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Abstract

Reinforcement learning algorithms discover policies that
maximize reward, but do not necessarily guarantee safety dur-
ing learning or execution phases. We introduce a new ap-
proach to learn optimal policies while enforcing properties
expressed in temporal logic. To this end, given the temporal
logic specification that is to be obeyed by the learning system,
we propose to synthesize a reactive system called a shield.
The shield monitors the actions from the learner and corrects
them only if the chosen action causes a violation of the spec-
ification. We discuss which requirements a shield must meet
to preserve the convergence guarantees of the learner. Finally,
we demonstrate the versatility of our approach on several
challenging reinforcement learning scenarios.

Introduction

Advances in learning enabled a new paradigm for devel-
oping controllers for autonomous systems that accomplish
complicated tasks in uncertain and dynamic environments.
For example, in reinforcement learning (RL), an agent acts
to optimize a long-term return that models the desired be-
havior for the agent and is revealed to it incrementally in a
reward signal as it interacts with its environment (Sutton and
Barto 1998). Increasing use of learning-based controllers in
physical systems in the proximity of humans strengthens the
concern of whether these systems will operate safely.

While convergence, optimality and data-efficiency of
learning algorithms are relatively well understood, safety
or more generally correctness during learning and execu-
tion of controllers has attracted significantly less attention. A
number of different notions of safety were recently explored
(Garcı́a and Fernández 2015; Pecka and Svoboda 2014). We
approach the problem of ensuring safety in reinforcement
learning from a formal methods perspective. We begin with
an unambiguous and rich set of specifications of what safety
and more generally correctness mean. To this end, we adopt
temporal logic as a specification language (Emerson 1990).
For algorithmic purposes, we focus on the safety fragment of
(linear) temporal logic (Manna and Pnueli 1995). We then
investigate the question “how can we let a learning agent
do whatever it is doing, and also monitor and interfere with
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Figure 1: Shielded reinforcement learning

its operation whenever absolutely needed in order to ensure
safety?”

In this paper, we introduce shielded learning, a frame-
work that allows applying machine learning to control sys-
tems in a way that the correctness of the system’s execution
against a given specification is assured during the learning
and controller execution phases, regardless of how fast the
learning process converges. The shield monitors the actions
selected by the learning agent and corrects them if and only
if the chosen action is unsafe.

In the traditional reinforcement learning setting, in every
step, the learning agent chooses an action and sends it to
the environment. The environment evolves according to the
action and sends the agent an observation of its state and a
reward associated with the underlying transition. The objec-
tive of the agent is to optimize the reward accumulated over
this evolution.

Our approach introduces a shield into the traditional rein-
forcement learning setting. The shield is computed upfront
from the safety part of the given system specification and an
abstraction of the agent’s environment dynamics. It ensures
safety and minimum interference. With minimum interfer-
ence we mean that the shield restricts the agent as little as
possible and forbids actions only if they could endanger safe
system behavior.

Shielding offers several pragmatic advantages: Even
though the inner working of learning algorithms is often
complex, shielding with respect to critical safety specifi-
cations may be manageable (as we demonstrate in upcom-
ing sections). The algorithms we present for the compu-
tation of shields make relatively mild assumptions on the
input-output structure of the learning algorithm (rather than
its inner working). Consequently, the correctness guarantees
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are agnostic—to an extent to be described precisely—to the
learning algorithm of choice. Our setup introduces a clear
boundary between the learning agent and the shield. This
boundary helps to separate the concerns, e.g., safety and cor-
rectness on one side and convergence and optimality on the
other and provides a basis for the convergence analysis of
a shielded RL algorithm. Last but not least, the shielding
framework is compatible with mechanisms such as function
approximation, employed by learning algorithms in order to
improve their scalability.

Related Work

Safety in RL. An exploration process is called safe if
no undesirable states are ever visited, which can only
be achieved through the incorporation of external knowl-
edge (Garcı́a and Fernández 2015; Moldovan and Abbeel
2012). The safety fragment of temporal logic that we con-
sider is more general than the notion of safety of Garcı́a
and Fernández (which is technically a so-called invari-
ance property (Baier and Katoen 2008)). One way of guid-
ing exploration in learning is to provide teacher advice. A
teacher (usually a human) provides advice (e.g., safe ac-
tions) when either the learner (Pecka and Svoboda 2014;
Clouse 1997) or the teacher (Vidal et al. 2013; Thomaz
and Breazeal 2006) considers it to be necessary to prevent
catastrophic situations. For example, in a Q-learning set-
ting, the agent acts on the teacher’s advice, whenever ad-
vice is provided. Otherwise, the agent chooses randomly be-
tween the set of actions with the highest Q-values. In each
time step, the human teacher tunes the reward signal be-
fore sending it to the agent (Thomaz and Breazeal 2006;
2008). Our work is closely related to teacher-guided RL,
since a shield can be considered as a teacher, who provides
safe actions only if absolutely necessary. In contrast to previ-
ous work, the reward signal does not have to be manipulated
by the shield, since the shield corrects unsafe actions in the
learning and deployment phases.

Safety in Formal Methods. Traditional correct-by-
construction controller computation techniques are based on
computing an abstraction of the environment dynamics and
deriving a controller that guarantees to satisfy the specifica-
tion under the known environment dynamics. Such meth-
ods combine reactive synthesis with faithful environment
modelling and abstraction. Wongpiromsarn et al. (Wong-
piromsarn, Topcu, and Murray 2012) define a receding hori-
zon control approach that combines continuous control with
discrete correctness guarantees. For simple system dynam-
ics, the controller can be computed directly (Henzinger and
Kopke 1999). For more complex dynamics, both approaches
are computationally too difficult. A mitigation strategy is to
compute a set of low-level motion primitives to be combined
to an overall strategy (DeCastro and Kress-Gazit 2016).
Having many motion primitives however also leads to in-
efficiency. All of the above approaches have in common that
a faithful, yet precise enough, abstraction of the physical
environment is required, which is not only difficult to ob-
tain in practice, but also introduces the mentioned computa-

tional burden. Control methods based on RL partly address
this problem, but do not typically incorporate any correct-
ness guarantees. Wen et al. (Wen, Ehlers, and Topcu 2015)
propose a method to combine strict correctness guarantees
with RL. They start with a non-deterministic correct-by-
construction strategy and then perform RL to limit it towards
cost optimality without having to know the cost function a
priori. Unlike the approach in the paper, their technique does
not work with function approximation, which prevents it
from being used in complex scenarios. Junges et al. (Junges
et al. 2016) adopt a similar framework in a stochastic set-
ting. A major difference between the works by Wen et al. and
Junges et al. on the one hand and the shielding framework on
the other hand is the fact that the computational cost of the
construction of the shield depends on the complexity of the
specification and a very abstract version of the system, and is
independent of the state space components of the system to
be controlled that are irrelevant for enforcing the safety spec-
ification. Fu et al. (Fu and Topcu 2016) establish connec-
tions between temporal-logic-constrained strategy synthesis
in Markov decision processes and probably-approximately-
correct-type bounds in learning (Valiant 1984). Bloem et
al. (Bloem et al. 2015) proposed the idea to synthesize a
shield that is attached to a system to enforce safety prop-
erties at run time. We adopt this idea, and present our own
realization of a shield, geared to the needs of the learning
setting.

Preliminaries

A word is defined to be a finite or infinite sequence of el-
ements from some alphabet Σ. The set of finite words over
Σ is denoted by Σ∗, and the set of infinite words over Σ is
written as Σω . The union of Σ∗ and Σω is denoted by the
symbol Σ∞.

A probability distribution over a (finite) set X is a func-
tion μ : X → [0, 1] ⊆ R with

∑
x∈X μ(x) = μ(X) = 1.

The set of all distributions on X is denoted by Distr(X).
A Markov decision process (MDP) M = (S, sI ,A,P,

R) is a tuple with a finite set S of states, a unique initial
state sI ∈ S, a finite set A = {a1 . . . an} of actions, a prob-
abilistic transition function P : S ×A → Distr(S), and an
immediate reward function R : S ×A× S → R.

In reinforcement learning (RL), an agent must learn
a behavior through trial-and-error via interactions with
an unknown environment modeled by a MDP M =
(S, sI ,A,P,R). Agent and environment interact in discrete
time steps. At each step t, the agent receives an observation
st. It then chooses an action at ∈ A. The environment then
moves to a state st+1 with the probability P(st, at, st+1)
and determines the reward rt+1 = R(st, at, st+1). We re-
fer to negative rewards rt < 0 as punishments. The re-
turn R =

∑∞
t=0 γ

trt is the cumulative future discounted
reward, where rt is the immediate reward at time step t, and
γ ∈ [0, 1] is the discount factor that controls the influence
of future rewards. The objective of the agent is to learn an
optimal policy Π : S → A that maximizes (over the class
of policies considered by the learner) the expectation of the
return; i.e. maxπ∈ΠEπ(R), where Eπ(.) stands for the ex-
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Figure 2: Reactive system implementing a simple arbiter.
The transitions of the system are labeled by the input upon
reading which causes the transition to be taken and the out-
put selected by the system in this case.

pectation w.r.t. the policy π.
We consider a reactive system with a finite set I =

{i1, . . . , im} of Boolean input propositions and a finite set
O = {o1, . . . , on} of Boolean output propositions. The in-
put alphabet is ΣI = 2I , the output alphabet is ΣO = 2O,
and Σ = ΣI×ΣO. We refer to words over Σ as traces σ. We
write |σ| for the length of a trace σ ∈ Σ∞. A set of words
L ⊆ Σ∞ is called a language.

As an example, consider a simple arbiter that coordinates
the access of some shared resource for two clients. The
clients send requests for the shared resource to the arbiter
with the input propositions {ra, ra}; whenever proposition
rc has a true value, then client c ∈ {a, b} requests access.
The arbiter provides grants to the clients by indicating them
with the values of the output propositions {ga, gb}, where
gc = true indicates that client c can make use of the shared
resource. The values of the propositions change during the
trace of the arbiter such that the clients can take turn in uti-
lizing the shared resource.

A finite-state reactive system is a tuple S =
(Q, q0,ΣI ,ΣO, δ, λ) with the input alphabet ΣI , the output
alphabet ΣO, a finite set of states Q, and the initial state
q0 ∈ Q. Function δ : Q × ΣI → Q is a complete transi-
tion function, and λ : Q × ΣI → ΣO is a complete out-
put function. Given the input trace σI = x0x1 . . . ∈ Σ∞

I ,
the system S produces the output trace σO = S(σI) =
λ(q0, x0)λ(q1, x1) . . . ∈ Σ∞

O , where qi+1 = δ(qi, xi) for
all i ≥ 0. The input and output traces can be merged to the
trace of S over the alphabet ΣI × ΣO, which is defined as
σ = (x0, λ(q0, x0))(x1, λ(q1, x1)) . . . ∈ (ΣI × ΣO)

ω . The
type of finite-state reactive system used in this paper is also
called Mealy machines in the literature.

Fig. 2 shows an example of a reactive sys-
tem S = (Q, q0,ΣI ,ΣO, δ, λ) for the resource
arbiter introduced above. The system S has the
components ΣI = {rarb,¬rarb, ra¬rb,¬ra¬rb},
ΣO = {gagb,¬gagb, ga¬gb,¬ga¬gb}, Q =
{qIDLE , qGNT0 , qGNT1}, the transition function δ
(which, e.g., has δ(qIDLE ,¬ra¬rb) = qIDLE ), and
the output labeling function λ (which, e.g., has
λ(qIDLE ,¬ra¬rb) = ¬ga¬gb). The three states repre-
sent which grant was given last during the execution of the
system, where the system being in qIDLE denotes that no
grant has been given in the previous step of the system’s
trace.
A specification ϕ defines a set L(ϕ) ⊆ Σ∞ of allowed

traces. The reactive system S realizes ϕ, denoted by S |= ϕ,
iff L(S) ⊆ L(ϕ). ϕ is realizable if there exists such an S .
We assume ϕ is a set of properties {ϕ1, . . . , ϕl} such that
L(ϕ) = ⋂

i L(ϕi). A system satisfies ϕ iff it satisfies all its
properties.

In formal methods, specifications of reactive systems are
typically given as formulas in temporal logic. Linear tem-
poral logic (Pnueli 1977) (LTL) is a commonly used for-
mal specification language. Given a set of propositions AP,
an LTL formula describes a language in (2AP)ω . LTL ex-
tends Boolean logic by the introduction of temporal oper-
ators such as X (next time), G (globally/always), F (even-
tually), and U (until). To use LTL for specifying a set
of allowed traces by a reactive system, the joint alphabet
Σ = ΣI × ΣO of the system must be decomposable into
Σ = 2API × Σrest

I × 2APO × Σrest
O for some system input

and output components Σrest
I and Σrest

O that we do not want
to reason about in the LTL specification. Then, the LTL for-
mula can use AP = API∪APO as the set of atomic proposi-
tions. Given a trace σ, we write σAP to denote a copy of the
trace where, in each character, the factors Σrest

O and Σrest
I

have been stripped away so that σAP ∈ (2AP)ω .
Let us consider an example for an LTL specification (for

the arbiter introduced above) that we build from ground
up. By default, LTL formulas are evaluated at the first el-
ement of a trace. The LTL formula ra holds on a trace
σAP = σ0σ1σ2 . . . ∈ (2AP)ω if and only if ra ∈ σ0. The
next-time operator X allows to look one step into the future,
so the LTL formula Xga holds if ga ∈ σ1. We can take the
disjunction between the formulas ra and Xga to obtain an
LTL formula (ra ∨ Xga) which holds for a trace if at least
one of ra or Xga hold. We can then wrap (ra ∨ Xga) into
the temporal operator G to obtain G(ra ∨ Xga). The effect
of adding this operator is that in order for σAP to satisfy
G(ra ∨ Xga), the subformula (ra ∨ Xga) has to hold at ev-
ery position in the trace. All in all, we can formalize this
description by stating that we have that σ |= G(ra ∨ Xga)
holds if and only if for every i ∈ N, at least one of ra ∈ σi

and ga ∈ σi+1 holds. Note that the reactive system given in
Figure 2 does not satisfy the specification G(ra∨Xga) along
all of its traces. The system induces, for instance, a trace of
the form σ = (¬ra¬rb,¬ga¬gb)ω that results from staying
in the qIDLE state forever, along which this specification is
not fulfilled. A specification that is however satisfied along
all traces of the system is G(G(ra ∧ ¬rb) → FGga), which
can be read as “If from some point onwards, request ra is
always set to true while request proposition rb is not, then
eventually, a grant is given to process a for eternity.”

A specification is called a safety specification if every
trace σ that is not in the language represented by the specifi-
cation has a prefix such that all words starting with the prefix
are also not in the language. Intuitively, a safety specifica-
tion states that “something bad should never happen”. Safety
specifications can be simple invariance properties (such as
“the level of a water tank should never fall below 1 liter”),
but can also also be more complex (such as “whenever a
valve is opened, it stays open for at least three seconds”).
For specifications in LTL, it is known how to check if it is
a safety language and how to compute a safety automaton
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that represents it (Kupferman and Vardi 2001). Such an au-
tomaton is defined as a tuple ϕs = (Q, q0,Σ, δ, F ), where
Σ = ΣI × ΣO, δ : Q× Σ → Q, and F ⊆ Q is a set of safe
states. A run induced by a trace σ = σ0σ1 . . . ∈ Σ∞ is a se-
quence of states q = q0q1 . . . such that qi+1 = δ(qi, σi) for
all i ∈ N. A trace σ of a system S satisfies ϕs if the induced
run visits only safe states, i.e., ∀i ≥ 0 . qi ∈ F . The next
section gives a detailed example of a safety specification.

A (2-player, alternating) game is a tuple G =
(G, g0,ΣI ,ΣO, δ,win), where G is a finite set of game
states, g0 ∈ G is the initial state, δ : G × ΣI × ΣO → G
is a complete transition function, and win : Gω → B is a
winning condition. The game is played by the system and
the environment. In every state g ∈ G (starting with g0), the
environment chooses an input σI ∈ ΣI , and then the system
chooses some output σO ∈ ΣO. These choices by the system
and the environment define the next state g′ = δ(g, σI , σO),
and so on. The resulting (infinite) sequence g = g0g1 . . .
is called a play. A play is won by the system iff win(g) is
true. A (memoryless) strategy for the system is a function
ρ : G × ΣI → ΣO. A strategy is winning for the system
if all plays g that can be constructed when defining the out-
puts using the strategy (for the respective previous state in
the play and the previous environment player move) satisfy
win(g). The winning region W is the set of states from which
a winning strategy exists.

A safety game defines win via a set F g ⊆ G of safe
states: win(g0g1 . . .) is true iff ∀i ≥ 0 . gi ∈ F g , i.e., if
only safe states are visited.

Safety, Abstractions, and Games

The goal of this paper is to combine the best of two worlds,
namely (1) the formal correctness guarantees of a controller
w.r.t. a temporal logic specification, as provided by formal
methods (and reactive synthesis in particular), and (2) the
optimality w.r.t. an a priori unknown performance criterion,
as provided by RL.

Consider the example of a path planner for autonomous
vehicles. Many requirements on system behaviors such as
safety concerns may be known and expressed as specifi-
cations in temporal logic and can be enforced by reactive
controllers. This includes always driving in the correct lane,
never jumping the red light, and never exceeding the speed
limit (Wen, Ehlers, and Topcu 2015). A learning algorithm is
able to incorporate more subtle considerations, such as spe-
cific intentions for the current scenario and personal pref-
erences of the human driver, such as reaching some goal
quickly but at the same time driving smoothly. By combin-
ing RL with reactive synthesis, we achieve safe reinforce-
ment learning, which we define in the following way:

Definition 1 Safe RL is the process of learning an optimal
policy while satisfying a temporal logic safety specification
ϕs during the learning and execution phases.

In the following, we consider a safety specification to be
given in the form of a deterministic safety word automaton
ϕs = (Q, q0,Σ, δ, F ), i.e., an automaton in which only safe
states in F may be visited.

Reactive synthesis enforces ϕs by solving a safety game
built from ϕs and an abstraction of the environment in which
the policy is to be executed. The game is played by the en-
vironment and the system. In every state q ∈ Q, the envi-
ronment chooses an input σI ∈ ΣI , and then the system
chooses some output σO ∈ ΣO. The play is won by the sys-
tem if only safe states in F are visited during the play. In
order to win, the system has to plan ahead: it can never al-
low the play to visit a state from which the environment can
force the play to visit an unsafe state in the future.

Planning ahead is the true power of synthesis. Let us re-
visit the autonomous driver example. Suppose that the car
is heading towards a cliff. In order to enforce that the car
never crosses the cliff, it has to be slowed down long before
it reaches the cliff, and thus far before an abnormal operat-
ing condition such as falling down can possibly be detected.
In particular, the system has to avoid all states from which
avoiding to reach the cliff is no longer possible.

Planning ahead does not require the environment dynam-
ics to be completely known in advance. However, to rea-
son about when exactly a specification violation cannot be
avoided, we have to give a (coarse finite-state) abstraction
of the environment dynamics. Given that the environment
is often represented as an MDP, such an abstraction has to
be conservative w.r.t. the behavior of the real MDP. This
approximation may have finitely many states even if the
MDP has infinitely many states and/or is only approximately
known.

Formally, given an MDP M = (S, sI ,A,P,R) and an
MDP observer function f : S → L for some set L, we call a
deterministic safety word automaton ϕM = (Q, q0,Σ, δ, F )
an abstraction of M if Σ = A × L and for every trace
s0s1s2 . . . ∈ Sω with the corresponding action sequence
a0a1 . . . ∈ Aω of the MDP, for every automaton run q =
q0q1 . . . ∈ Qω of ϕM with qi+1 = δ(qi, (li, ai)) for li =
L(si) and all i ∈ N, we have that q always stays in F . An
abstraction of an MDP describes how its executions can pos-
sibly evolve, and provides the needed information about the
environment to allow planning ahead w.r.t. the safety prop-
erties of interest. Without loss of generality, we assume that
ϕM has no states in F from which all infinite paths eventu-
ally leave F . This ensures that paths that model traces that
cannot occur in M are rejected by ϕM as early as possible.
Example 1 We want to learn an energy-efficient controller
for a hot water storage tank. Stored water is kept warm by
a heater whose energy consumption depends on the filling
level of the tank, but we do not know what the exact rela-
tionship is. The outflow is always between 0 and 1 liters per
second, and the inflow is known to be between 1 and 2 liters
per second whenever the valve is open (and it is 0 other-
wise). The capacity of the tank is limited to 100 liters, and
whenever the inflow is switched on or off, the setting has to
be kept for at least three seconds to limit the wear-out of the
valve. Also, the tank must never overflow or run dry.

We can express the safety specification for the water tank
valve controller using the following linear temporal logic
formula: G(level > 0) ∧ G(level < 100) ∧ G((open ∧
Xclose) → XXclose ∧XXXclose)∧G((close ∧Xopen) →
XXopen∧XXXopen). The specification consists of four con-
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. . .

(open, 99
≤ level < 100)

Figure 3: The abstraction of the water tank behavior. All
states are accepting and transitions leading to the error state
(which exists in addition to the states in the figure and is not
accepting) are not shown.

juncts, where the first two conjuncts enforce the water lev-
els to be between the minimum and maximum thresholds.
The next conjunct enforces that if the valve is open and then
closed, then it has to stay closed for two more time steps
(seconds). The final conjunct enforces that if the valve is
closed and then opened, it has to stay open for two more
time steps.

We can translate the specification to the safety automa-
ton shown in Fig. 4. All states are accepting and transitions
leading to the error state (which exists in addition to the
states in Fig. 4 and is not accepting) are not shown. It uses
the action sets A = {open, closed} for the inflow valve state,
and the label set L = {level < 1, 1 ≤ level ≤ 99, level >
99} as needed information about the water tank filling sta-
tus. What we know about the behavior of the water tank can
be summarized as the abstraction automaton that we give in
Fig. 3.

The shield that the approach presented in this paper com-

qa

(close, 1 ≤
level ≤ 99)

qb
(open, 1 ≤
level ≤ 99)

qc

(open, 1 ≤
level ≤ 99)

qd

(open, 1 ≤
level ≤ 99)

(open, 1 ≤
level ≤ 99)

qe

(close, 1 ≤
level ≤ 99)

qf
(close, 1 ≤
level ≤ 99)

(close, 1 ≤
level ≤ 99)

Figure 4: The specification for the water tank controller.

putes ensures that when the water level in the tank becomes
too low, the inflow valve is opened until some minimum level
of 4 is reached, and it also prevents the inflow valve from
being opened when the level is above 93. The latter is nec-
essary as the valve has to stay open for at least three time
steps. So as the inflow may be up to 2 liters/second during
this time and the outflow may be 0, there is otherwise an
overflow risk. As the shield is generated using the specifica-
tion, it plans ahead for this not to happen, so it must prevent
the opening of the inflow valve if the level is above 93.

Shielded Reinforcement Learning

We introduce a correct-by-construction reactive system,
called a shield, into the traditional learning process. We
make the following assumptions.

Assumption 1 (i) The environment can be modeled as an
MDP M = (S, sI ,A,P,R). (ii) We have constructed an
abstraction ϕM. (iii) The learner accepts elements from S×
Q as state input (for the state space of the shield Q).

We describe the operation of a learner and a shield together
in this section, and give the construction for computing the
shield in the next section. The shield will be given as a reac-
tive system S = (Q, q0,ΣI ,ΣO, δ, λ).

The shield monitors the actions of the agent, and substi-
tutes the selected actions by safe actions whenever this is
necessary to prevent the violation of ϕs. In each step t, the
agent selects an action a1t . The shield forwards a1t to the en-
vironment, i.e., at = a1t . Only if a1t is unsafe w.r.t. ϕs, the
shield selects a different action at �= a1t instead. The envi-
ronment executes at, moves to st+1 and provides rt+1. The
agent receives at and rt+1, and updates its policy for at us-
ing rt+1. The question is what the reward for a1t should be in
case we have at �= a1t . We discuss two different approaches.

1. Assign a punishment r′t+1 to a1t . The agent assigns a
punishment r′t+1 < 0 to a1t and learns that selecting a1t
at state st is unsafe, without ever violating ϕs. However,
there is no guarantee that unsafe actions are not part of
the final policy. Therefore, the shield has to remain active
even after the learning phase.

2. Assign the reward rt+1 to a1t . The agent updates a1t with
the reward rt+1. Therefore, picking unsafe actions can
likely be part of an optimal policy by the agent. Since an
unsafe action is always mapped to a safe one, this does not
pose a problem and the agent never has to learn to avoid
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unsafe actions. Consequently, the shield is (again) needed
during the learning and execution phases.

In order to be less restrictive to the learning algorithm, we
propose that in every time step, the agent provides a rank-
ing rankt = (a1t , . . . , a

k
t ) on the allowed actions, i.e., the

agent wants a1t to be executed the most, a2t to be executed
the second most, etc. The ranking does not have to contain
all available actions, i.e. 1 ≤ |rankt| ≤ nt, where nt is the
number of available actions in step t. The shield selects the
first action at ∈ rankt that is safe according to ϕs. Only
if all actions in rankt are unsafe, the shield selects a safe
action at /∈ rankt. Both approaches for updating the policy
discussed before can naturally be extended for a ranking of
several actions. A second advantage of having a ranking on
actions is that the agent can perform several policy updates
at once; e.g., if all actions in rankt are unsafe, the agent can
perform |rankt|+ 1 policy updates in one step by using the
rewards r′t+1 or rt+1 for all of them, depending on which of
the above variants is used.

Synthesis of Shields

A shield S enforces two properties: correctness and min-
imum interference. First, S enforces correctness against a
given safety specification ϕs.With minimum interference,
we mean that the shield restricts the agent as rarely as pos-
sible. S is computed by reactive synthesis from ϕs and an
MDP abstraction ϕM that represents the environment in
which the agent shall operate.

We give an algorithm to compute shields. We establish (in
the next section) that the computed shields (1) enforce the
correctness criterion, and (2) are the minimally interfering
shields among those that enforce ϕs on all MDPs for which
ϕM is an abstraction.

Given is an RL problem in which an agent has to learn
an optimal policy for an unknown environment that can be
modelled by an MDP M = (S, sI ,A,P,R) while satisfy-
ing ϕs = (Q, q0,Σ, δ, F ) with Σ = ΣI × ΣO and A =
ΣO. We assume some abstraction ϕM = (QM, q0,M,A ×
L, δM, FM) of M for some MDP observer function f :
S → L to be given. Since ϕs models a restriction of the
traces of the MDP and the learner together that we want to
enforce, we assume it to have Σ = L × A, i.e., it reads the
part of the system behavior that the abstraction is concerned
with. We perform the following steps.

1. We translate ϕs and ϕM to a safety game G =
(G, g0,ΣI ,ΣO, δ, F

g) between two players. In the game,
the environment player chooses the next observations
from the MDP state (i.e., elements from L), and
the system chooses the next action. Formally, G has
the following components: G = Q × QM, g0 =
(q0, q0,M), ΣI = L, ΣO = A, δ((q, qM), l, a) =
(δ(q, (l, a)), δM(q, (l, a))), for all (q, qM) ∈ G, l ∈
L, a ∈ A, and F g = (F ×QM) ∪ (Q× (QM \ FM)).

2. Next, we compute the winning region W ⊆ F g of G as
described by Bloem et al. (2015).

3. We translate G and W to a reactive system S =
(QS , q0,S ,ΣI,S ,ΣO,S , δS , λS) that constitutes the shield.

(q3, qd) (q2, qe) (q1, qf ) qfail

. . .. . .. . .

. . .
open, close

0≤ level≤ 1

close

1≤ level≤2

close

2≤ level≤3

open

close ,
1≤ level≤2

close ,
2≤ level≤3

open ,
4≤ level≤5

open ,
5≤ level≤6

close ,
3≤ level≤4

Figure 5: An excerpt for the product game of our running
example. Transitions to paradise states are not shown.

The shield has the following components: QS =
G, q0,S = (q0, q0,M),ΣI,S = L × A,ΣO,S = A,
δS(g, (l, a)) = δ(g, (l, λS(g, (l, a)))) for all g ∈ G, l ∈
L, a ∈ A, and

λS(g, l, a) =

⎧⎨
⎩
a if δ(g, (l, a)) ∈ W

a′ if δ(g, (l, a)) /∈ W for some arbitrary
but fixed a′ with δ(g, (l, a′)) ∈ W.

In the construction, the state space of the game is the prod-
uct between the specification automaton state set and the ab-
straction state set. The safe states in the game (in the set F g)
are the ones at which either the specification automaton is in
a safe state, or the abstraction is in an unsafe state. The latter
case represents that the observed MDP behavior differs from
the behavior that was modeled in the abstraction. For game
solving, it is important that such cases (whose occurrence in
the field witnesses the incorrectness of the abstraction) count
as winning for the system player, as the system player only
needs to play correctly in environments that conform to the
abstraction.

To exemplify the shield construction, let us reconsider
Example 1. Building the product game between the speci-
fication automaton and the MDP abstraction (that we detail
in the next section) leads to a game with 602 states (if we
merge all states in F × QM into a single error state and
all states in Q × (QM \ FM) into a single paradise state
from which the game is always won by the system). If we
solve the game, then most of the states are winning, but a
few are not. Fig. 5 shows a small fraction of the game that
contains such non-winning states. In state (q3, qd), the sys-
tem should not choose action close, as otherwise the system
cannot avoid to reach qfail for some possible evolution of the
environment that is consistent with our abstraction. It could
be the case that qfail is not reached when the environment
chooses to let the level stay the same for a step, but the sys-
tem cannot be sure about this, so the action close must not
be picked.

A shield allows all actions that are guaranteed to lead to
a state in W , no matter what the next observation is. Since
these states, by the definition of the set of winning states, are
exactly the ones from which the system player can enforce
not to ever visit a state not in F , the shield is minimally
interfering. It disables all actions that may lead to an error
state (according to the abstraction).
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The construction of a shield can be extended naturally if a
ranking of actions rank t = {a1t , . . . , ant } is provided by the
agent. Then, the shield selects the first action at = ait that
is allowed by ϕs. Only if all actions in rank t are unsafe,
the shield is allowed to deviate and to select a safe action
at /∈ rankt.

Correctness and Minimal Interference of the

Computed Shields

We now prove that the shields computed according to the
definitions indeed have the claimed properties, namely cor-
rectness, and minimal interference.

Correctness: A shield works correctly if for every trace
s0a0s1a1 . . . ∈ (S × A)ω that MDP, shield and learner can
together produce, we have that (f(s0), a0)(f(s1), a1) . . . is
in the language of the specification automaton ϕS for the
MDP labeling function f . Additionally, the shield must al-
ways report at least one available action at every step.

Let q0q1 . . . ∈ Qω be the run of S corresponding to
a trace s0a0s1a1 . . . of the abstraction, i.e., for which for
every i ∈ N, we have ai = λS(qi, (f(si), ai)) and
qi+1 = δS(qi, (f(si), ai)). By the construction of the shield,
we have that QS = Q × QM, where Q is the state
space of ϕS and QM is the state space of the abstraction.
Hence, we can also write q0q1 . . . as (qS0 , q

M
0 )(qS1 , q

M
1 ) . . .,

where qM0 qM1 . . . is the run of the abstraction automaton on
s0a0s1a1 . . . and qS0 q

S
1 . . . is a run of ϕS on s0a0s1a1 . . ..

By the construction of the shield, it only has reachable states
(qS , qM) that are in the set of winning positions. For all such
states and all possible next labels l ∈ L, there exists at least
one action such that if the action is taken, then the next state
(q′S , q′M) is winning as well. The qS component of the run
of the shield always reflects the state of the specification au-
tomaton along the trace, and since a winning strategy makes
sure that only winning states are ever visited along a play, by
the definition of F g , the error state of ϕS can only be visited
after the error state for the abstraction MDP has been visited
(and hence the abstraction turned out to be incorrect). Note
that actions that may lead to the violation of the specifica-
tion (according to the abstraction) are modified by the shield
whenever the prefix trace is accepted by the abstraction, as
otherwise a state that is not winning in the game would be
visited, which the definition of λS prevents.

Minimal Interference: Let the shield, learner, and MDP
together produce a prefix trace s0a0s1a1s2a2 . . . sk that in-
duces a (prefix) run q0q1 . . . qk−1 ∈ Q∗ of the safety au-
tomaton ϕS that we used as the representation of the spec-
ification for building the shield. Assume that the shield de-
activates an action ak+1 that is available from state sk in
the MDP. We show that the shield had to deactivate ak+1 as
there is another MDP that is consistent with the observed
behavior and the abstraction for which, regardless of the
learner’s policy, there is a non-zero probability to violate the
specification after the trace prefix s0a0s1a1s2a2 . . . skak+1.

Using the abstract finite-state machine ϕM =
(QM, q0,M,Σ, δ, F ), we define this other MDP

M′ = (S′, s′I ,A,P ′,R) with S′ = QM × L,
s′I = (q0,M, f(s0)), A being the same set of actions as in
the original MDP, and where P ′((q, l), a) is a uniform dis-
tribution over all elements from the set {(q′, l′) ∈ QM×L |
q′ = δ(q, (l, a)), q′ ∈ F, ∃a′ ∈ A.δ(q′, (l′, a′)) ∈ F} for
every (q, l) ∈ S′ and a ∈ A. Every state (q′, l′) ∈ S′ is
mapped to l′ by the abstraction function f . The reward
function is the same as in the original MDP, except that we
ignore the (new) state component of the shield.

Assume now that action ak+1 is activated after the pre-
fix trace s0a0s1a1s2a2 . . . sk while the shield is in a state
(qS , qM). We have that M′ is an MDP in which every finite-
length label sequence that is possible in the abstraction for
some action sequence has a non-zero probability to occur if
the action sequence is chosen. Due to the construction of the
shield by game solving, action ak+1 is only deactivated in
state (qS , qM) if in the game, the environment player had a
strategy to violate ϕS using only traces allowed by the ab-
straction. Since ϕS is a safety property, the violation would
occur in finite time. Since in M′, all finite traces that can oc-
cur in the abstraction have a non-zero probability, activating
ak+1 (and the learner choosing ak+1) would imply a non-
zero proability to violate the specification in the future, no
matter what the learner does in the future. Hence, the shield
could not prevent a violation in such a case, and ak+1 needs
to be deactivated.

Convergence

Define an MDP M = (S, sI ,A,P,R), with discrete
state set S, discrete state-dependent action sets As, and
state-dependent transition functions Ps(a, s

′) that define
the probability of transitioning to state s′ when taking
action a in state s. Assume also that a shield S =
(QS , q0,S ,ΣI,S ,ΣO,S , δS , λS) is given for M and for some
MDP labeling function f : S → L.

We can build a product MDP M′ that represents the be-
havior of the shield and the MDP together. Since M′ is
a standard MDP, all learning algorithms that converge on
standard MDPs can be shown to converge in the presence
of a shield under this construction. Note that this argument
requires that whenever an action ranking is chosen by the
learner that does not contain a safe action, there is a fixed
probability distribution over the safe actions executed in-
stead. This distribution may depend on the state of the MDP
and the shield and the selected ranking, but must be constant
over time, as otherwise we could not model the joint be-
havior of the shield and the environment MDP as a product
MDP. Note that we made use of the fact that the learner has
access to the state of the shield and can base its actions on it
in this argument. In such a case, it suffices for the learner to
observe the current state as state of M rather than M′. To
the learner, this is indistinguishable from operating on M
without a shield.

Experiments

We applied shielded RL in four domains: (1) a robot in a
grid world, (2) a self-driving car scenario, (3) the water tank
scenario from Example 1, and (4) the pacman example. For
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clarity, we compare between a subset of shielding settings
which we later specify for each problem. The simulations
were performed on a computer equipped with an Intel R©
CoreTMi7-4790K and 16 GB of RAM running a 64-bit ver-
sion of Ubuntu R© 16.04 LTS. Source code, input files, and
detailed instructions to reproduce our experiments are avail-
able for download.1

Grid world Example. We conduced two experiments: a
robot in a 9x9 grid world, and a robot in a 15x9 grid world
with a moving obstacle. In both experiments, the robot’s
objective is to visit all the colored regions in a given or-
der while maintaining the following safety property ϕs: the
robot must not crash into walls or the moving opponent
agent. If the robot visits all marked regions in a given order
(called episode), a reward is granted, and if ϕs is violated, a
penalty is applied.

The agent uses tabular Q-learning with an ε-greedy ex-
plorer that is capable of multiple policy updates at once. For
both settings, we synthesized a shield from ϕs and the (pre-
cise) environment abstraction in less than 2 seconds.

α1

α4

α3

α2

Figure 6: 9x9 grid world.
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Figure 7: The accumulated reward per episode for the 9x9
grid world example.

The 9x9 grid world of the first experiment is illustrated in
Fig. 6. The result is shown in Fig. 7. We compare between
no shielding (red, dashed), no shielding with large penalties

1https://github.com/safe-rl/safe-rl-shielding

for unsafe actions (black, solid), and a |rankt| = 3 shield-
ing with penalties for corrected actions (black, solid). The
results show that only the unshielded versions experience
negative rewards. Furthermore, the shielded version is not
only safe, but also tends to learn more rapidly.

Figure 8: 15x9 grid world with moving obstacle.
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Figure 9: The accumulated reward per episode for the 15x9
grid world example.

The 15x9 grid world of the second experiment is illus-
trated in Fig. 8. The result is shown in Fig. 9. Only the
shielded version with |rankt| = 3 without penalty (blue,
dashed) finds the optimal path, resulting in a higher average
reward. In scenarios with |rankt| = 1 (red) or with penalties
(solid), the agent computes a suboptimal path.

A Self-Driving Car Example. This example considers an
agent that learns to drive around a block in a clockwise di-
rection in an environment with the size of 480x480 pixels.
The car has 8 sensors distributed evenly around the car that
trigger whenever the agent is less than 60 pixels away from
a wall. In each step, the car moves 3 pixels in the direc-
tion of its heading and can make a maximum turn of 7.5
degrees in either direction. The safety specification in this
example is to avoid crashing into a wall. A corresponding
shield was synthesized in 2 seconds. In each step, a positive
reward is given if the car moves a step in a clockwise direc-
tion along its track and a penalty is given if it moves in a
counter-clockwise direction. A crash into the wall results in
a penalty and a restart. The agent uses a Deep Q-Network
with a Boltzmann exploration policy. This network consists
of 4 input nodes, 8 outputs nodes and 3 hidden layers.
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Figure 10: The accumulated reward per episode for the self
driving car example.

The plot in Fig. 10 shows that the accumulated rewards
for unshielded RL (red, dashed) increases over time, but the
car still crashes at the end of the simulation. The shielded
version without punishment (blue, solid) learns more rapidly
than the unshielded learner and never crashes.
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Figure 11: The accumulated reward per episode for the water
tank example.

The Water Tank Example. In this example, the tank must
never run dry or overflow by controlling the inflow switch
(ϕs

1). In addition, the inflow switch must not change its mode
of operation before 3 time steps have passed since the last
mode change (ϕs

2). Refer to Ex. 1, for a full description
of the abstract water tank dynamics and specification. We
generated a concrete MDP in which the energy consump-
tion depends only on the state and there are multiple lo-
cal minima. A shield was synthesized in less than a sec-
ond. Fig. 11 shows that both shielded (dashed lines) and un-
shielded Q-learning and SARSA experiments (solid lines)
do reach an optimal policy. However, the shielded imple-
mentations reach the optimal policy in a significantly shorter
time than the unshielded implementations.

Figure 12: The 5x18 grid world of the pacman example.

The Pacman Example. We conduced another experiment
in a 18x5 grid world that simulates a pacman-like environ-
ment, as illustrated in Fig. 12. The objective of the robot
(pacman) is to visit all fields of the maze without crashing
into the moving opponent agent (ghost). If pacman visits all
fields in the maze, a reward is granted, and if pacman and
the ghost collide, a penalty is applied. The example uses an
approximate Q-learning agent.
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Figure 13: The accumulated reward per episode for the pac-
man example.

We synthesized a shield in less than 7 seconds. Fig. 13
shows the results. As expected, in the shielded case, pac-
man is always able to clear the game starting from the first
episode.

Conclusion

We developed a method for RL under safety constraints
expressed as temporal logic specifications. The method is
based on shielding the decisions of the underlying learning
algorithm from violating the specification. We proposed an
algorithm for the automated synthesis of shields for given
temporal logic specifications. Even though the inner work-
ing of a learning algorithm is often complex, the safety crite-
ria may still be enforced by possibly simple means. Shield-
ing exploits this possibility. A shield depends only on the
monitored input-output behavior, the environment abstrac-
tion, and the correctness specifications – it is independent of
the intricate details of the underlying learning algorithm.

We demonstrated the use of shielded learning on several
RL scenarios. In all of them, the learning performance of
the shielded agents improved compared to the unshielded
case. The main downside of our approach is that in order to
prevent the learner from making unsafe actions, some ap-
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proximate model of when which action is unsafe needs to
be available. We argue that this is unavoidable if the allowed
actions depend on the state of the environment, as otherwise
there is no way to know which actions are allowed. Our ex-
periments show, however, that in applications in which safe
learning is needed, the effort to construct an abstraction is
well-spent, as our approach not only makes learning safe,
but also shows great promise of improving learning perfor-
mance.
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