experiments
all distributional Rainbow variants prioritize transitions by
the KL loss, since this is what the algorithm is minimizing:

pt ∝
(
DKL(Φzd

(n)
t ||dt)

)ω

.

The KL loss as priority might be more robust to noisy
stochastic environments because the loss can continue to de-
crease even when the returns are not deterministic.

The network architecture is a dueling network architec-
ture adapted for use with return distributions. The network
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has a shared representation fξ(s), which is then fed into a
value stream vη with Natoms outputs, and into an advantage
stream aξ with Natoms ×Nactions outputs, where aiξ(fξ(s), a)
will denote the output corresponding to atom i and action
a. For each atom zi, the value and advantage streams are
aggregated, as in dueling DQN, and then passed through a
softmax layer to obtain the normalised parametric distribu-
tions used to estimate the returns’ distributions:

piθ(s, a) =
exp(viη(φ) + aiψ(φ, a)− aiψ(s))∑
j exp(v

j
η(φ) + ajψ(φ, a)− ajψ(s))

,

where φ = fξ(s) and aiψ(s) =
1

Nactions

∑
a′ aiψ(φ, a

′).
We then replace all linear layers with their noisy equiva-

lent described in Equation (4). Within these noisy linear lay-
ers we use factorised Gaussian noise (Fortunato et al. 2017)
to reduce the number of independent noise variables.

Experimental Methods

We now describe the methods and setup used for configuring
and evaluating the learning agents.

Evaluation Methodology. We evaluated all agents on 57
Atari 2600 games from the arcade learning environment
(Bellemare et al. 2013). We follow the training and evalu-
ation procedures of Mnih et al. (2015) and van Hasselt et al.
(2016). The average scores of the agent are evaluated during
training, every 1M steps in the environment, by suspending
learning and evaluating the latest agent for 500K frames.
Episodes are truncated at 108K frames (or 30 minutes of
simulated play), as in van Hasselt et al. (2016).

Agents’ scores are normalized, per game, so that 0% cor-
responds to a random agent and 100% to the average score
of a human expert. Normalized scores can be aggregated
across all Atari levels to compare the performance of dif-
ferent agents. It is common to track the median human nor-
malized performance across all games. We also consider the
number of games where the agent’s performance is above
some fraction of human performance, to disentangle where
improvements in the median come from. The mean human
normalized performance is potentially less informative, as it
is dominated by a few games (e.g., Atlantis) where agents
achieve scores orders of magnitude higher than humans do.

Besides tracking the median performance as a function of
environment steps, at the end of training we re-evaluate the
best agent snapshot using two different testing regimes. In
the no-ops starts regime, we insert a random number (up to
30) of no-op actions at the beginning of each episode (as we
do also in training). In the human starts regime, episodes
are initialized with points randomly sampled from the initial
portion of human expert trajectories (Nair et al. 2015); the
difference between the two regimes indicates the extent to
which the agent has over-fit to its own trajectories.

Hyper-parameter tuning. All Rainbow’s components
have a number of hyper-parameters. The combinatorial
space of hyper-parameters is too large for an exhaustive
search, therefore we have performed limited tuning. For

each component, we started with the values used in the paper
that introduced this component, and tuned the most sensitive
among hyper-parameters by manual coordinate descent.

DQN and its variants do not perform learning updates dur-
ing the first 200K frames, to ensure sufficiently uncorrelated
updates. We have found that, with prioritized replay, it is
possible to start learning sooner, after only 80K frames.

DQN starts with an exploration ε of 1, corresponding to
acting uniformly at random; it anneals the amount of explo-
ration over the first 4M frames, to a final value of 0.1 (low-
ered to 0.01 in later variants). Whenever using Noisy Nets,
we acted fully greedily (ε = 0), with a value of 0.5 for the σ0

hyper-parameter used to initialize the weights in the noisy
stream1. For agents without Noisy Nets, we used ε-greedy
but decreased the exploration rate faster than was previously
used, annealing ε to 0.01 in the first 250K frames.

We used the Adam optimizer (Kingma and Ba 2014),
which we found less sensitive to the choice of the learn-
ing rate than RMSProp. DQN uses a learning rate of α =
0.00025 In all Rainbow’s variants we used a learning rate
of α/4, selected among {α/2, α/4, α/6}, and a value of
1.5× 10−4 for Adam’s ε hyper-parameter.

The value of n in multi-step learning is a sensitive
hyper-parameter of Rainbow. We compared values of n =
1, 3, and 5. We observed that both n = 3 and 5 did well
initially, but overall n = 3 performed the best by the end.
For replay prioritization we used the recommended propor-
tional variant, with priority exponent ω of 0.5, and linearly
increased the importance sampling exponent β from 0.4 to
1 over the course of training. The priority exponent ω was
tuned comparing values of {0.4, 0.5, 0.7}. Using the KL loss
of distributional DQN as priority, we have observed that per-
formance is very robust to the choice of ω.

The hyper-parameters (see Table 1) are identical across
all 57 games, i.e., the Rainbow agent really is a single agent
setup that performs well across all the games.

1The noise was generated on the GPU. Tensorflow noise gen-
eration can be unreliable on GPU. If generating the noise on the
CPU, lowering σ0 to 0.1 may be helpful.

Parameter Value
Min history to start learning 80K frames
Adam learning rate 0.0000625
Exploration ε 0.0
Noisy Nets σ0 0.5
Target Network Period 32K frames
Adam ε 1.5× 10−4

Prioritization type proportional
Prioritization exponent ω 0.5
Prioritization importance sampling β 0.4 → 1.0
Multi-step returns n 3
Distributional atoms 51
Distributional min/max values [−10, 10]

Table 1: Rainbow hyper-parameters
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Figure 2: Each plot shows, for several agents, the number of games where they have achieved at least a given fraction of human
performance, as a function of time. From left to right we consider the 20%, 50%, 100%, 200% and 500% thresholds. On the
first row we compare Rainbow to the baselines. On the second row we compare Rainbow to its ablations.

Analysis

In this section we analyse the main experimental results.
First, we show that Rainbow compares favorably to several
published agents. Then we perform ablation studies, com-
paring several variants of the agent, each corresponding to
removing a single component from Rainbow.

Comparison to published baselines. In Figure 1 we com-
pare the Rainbow’s performance (measured in terms of the
median human normalized score across games) to the corre-
sponding curves for A3C, DQN, DDQN, Prioritized DDQN,
Dueling DDQN, Distributional DQN, and Noisy DQN. We
thank the authors of the Dueling and Prioritized agents for
providing the learning curves of these, and report our own
re-runs for DQN, A3C, DDQN, Distributional DQN and
Noisy DQN. The performance of Rainbow is better than any
of the baselines by a large margin, both in data efficiency,
as well as in final performance. Note that we match final
performance of DQN after 7M frames, surpass the best final
performance of these baselines in 44M frames, and reach
substantially improved final performance.

In the final evaluations of the agent, after the end of train-
ing, Rainbow achieves a median score of 231% in the no-ops
regime; in the human starts regime we measured a median
score of 153%. In Table 2 we compare these scores to the
published median scores of the individual baselines.

In Figure 2 (top row) we plot the number of games where
an agent has reached some specified level of human normal-
ized performance. From left to right, the subplots show on

how many games the different agents have achieved at least
20%, 50%, 100%, 200% and 500% human normalized per-
formance. This allows us to identify where the overall im-
provements in performance come from. Note that the gap in
performance between Rainbow and other agents is apparent
at all levels of performance: the Rainbow agent is improv-
ing scores on games where the baseline agents were already
good, as well as improving in games where baseline agents
are still far from human performance.

Agent no-ops human starts
DQN 79% 68%
DDQN (*) 117% 110%
Prioritized DDQN (*) 140% 128%
Dueling DDQN (*) 151% 117%
A3C (*) - 116%
Noisy DQN 118% 102%
Distributional DQN 185% 125%
Rainbow 231% 153%

Table 2: Median normalized scores of the best agent snap-
shots for Rainbow and baselines. For methods marked with
an asterisk, the scores come from the corresponding publica-
tion. DQN’s scores comes from the dueling networks paper,
since DQN’s paper did not report scores for all 57 games.
The others scores come from our own implementations.
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Figure 3: Median human-normalized performance across 57
Atari games, as a function of time. We compare our inte-
grated agent (rainbow-colored) to DQN (gray) and to six
different ablations (dashed lines). Curves are smoothed with
a moving average over 10 points.

Learning speed. As in the original DQN setup, we ran
each agent on a single GPU. The 7M frames required to
match DQN’s final performance correspond to less than 10
hours of wall-clock time. A full run of 200M frames cor-
responds to approximately 10 days, and this varies by less
than 20% between all of the discussed variants. The litera-
ture contains many alternative training setups that improve
performance as a function of wall-clock time by exploiting
parallelism, e.g., Nair et al. (2015), Salimans et al. (2017),
and Mnih et al. (2016). Properly relating the performance
across such very different hardware/compute resources is
non-trivial, so we focused exclusively on algorithmic vari-
ations, allowing apples-to-apples comparisons. While we
consider them to be important and complementary, we leave
questions of scalability and parallelism to future work.

Ablation studies. Since Rainbow integrates several differ-
ent ideas into a single agent, we conducted additional exper-
iments to understand the contribution of the various compo-
nents, in the context of this specific combination.

First, we performed an ablation study. In each ablation,
we removed a single component from the full Rainbow com-
bination, and trained the resulting agent on all Atari games.
Figure 3 compares median normalized scores of Rainbow to
the six ablated variants. Figure 2 (bottom row) shows a more
detailed breakdown of how these ablations perform relative
to different thresholds of human normalized performance,
and Figure 4 shows the gain or loss from each ablation for
every game, averaged over the full learning run.

Prioritized replay and multi-step learning were the two
most crucial components of Rainbow, in that removing ei-
ther component caused a large drop in median performance.
Unsurprisingly, the removal of either of these hurt early per-
formance. Perhaps more surprisingly, the removal of multi-
step learning also hurt final performance. Zooming in on in-
dividual games (Figure 4), we see both components helped
almost uniformly across games (Rainbow performed better
than either ablation in 53 games out of 57).

Distributional Q-learning ranked immediately below the
previous techniques for relevance to the agent’s perfor-
mance. Notably, in early learning no difference is appar-
ent, as shown in Figure 3, where for the first 40 million
frames the distributional-ablation performed as well as the
full agent. However, without distributions, the performance
of the agent then started lagging behind. When the results are
separated relatively to human performance in Figure 2, we
see that the distributional-ablation primarily seems to lags
on games that are above human level or near it.

In terms of median performance, the agent performed
better when Noisy Nets were included; when these are re-
moved and exploration is delegated to the traditional ε-
greedy mechanism, performance was worse in aggregate
(red line in Figure 3). While the removal of Noisy Nets pro-
duced a large drop in performance for several games, it also
provided small increases in other games (Figure 4).

In aggregate, we did not observe a significant difference
when removing the dueling network from the full Rainbow.
The median score, however, hides the fact that the impact
of Dueling differed between games, as shown by Figure 4.
Figure 2 shows that Dueling perhaps provided some im-
provement on games with above-human performance levels
(# games > 200%), and some degradation on games with
sub-human performance (# games > 20%).

Also in the case of double Q-learning, the observed differ-
ence in median performance (Figure 3) is limited, with the
component sometimes harming or helping depending on the
game (Figure 4). To further investigate the role of double Q-
learning, we compared the predictions of our trained agents
to the actual discounted returns computed from clipped re-
wards. Comparing Rainbow to the agent where double Q-
learning was ablated, we observed that the actual returns are
often higher than 10 and therefore fall outside the support
of the distribution, spanning from−10 to +10. This leads to
underestimated returns, rather than overestimations. We hy-
pothesize that clipping the values to this constrained range
counteracts the overestimation bias of Q-learning. Note,
however, that the importance of double Q-learning may in-
crease if the support of the distributions is expanded.

Discussion

We have demonstrated that several improvements to DQN
can be successfully integrated into a single learning algo-
rithm that achieves state-of-the-art performance. Moreover,
we have shown that within the integrated algorithm, all but
one of the components provided clear performance bene-
fits. There are many more algorithmic components that we
were not able to include, which would be promising candi-
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Figure 4: Performance drops of ablation agents: Performance is area under the curve, normalized relative to Rainbow and DQN.
Venture and Bowling, where DQN outperformed Rainbow, are omitted. Ablations leading to the largest drop are highlighted
per game. Prioritization and multi-step help almost uniformly across games, other components’ impact differs per game.

dates for further experiments on integrated agents. Among
the many possible candidates, we discuss several below.

We focused on value-based methods in the Q-learning
family, but similar ideas may benefit also policy-based RL
algorithms such as TRPO (Schulman et al. 2015), or actor-
critic methods (Mnih et al. 2016; O’Donoghue et al. 2016).

A number of algorithms exploit sequences of data to im-
prove learning efficiency. Optimality tightening (He et al.
2016) uses multi-step returns to construct additional inequal-
ity bounds, instead of just replacing the 1-step targets in Q-
learning. Eligibility traces allow a soft combination over n-
step returns (Sutton 1988). However, sequential methods all
leverage more computation per update than the multi-step
targets used in Rainbow. Also, the combination of priori-
tized replay with sequence data is still an open problem.

Episodic control (Blundell et al. 2016) also focuses on
data efficiency, and was shown to be very effective in some
domains. It improves early learning by using episodic mem-
ory as a complementary learning system, capable of imme-
diately re-enacting successful action sequences.

Besides Noisy Nets, many exploration methods have been
proposed: e.g. Bootstrapped DQN (Osband et al. 2016), in-
trinsic motivation (Stadie, Levine, and Abbeel 2015) and
count-based exploration (Bellemare et al. 2016). Combining
these with Rainbow is fruitful subject for further research.

We focused on the core learning updates, without explor-
ing alternative computational architectures. Asynchronous

learning from parallel copies of the environment, as in A3C
(Mnih et al. 2016), Gorila (Nair et al. 2015), or Evolution
Strategies (Salimans et al. 2017), can speed up learning in
wall-clock time, although at the cost of data efficiency.

Hierarchical RL has also been applied with success to sev-
eral complex Atari games. Among successful applications of
HRL we highlight h-DQN (Kulkarni et al. 2016a) and Feu-
dal Networks (Vezhnevets et al. 2017).

The state representation could be improved through the
use of auxiliary tasks such as pixel or feature control (Jader-
berg et al. 2016), supervised predictions (Dosovitskiy and
Koltun 2016) or successor features (Kulkarni et al. 2016b).

To evaluate Rainbow fairly against baselines, we followed
the common domain modifications of frame-stacking, re-
ward clipping, and fixed action-repetition. These may be re-
placed by more principled techniques. Recurrent networks
(Hausknecht and Stone 2015) can learn temporal state rep-
resentations, replacing frame-stacking. Pop-Art (van Hasselt
et al. 2016) enables learning from raw rewards. Fine-grained
action repetition (Sharma, Lakshminarayanan, and Ravin-
dran 2017) learns the number of action repetitions. In gen-
eral, we believe that exposing the real game to agents is a
promising direction for future research.
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