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Abstract

Mahalanobis Metric Learning (MML) has been actively stud-
ied recently in machine learning community. Most of existing
MML methods aim to learn a powerful Mahalanobis distance
for computing similarity of two objects. More recently, mul-
tiple methods use matrix norm regularizers to constrain the
learned distance matrix M to improve the performance. How-
ever, in real applications, the structure of the distance matrix
M is complicated and cannot be characterized well by the
simple matrix norm. In this paper, we propose a novel robust
metric learning method with learning the structure of the dis-
tance matrix in a new and natural way. We partition M into
blocks and consider each block as a random matrix variate,
which is fitted by matrix variate Gaussian mixture distribu-
tion. Different from existing methods, our model has no any
assumption on M and automatically learns the structure of
M from the real data, where the distance matrix M often is
neither sparse nor low-rank. We design an effective algorithm
to optimize the proposed model and establish the correspond-
ing theoretical guarantee. We conduct extensive evaluations
on the real-world data. Experimental results show our method
consistently outperforms the related state-of-the-art methods.

Introduction

Mahalanobis metric learning (MML) has been actively stud-
ied in machine learning community and successful applied
to address numerous applications (Kuznetsova et al. 2016).
MML methods target to learn a good Mahalanobis met-
ric to effectively gauge the pairwise distance between data
objects. Particularly, the distance matrix M plays a cru-
cial role in MML. A well-learned M can precisely reflect
domain-specific connections and relationships. Toward this
end, many metric learning algorithms under various prob-
lem settings have been proposed, such as pairwise con-
strained component analysis (PCCA) (Mignon and Jurie
2012), neighborhood repulsed metric learning (NRML) (Lu
et al. 2014), large margin nearest neighbor (LMNN) (Wein-
berger and Saul 2009), logistic discriminant metric learn-
ing (LDML) (Guillaumin, Verbeek, and Schmid 2009), and
Hamming distance learning (Zheng, Tang, and Shao 2016;
Zheng and Shao 2016). Although these supervised algo-
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rithms have shown great success in many applications, find-
ing a robust distance metric from real-world data remains a
big challenge.

To enhance the performance of metric learning models,
some recent methods, represented by low-rank or sparse
metric learning (Huo, Nie, and Huang 2016; Ying, Huang,
and Campbell 2009), actively integrate different regulariza-
tion terms associated with the matrix M in modeling. On
one hand, using these regularization terms can effectively
prevents the overfitting problem since it is equivalent to
adding the prior knowledge into M. On the other hand, these
regularization terms can extract partial structure information
of the matrix M. The structure of a variable corresponds to
its spatial distribution. However, for many practical appli-
cations, the spatial distribution of M is generally irregular
and complicated. The simple matrix norm regularizers can-
not characterize the structure information well. For instance,
L2 or L1-norm regularization is based on the hypothesis that
the elements of M are independently distributed with Gaus-
sian distribution or Laplace distribution (Luo et al. 2016b).
Obviously, they cannot capture the spatial structure of M.
The low-rank and Fantope regularizers (Law, Thome, and
Cord 2014) overcome this limitation, but they lack the gen-
eralization because the distance matrix M may not be low-
rank for real data.

Many previous works make use of multiple matrix norms
to jointly characterize a matrix variate with complex distri-
bution. Nevertheless, these strategies are limited to some
special cases. For example, Least Soft-threshold Squares
method (Wang, Lu, and Yang 2013) is only suitable for
the variate following Gaussian-Laplace distribution, while
Nuclear-L1 joint regression model (Luo et al. 2015; 2016a)
focuses on the structural and sparse matrix variate. To adapt
more practical problems, some scholars carry out the variate
estimation task under the framework of the Gaussian Mix-
ture Regression (GMR) (Cao et al. 2015). This is originated
from a basic fact: Gaussian Mixture distribution can con-
struct a universal approximator to any continuous density
function in theory (Bishop 2007). The experimental results
show the advantages of this strategy, but most of these meth-
ods (related to GMR) are based on regression analysis. As
we know, many practical problems cannot be formulated as
regression-like models. Accordingly, it is expected to extend
GMR to other formulations. Additionally, these GMR based
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approaches assume the elements in a matrix variate are gen-
erated independently for the convenience, which overlooks
the latent relationships between elements.

In this paper, we propose a novel metric learning model
that utilizes the Gaussian Mixture Distribution (GMD) to
automatically learn the structure information of the distance
matrix M from the real data. To the best of our knowledge,
this is the first work for depicting a matrix variate using
GMD in metric learning model. To fully exploit the struc-
ture of M, we partition M into blocks and view each block
as a random matrix variate which is automatically fitted by
GMD. Since each block represents the local structure of M,
our method integrates the structure information of different
regions of M in modeling. On the basis of GMD, we con-
struct a convex regularization with regard to M and use it
to derive a robust metric learning model with triplet con-
straints. A new effective algorithm is introduced to solve
the proposed model. Due to the promising generalization of
GMD, our model does not rely on any assumption on M, re-
gardless of whether it holds the low-rank (or sparse) attribute
or not. Therefore, comparing with existing metric learning
methods using matrix norm regularizers, our method can ef-
fectively learn the structure information for the general dis-
tance matrix M. Moreover, as the theoretical contribution of
this paper, we analyze the convexity and generalization abil-
ity of the proposed model. A series of experiments on image
classification and face verification demonstrate the effective-
ness of our new method.

Learning A Robust Distance Metric Using

Gaussian Mixture Distribution
In this section, we will first propose a robust objective for
distance metric learning using grouped Gaussian mixture
distribution. After that, we design an effective optimization
algorithm to solve the proposed model.

Notation. Throughout this paper, we write matrices as
bold uppercase characters and vectors as bold lowercase
characters. Let y = {y1, y2, · · ·, yn} be the label set of in-
put (or training) samples X = {x1,x2, · · ·,xn}, where each
xi ∈ Rd (i = 1, 2, · · ·, n). For example, the label of sample
xi is yi. Let r(yi, yl) = 1 if yi �= yl otherwise r(yi, yl) = 0.
Suppose input samples X and labels y are contained in a in-
put space X and a label space Y , respectively. Meanwhile,
we assume z := {zi = (xi, yi) : xi ∈ X , yi ∈ Y, i ∈ Nn},
where Nn = {1, 2, · · ·, n}. For any x ∈ R, the function
f(x) = [x]+ is equal to x if x > 0 and zero otherwise.
Rd×d

+ defines the set of positive definite matrices on Rd×d.

‖M‖F , MT and Tr(M) denote the Frobenius-norm, trans-
pose and trace of the matrix M, respectively.

Problem statement. Given any two data points xi and xj ,
a Mahalanobis distance between them can be calculated as
following:

dM(xi, xj) =
√
(xi − xj)TM(xi − xj). (1)

The core task of metric learning is to learn an optimal
positive semi-definite matrix M such that the distance be-
tween similar samples should be relatively smaller than be-
tween dissimilar samples. Meanwhile, a desired M is able

Figure 1: Partition a matrix M = (mij)d×d into p × q non-
overlapping blocks: (a) the original matrix M; (b) the parti-
tioned result, where each Muv ∈ Rdu×dv (u = 1, · · ·, p, v =
1, · · ·, q).

to provide robustness to noise. To this end, the label in-
formation can be fully exploited, which leads to different
weakly-supervised constraints, including pairwise, triplet
and quadruplet constraints. However, the metric learning
models with different constraints can be unified as the fol-
lowing form:

Mz = argmin
M∈M

(εz(M) + λΩ(M)), (2)

where εz(·) is called loss function, Ω(M) is a regulariza-
tion term, the balance parameter λ > 0 and M denotes the
domain of M. In general, M ⊆ Rd×d

+ .
The loss function εz(·) is generally induced by differ-

ent constraints. Therefore, the minimization of εz(·) will
result in minimizing the distances between the data points
with similar constraints and maximizing the distances be-
tween the data points with dissimilar constraints. Recently,
the metric learning model: large margin nearest neighbor
(LMNN) (Weinberger and Saul 2009) has attracted wide at-
tention. It uses triplet constraints on training examples and
the corresponding loss function can expressed as:

εlmnn
z (M) = (1− μ)

∑
i,j�i

DM(xi,xj)

+ μ
∑

i,j�i,l

r(yi, yl)[1 +DM(xi,xj)

−DM(xi,xl)]+,

(3)

where DM(xi,xj) = d2M(xi, xj) and the notation j � i

indicates that input xj is a target neighbor (i.e., the same
labeled inputs) of input xi . When r(yi, yl) = 1, xl is an
impostor neighbor (i.e., differently labeled inputs) of input
xi. And the parameter μ ∈ (0 1) defines a trade-off between
the above two objectives.

Although LMNN significantly improves the performance
of traditional kNN classification, it is often confront with the
overfitting problem. Then, some regularized LMNN models
(Li, Tian, and Tao 2016; Lim, McFee, and Lanckriet 2013)
have emerged, which enhance the generalization and robust-
ness of LMNN. It should be noted that these methods only
utilize some special matrix norm regularizers (e.g., L1-norm
or nuclear norm) to constrain M. In many practical prob-
lems, however, the distance matrix M of real data may be
neither sparse nor low-rank.
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The robust metric learning model induced by GMD. In
the following, we provide a general regularization to char-
acterize distance matrix M to adapt more practical applica-
tions. This regularization is induced by matrix variate Gaus-
sian mixture distribution.

First, as shown in Fig.1, we partition the matrix M (∈
Rd×d) into p×q blocks, where any two matrices do not con-
tain the same elements. For each block Muv (∈ Rdu×dv ),
we preserve its matrix form. Each block Muv (∈ Rdu×dv )
can be regarded as the local structure of M, so our strategy
actually merges different regions of local structures of M.

Next, we use matrix variate Gaussian mixture distribution
to fit each block. For the convenience, it is assumed that all
blocks possess the same size. As a result, the Probability
Density Function (PDF) of each block Muv has the follow-
ing form:

P(Muv) =

R∑
k=1

�kN (Muv|0,Σk), (4)

where R is the number of Gaussian components, �k de-
notes the mixing weight with �k > 0 and

∑R
k=1 �k = 1

and N (Muv|0,Σk) is the zero-mean matrix variate Gaus-
sian distribution with Σk denoting the covariance matrix,
i.e.,

N (Muv|0,Σk) =
1

(2π)
dudv

2 |Σk|dv
exp(−1

2
tr(MT

uvΣ
−1
k Muv)).

(5)
Finally, we assume all random matrix variates {Muv: u =

1, 2, · · ·, p, v = 1, 2, · · ·, q} are independently and identically
distributed. The PDF of M can be written as:

P(M) =

p∏
u=1

q∏
v=1

P(Muv). (6)

The main task of traditional GMR is to search for a group
of mixing weights � = {�1, �2, · · ·, �R} and a group of
covariance matrices Σ = {Σ1,Σ2, · · ·,ΣR} such that the
PDF of the regression error is maximized. In our problem,
this means that the log likelihood function associated with
the distance matrix M

−lnP(M) = −
p∑

u=1

q∑
v=1

ln

(
R∑

k=1

�kN (Muv|0,Σk)

)
(7)

is minimized.
The above function not only considers the two-

dimensional group structure of M, but also absorbs the ad-
vantages of GMD. If we set R = p = q = 1, π1 = 1
and Σ1 = Id×d, where Id×d denotes a d× d identity matrix,
then −lnP(M) becomes the squared Frobenius-norm. As for
other norms, e.g., L1-norm, group sparsity norm and nuclear
norm (Li et al. 2016), there exist the corresponding segmen-
tation strategies on M and parameters � and Σ such that
−lnP(·) can well approximate them (Maz’ya and Schmidt
1996). Therefore, −lnP(·) is more general as compared to
these matrix norm regularizers.

Considering this merit of −lnP(·), we choose Ω(M) =
−lnP(M) and εz(·) = εlmnn

z (·) in (2), which leads to the
following metric learning model:

(M,�,Σ) = argmin
(
εlmnn
z (M)− λlnP(M)

)
s.t. M ∈ M,�k > 0, Σk ∈ Rd×d

+ , k = 1, 2, · · ·, R

and
R∑

k=1

�k = 1.

(8)

Optimization algorithm for solving model (8). Compar-
ing to the other metric learning models with matrix norm
regularizers, solving model (8) is very challenging, because
it needs to learn more model parameters and −lnP(·) is
not separable for Σ and π. Here, we regard the objective
(8) as a Q-function (Zheng, Liu, and Ni 2014) in Bayesian
learning and propose a simple yet effective Expectation-
Maximization (EM) algorithm (Bishop 2007) to optimize it.
This is divided into three steps as follows:

(1) Initialization. We need to initialize the distance ma-
trix M, mixing coefficients set � and covariance matrices set
Σ.

(2) E-step. In this step, we compute the conditional ex-
pectation of latent variate zuv,k given Muv by the Bayes’
rule, i.e.,

zuv,k =
�kN (Muv|0,Σk)∑R
j=1 �jN (Muv|0,Σj)

. (9)

(3) M-step. We will find the optimal parameters Σ,� and
M according to the current posterior probabilities.

Recalling our model (8), each optimal Σk can be obtained
by solving the following problem:

min
Σk∈Rd×d

+

−
p∑

u=1

q∑
v=1

ln

(
R∑

k=1

�kN (Muv|0,Σk)

)
. (10)

Calculating the derivative objective (10) with respect to
Σk and setting it as 0, we have

Σk =
1∑p

u=1

∑q
v=1 zuv,k

(

p∑
u=1

q∑
v=1

zuv,kMuvM
T
uv + ξIdu×dv ),

(11)
where ξIdu×dv

(ξ > 0) is a perturbed term insuring Σk is
invertible.

To achieve the optimal �k, k = 1, 2, · · ·, R, we consider
the optimization problem:

min
�k>0

−
p∑

u=1

q∑
v=1

ln

(
R∑

k=1

�kN (Muv|0,Σk)

)
+α(

R∑
k=1

�k−1),

(12)
where α > 0 is a Lagrangian multiplier. Therefore,

�k =
1

pq

p∑
u=1

q∑
v=1

zuv,k. (13)

For the variate M, we consider the following problem:

M = argmin
M∈M

(
εlmnn
z (M)− λlnP(M)

)
. (14)
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It is difficult to find a closed-form solution of the problem
(14). However, we can compute a sub-gradient of objective
(14) with regard to M:

�M = (1− μ)
∑
i,j�i

Cij + μ
∑

(i,j,l)∈H
(Cij − Cij)

+
d(−λlnP(M))

dM
,

(15)

where Cij = (xi − xj)(xi − xj)
T and the set of triples H is

defined as: (i, j, l) ∈ H if and only if the indices (i, j, l) trig-
ger the hinge loss in the second part of Eq. (3). In addition,
the each block of d(−λlnP(M))

dM
can be expressed as:

d(−λlnP(M))

dMuv
=

∑R
k=1 GDuv,kΣ

−1
k∑R

k=1 GDuv,k

, (16)

where GDuv,k = �k

(2π)
dudv

2 |Σk|dv
exp(− 1

2
tr(MT

uvΣ
−1
k Muv)).

Then, when Σ and � are fixed, the optimal M can be found
by solving model (14) using subgradient method (Boyd,
Xiao, and Mutapcic 2003):

M ⇐ PRd×d
+

( M − γ � M), (17)

where PRd×d
+

(·) denotes the projection operator and γ > 0

is a step size.
The whole iterative procedure for solving problem (8) is

summarized in Algorithm 1.
Remark 1. Computing the sub-gradient (15) is extremely

expensive since the set of triples H is potentially very large.
To circumvent this problem, we can use the similar tech-
nique as in (Weinberger and Saul 2009) to reduce the com-
putation complexity of (17).

There have been many results to show the convergence of
EM algorithm. Here we refer the readers to (Gupta, Chen,
and others 2011)). In Algorithm 1, we use the following con-
vergence conditions:

‖ Σnew
k −Σold

k ‖F≤ θ and |�newk − �oldk | ≤ θ, (18)

where θ is a sufficiently small positive number.
If the final distance matrix M is obtained by Algorithm 1,

then by Eq. (1), we can construct the Mahalanobis distance
to compute similarity of two samples in the experiments.

Theoretical Analysis

In this section, we investigate the convexity and the general-
ization ability of model (14).

Theorem 1. The optimization problem (14) is convex.
Proof. By (Parameswaran and Weinberger 2010), we

know that εlmnn
z (M) is convex. Thus, it suffices to show that

−lnP(M) is convex. Since each fk(M) = −tr(MTΣkM)
is a concave matrix function and the g(x) = ex is
monotonically increasing and convex, then each hk(M) =

cke
−tr(MTΣkM) is a concave matrix function. Therefore,

h1(M) + h2(M) + · · ·+ hR(M) is still concave. Consider-
ing that −ln(·) is a monotonically decreasing function, it is
known that the regularization −lnP(M) is convex. �

Algorithm 1 Solving Model (8) via EM
Input: training samples X, parameters λ, components number
R and threshold value ξ.
Initialization: covariance matrices set Σ = {Σ1,Σ2, · · ·,ΣR}
coefficients � = {�1, �2, · · ·, �R} and the initial distance matrix
M.
Output: the final parameters Σ, � and distance matrix M.
repeat

1. (E-step for zuv,k): Update the posterior probability zuv,k by

znew
uv,k ⇐ �oldk N (Mold

uv |0,Σold
k )∑R

j=1 �
old
j N (Mold

uv |0,Σold
j )

.

2. (M-step for Σk): Update each Σk by

Σk
new ⇐ 1∑p

u=1

∑q
v=1 z

old
uv,k

(W + ξIdu×dv ),

where W =
∑p

u=1

∑q
v=1 z

old
uv,kMold

uv Mold
uv

T
.

3. (M-step for �k): Update each �k by

�new
k ⇐ 1

pq

p∑
u=1

q∑
v=1

zolduv,k.

4. (M-step for M): Update M by using subgradient method (17)
to solve problem (14).
until converge.

Remark 2. Connecting (Boyd, Xiao, and Mutapcic 2003)
and Theorem 1, it is known that iteration (17) is convergent.

Before starting the generalization guarantee of model
(14), some definitions and Lemmas needs to be introduced.
We assume that the instance space X is a compact convex
with respect to L2-norm, i.e., there exists a constant τ > 0
such that ∀ x ∈ X , ‖x‖2 ≤ τ. Given a training sample
T = {zi = (xi, yi)}ni=1 drawn i.i.d. from an unknown joint
distribution P over the space Z, we denote by PT the set of
all possible pair built from T :

PT = {(z1, z1), · · ·, (z1, zn), · · ·, (zn, zn)}. (19)

For the convenience, we simplify triplet constraints in
(14) as the pairwise constraints, and consider the more gen-
eral metric learning model:

M = argmin
M∈M

⎛
⎝ 1

|PT |
∑

(zi,zj)∈PT

ω(M, zi, zj)− λlnP(M)

⎞
⎠ ,

(20)

where |PT | denotes the element number of PT and the loss
function ω(M, zi, zj) depends on the input examples and
their labels.

We call optimization problem (20) as the metric learning
algorithm A, which takes as input a finite set of pairs from
(Z × Z)n and outputs a metric.

Definition 1. (Bellet 2013) The model (20) (or A) is
(S, ζ(·))-robust for S ∈ N and ζ(·) : (Z × Z)n → R
if Z can be partitioned into S disjoints sets, denoted by
{Ci}Si=1, such that the following holds for all T ∈ Zn :
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Databases 1NN SVM LMNN LMNN Trace LMNN Fantope LMNN Cap Our method
FGNET 10.412 42.647 47.653 54.711 55.286 57.817 59.812

VINIR 33.474 68.850 69.750 69.832 73.600 73.731 74.428

OSR 65.474 75.850 75.315 76.021 76.471 76.511 77.493

PubFig 67.556 83.797 86.353 86.411 86.576 87.125 87.883

Table 1: The classification accuracies (%) of all methods on the FGNET Aging, VINIR, OSR, and PubFig databases

∀(z1, z2) ∈ PT , z, z′ ∈ Z and i, j ∈ [S] : if z1, z ∈ Ci and
z2, z′ ∈ Cj then

|ω(MPT , z1, z2)− ω(MPT , z1, z2)| ≤ ζ(PT ), (21)
where MPT is learned by model (20) and ζ(PT ) > 0.

We further assume that ω(M, zi, zj) = g(yiyj [1 −
DM(xi, xj)]), where g(·) is nonnegative and Lipschitz con-
tinuous with Lipschitz constant L.

Lemma 1. If σk is the minimum eigenvalue of Σk, then
tr(MTΣkM) ≥ σktr(MT M).

Proof. Let the eigenvalue decomposition of Σk

be UT
kΔUk, it can be seen that tr[MMT UT

k (Δk −
σkId×d)Uk] ≥ 0. This implies that tr(MTΣkM) ≥
σktr(MT M). �

Theorem 2. Model (20) is (|Y|N (γ/2,X , ‖ · ‖2),
8Lε0τγ√

λ�
)-robust, where N (γ/2,X , ‖·‖2) is the γ/2-covering

number of X (Bellet 2013), ε0 = εz(0) − λlnP(0) and
γ > 0.

Proof. Let ε(M) = 1
|PT |

∑
(zi,zj)∈PT

ω(M, zi, zj) and
M∗ be the optimal solution of model (20), then we have

εz(M
∗)− λlnP(M∗) ≤ εz(0)− λlnP(0) = ε0, (22)

which leads to −lnP(M∗) ≤ ε0
λ .

We partition Z as |Y|N (γ/2,X , ‖ · ‖2) sets such that if z

and z′ belong to the same set then y = y′ and ‖x − x′‖ ≤ γ.
Now, for z1, z2, z′1, z′2 ∈ Z, if y1 = y′1 and y2 = y′2, then
‖x1 − x′1‖ ≤ γ and ‖x2 − x′

2‖ ≤ γ. Thus,

|g(y1y2[1−DM∗(x1, x2)])− g(y′1y
′
2[1−DM∗(x′1, x′

2)])|
≤L(‖x1 − x2‖2‖M‖F ‖x1 − x′1‖2

+ ‖x1 − x2‖2‖M‖F ‖x2 − x′2‖2
+ ‖x1 − x′

1‖2‖M‖F ‖x1 − x′2‖2
+ ‖x2 − x2‖2‖M‖F ‖x1 − x′2‖2).

(23)

On the other hand, denoting σ = min{σ1, σ2, · · ·, σk} and
� = min{�1, �2, · · ·, �k} and considering Lemma 1, we have

−lnP(M∗) ≥ −lnR�e−σtr(MT M)

= −lnR�+ σtr(MT M).
(24)

Noticing −lnR� ≥ 0, we further get√
− 1

σ
lnP(M∗) ≥

√
tr(MT M) = ‖M‖F . (25)

Combining (23) and (25), we have

|g(y1y2[1−DM∗(x1, x2)])− g(y′1y
′
2[1−DM∗(x′1, x′

2)])|

≤8Lε0τγ√
λ�

.

(26)

According to Definition 1, we can complete the proof of
Theorem 2. �

In this paper, this loss function ω(M, zi, zj) is assumed
to be nonnegative and uniformly bounded by a constant B
(B > 0). Denote Gω

PT
= 1

|PT |
∑

(zi,zj)∈PT
ω(M, zi, zj),

τ = 8Lε0τγ√
λ�

, K = |Y|N (γ/2,X , ‖ · ‖2) and Gω =

Ez,z′∼P [ω(M, zi, zj)], where E(·) defines the Expectation
function. Using Theorem 2 and Theorem 7.3 in (Bellet
2013), we can easily obtain the generalization bound of
model (20), i.e., for any δ > 0, with probability at least 1−δ

we have:

|Gω(MPT )−Gω
PT (MPT )| ≤

[
τ + 2B

√
2Kln2 + 2ln(1/δ)

n

]
,

(27)
where n denotes the number of training samples.

Experiments

In this section, five standard databases, including FGNET
Aging database (Lanitis, Taylor, and Cootes 2002), Visible
(VI) and Near-Infrared (NIR) Face Database (Shen et al.
2011), OSR database (Parikh and Grauman 2011), PubFig
database (Kumar et al. 2009) and LFW database (Huang
et al. 2007), are selected to evaluate the effectiveness of
our method. Especially, we implement image classification
experiments on FGNET Aging, VI and NIR Face, OSR
and PubFig databases, and compare our method with kNN,
SVM (Fan et al. 2008), LMNN (Weinberger and Saul 2009),
LMNN Trace (Huo, Nie, and Huang 2016), LMNN Fantope
(Law, Thome, and Cord 2014) and LMNN Cap (Huo, Nie,
and Huang 2016). Meanwhile, we carry out face verification
experiments on PubFig and LFW databases, and compare
our method with LMNN Cap, LMNN Fantope, KISSME
(Koestinger et al. 2012), ITML (Davis et al. 2007), LDML
(Guillaumin, Verbeek, and Schmid 2009), IDENTITY (Huo,
Nie, and Huang 2016) and MAHAL (Huo, Nie, and Huang
2016). For our method, we set λ = 0.001, ξ = 10−5 and
R = 5. For other compared methods, we follow the authors’
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(a) Results of 5 nearest neighbors when we query an image on
OSR dataset. The first row shows the results of LMNN Cap,
and the second row shows the results of our method.

(b) Results of 5 nearest neighbors when we query an image on
Pubfig dataset. The first row shows the results of LMNN Cap,
and the second row shows the results of our method.

Figure 2: Results of 5 nearest neighbors when we query an image. Green line means this neighbor is in the same class with
query image, and red line denotes they are different.

suggestions to choose the optimal parameters.

Experiments on the FGNET Aging Database

We implement an experiment on the FGNET Aging
Database. There are 1, 002 face images from 82 subjects
in this database. Each subject has 6-18 face images at dif-
ferent ages. Each image is labeled by its chronological age.
The ages are distributed in a wide range from 0 to 69. Be-
sides age variation, most of the age-progressive image se-
quences display other types of facial variations, such as sig-
nificant changes in pose, illumination, expression, etc. To
adapt some metric learning methods, a subset of FGNET
database is chosen. It includes 680 face images from 68
subjects. Each subject has 10 face images. We manually
cropped the face portion of the image and then normalized
it to 32× 32 pixels. Then, we choose randomly five face
images from each person as training samples, while the re-
maining five images are utilized as test samples. This ex-
periment is repeated ten times. We calculate the average
recognition rates (%) and standard deviations of all meth-
ods as shown in the second line of Table 1. ForkNN, we set
k = 1 as in (Huo, Nie, and Huang 2016). From Table 1,
we can find that the results of some metric learning methods
with regularization terms such as LMNN Trace (54.711%),
LMNN Fantope (55.29%) and LMNN Cap (57.817%) per-
form better than the other methods. Since FGNET Aging
database not only includes age variance, but also face pose
changes, it is very challenging to correctly characterize the
distance matrix M. However, our method (59.812%) still has
some advantages in handling these variances. As a result,
comparing to simple matrix norm regularizers, the proposed
regularization (7) can fit the distance matrix M better.

Experiments on the VI and NIR Face Database

An experiment is performed on the Visible (VI) and Near-
Infrared (NIR) Face Database (Shen et al. 2011). The NIR
and VI database is collected using developed dual cam-
era system from 215 subjects. Subjects faces were captured

in four different settings, i.e., expression variations, pose
variations and illumination/time variations. In my experi-
ment, 800 face images from 80 subjects on this database
are adopted. Each subject has 10 face images which include
five visible and five near-infrared face images. We manu-
ally cropped the face portion of the image and then normal-
ized it to 32× 32 pixels. Then, we choose randomly five face
images from each person as training samples, while the re-
maining five images are utilized as test samples. This exper-
iment is repeated ten times. We calculate the average recog-
nition rates (%) of all methods as shown in the third line
of Table 1. From this table, it is observed that the results
of all methods are similar. Particularly, the result of SVM
(68.850%) is encouraging. The classification accuracies of
other LMNN based methods are less than 74%, while the
proposed method achieves the highest accuracy: 74.428%.
This means that our method can effectively handle face im-
ages from two sensor types.

Experiments on the OSR Database

In this experiment, we utilize Outdoor Scene Recognition
(OSR) dataset. It includes 2688 images from 8 scene cat-
egories, which are described by high level attribute fea-
tures. The same experimental setting as (Huo, Nie, and
Huang 2016) is adopted. That is, 30 images for each
category are chosen as training data, and other images
are used as testing data. To verify the robustness of our
methods, we randomly select 30 images for each cate-
gory as training data, and other images are used as test-
ing data. This procedure is repeated 5 times. We compute
the average accuracies of the compared methods, including
kNN, SVM, LMNN, LMNN Trace norm, LMNN Fantope,
LMNN capped norm and our method, which are listed in
the forth line of Table 1. It is observed that the perfor-
mance of 1NN is poor since it only involves an Euclidean
metric. The results of the other methods associated with
LMNN are comparative, because they take advantage of
Mahalanobis distance, which admits arbitrary linear scal-
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(a) Pubfig dataset
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(b) Attribute Feature (LFW dataset)
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Figure 3: ROC curves of face verification on Pubfig and LFW datasets

ings and rotations of the feature space. Some regularized
LMNN methods, e.g., LMNN Trace norm, LMNN Fantope
and LMNN capped norm, are superior to LMNN. However,
our method (77.493%) performs better than other methods.
Accordingly, using Gaussian mixture distribution induced
regularization to characterize distance matrix M is more ap-
propriate than matrix norm regularizers in real applications.

Experiments on the PubFig Database

We design two experiments on the PubFig Face Dataset.
In the first experiment, we choose a subset of Pubfig
database, which includes 771 images from 8 face cate-
gories. The experimental setting is similar to (Law, Thome,
and Cord 2014). But here, a 512-dimensional DSIFT (Che-
ung and Hamarneh 2009) descriptor is used for the bet-
ter performance. This experiment is run 5 times, where
30 images per person in training data are selected ran-
domly each time, and the average classification accuracies
are utilized as the evaluation criterion. We compare our
method with some related methods, such as 1NN, SVM,
LMNN, LMNN Trace, LMNN Fantope and LMNN Cap.
The results of all method are exhibited in the fifth line
of Table 1. It can be seen that our method achieves the
best result: 88.083%. Meanwhile, some methods based on
LMNN, including LMNN trace (86.411%), LMNN fantope
(86.576%) and LMNN cap (87.125%), also give the good
performance. The above results shows that our method is ef-
fective to the face images under uncontrolled environment.

The second experiment focuses on face verification task
using face verification benchmark dataset, which consists
of 20,000 pairs of images of 140 people from PubFig Face
Dataset. The data is divided into 10 folds with mutually dis-
joint sets of 14 people, and each fold contains 1,000 intra and
1,000 extra-personal pairs. Our method is compared with
some recent methods and the Equal Error Rates (EER) of all
method are computed. The ROC curves of all methods are
shown in Fig.3(a). It is evident that our method has a leading
performance. For example, the 1-EER values of LMNN Cap
(Huo, Nie, and Huang 2016), Fantope, KISSME (Koestinger
et al. 2012), ITML (Davis et al. 2007), LDML (Guillau-
min, Verbeek, and Schmid 2009), IDENTITY (Huo, Nie,

and Huang 2016), MAHAL (Huo, Nie, and Huang 2016)
and our method are 0.782, 0.781, 0.766, 0.725, 0.719 and
0.784, respectively. Thus, how to fit the distance M has an
important effect on the face verification performance.

Experiments on the LFW Database

In this subsection, the face verification experiments are car-
ried out on the Labeled Faces in the Wild (LFW) dataset.
It contains 13,233 unconstrained face images of 5749 indi-
viduals, and 1680 of these pictured people appear in two
or more distinct photos. We adopt two different feature rep-
resentations, i.e., LFW Attribute feature dataset and LFW
SIFT feature dataset. The experiment setting is similar to
(Huo, Nie, and Huang 2016). We plot ROC curves of all
methods, including LMNN Cap, Fantope, KISSME, ITML,
LDML, Identity, MAHAL in Figure 2(a) and 1(b). Mean-
while, the Equal Error Rate for each method is calculated
and the 1-EER value is used to evaluate the performance
of these methods. Figure 3(b) shows the results on LFW
Attribute feature dataset. It is seen that Mahalanobis dis-
tance based methods perform better than Euclidean distance.
Comparing with Identity and Mahalanobis methods, the ad-
vantage of KISSME is obvious. The performance of Ma-
halanobis distance with structural regularizers is competi-
tive. For example, LMNN Cap and Fantope reach 84.5%
and 84.1%, respectively. For SIFT Feature dataset, the sim-
ilar phenomenon can be found (see Figure 3(c)). In a word,
our method consistently outperforms other methods.

Conclusions

In this paper, we propose a robust metric learning model
with triplet constraints. Our method partitions the distance
matrix M into several blocks and uses Matrix Variate Gaus-
sian Mixture Distribution to fit each block. Due to the out-
standing generalization of Gaussian Mixture Distribution,
the proposed method can deal with more practical cases,
where the distribution of M is complex and irregular. The
proposed model is solved via EM algorithm. Additionally,
we provide the theoretical analysis for our method. Empir-
ical experiments on several real-world datasets demonstrate
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the robustness of the proposed model.
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