
Inexact Proximal Gradient Methods for
Non-Convex and Non-Smooth Optimization

Bin Gu,1 De Wang,2 Zhouyuan Huo,1 Heng Huang1*
1Department of Electrical & Computer Engineering, University of Pittsburgh, USA

2Dept. of Computer Science and Engineering, University of Texas at Arlington, USA
big10@pitt.edu, wangdelp@gmail.com, zhouyuan.huo@pitt.edu, heng.huang@pitt.edu

Abstract

In machine learning research, the proximal gradient methods
are popular for solving various optimization problems with
non-smooth regularization. Inexact proximal gradient meth-
ods are extremely important when exactly solving the prox-
imal operator is time-consuming, or the proximal operator
does not have an analytic solution. However, existing inexact
proximal gradient methods only consider convex problems.
The knowledge of inexact proximal gradient methods in the
non-convex setting is very limited. To address this challenge,
in this paper, we first propose three inexact proximal gradient
algorithms, including the basic version and Nesterov’s accel-
erated version. After that, we provide the theoretical analy-
sis to the basic and Nesterov’s accelerated versions. The the-
oretical results show that our inexact proximal gradient al-
gorithms can have the same convergence rates as the ones
of exact proximal gradient algorithms in the non-convex set-
ting. Finally, we show the applications of our inexact prox-
imal gradient algorithms on three representative non-convex
learning problems. Empirical results confirm the superiority
of our new inexact proximal gradient algorithms.

Introduction

Many machine learning problems involve non-smooth reg-
ularization, such as the machine learning models with a
variety of sparsity-inducing penalties (Bach et al. 2012).
Thus, efficiently solving the optimization problem with non-
smooth regularization is important for many machine learn-
ing applications. In this paper, we focus on the optimization
problem of machine learning model with non-smooth regu-
larization as:

min
x∈RN

f(x) = g(x) + h(x) (1)

where g : R
N → R corresponding to the empire risk is

smooth and possibly non-convex, and h : RN → R corre-
sponding to the regularization term is non-smooth and pos-
sibly non-convex.

Proximal gradient methods are popular for solving vari-
ous optimization problems with non-smooth regularization.
The pivotal step of the proximal gradient method is to solve

*To whom all correspondence should be addressed.
Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the proximal operator as following:

Proxγh(y) = argminx∈RN

1

2γ
‖x− y‖2 + h(x) (2)

where γ is the stepsize.1 If the function h(x) is simple
enough, we can obtain the solution of the proximal oper-
ator analytically. For example, if h(x) = ‖x‖1, the solu-
tion of the proximal operator can be obtained by a shrinkage
thresholding operator (Beck and Teboulle 2009). If the func-
tion h(x) is complex such that the corresponding proximal
operator does not have an analytic solution, a specific algo-
rithm should be designed for solving the proximal operator.
For example, if h(x) = ‖x‖1 + c

∑
i<j max{|xi|, |xj |} as

used in OSCAR (Zhong and Kwok 2012) for the sparse re-
gression with automatic feature grouping, (Zhong and Kwok
2012) proposed an iterative group merging algorithm for ex-
actly solving the proximal operator.

However, it would be expensive to solve the proximal
operators when the function h(x) is complex. Once again,
take OSCAR as an example, when the data is with high di-
mensionality (empirically larger than 1,000), the iterative
group merging algorithm would become very inefficient.
Even worse, there would be no solver for exactly solving the
proximal operators when the function h(x) is over complex.
For example, (Grave, Obozinski, and Bach 2011) proposed
the trace Lasso norm to take into account the correlation of
the design matrix to stabilize the estimation in regression.
However, due to the complexity of trace Lasso norm, there
still have no solver for solving the corresponding proximal
operator, to the best of our knowledge.

To address the above issues, (Schmidt, Le Roux, and Bach
2011) first proposed the inexact proximal gradient meth-
ods (including the basic version (IPG) and Nesterov’s ac-
celerated version (AIPG)), which solves the proximal oper-
ator approximately (i.e., tolerating an error in the calcula-
tion of the proximal operator). They proved that the inex-
act proximal gradient methods can have the same conver-
gence rates as the ones of exact proximal gradient methods,
provided that the errors in computing the proximal opera-
tor decrease at appropriate rates. Independently, (Villa et al.
2013) proposed AIPG algorithm and proved the correspond-
ing convergence rate. In the paper of (Villa et al. 2013),

1The stepsize γ is set manually or automatically determined by
a backtracking line-search procedure (Beck and Teboulle 2009).

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3093

Table 1: Representative (exact and inexact) proximal gradient algorithms. (C and NC are the abbreviations of convex and
non-convex respectively.)

Algorithm Proximal Accelerated g(x) h(x) Reference

PG+APG Exact Yes C C (Beck and Teboulle 2009)
APG Exact Yes C+NC C (Ghadimi and Lan 2016)
PG Exact No NC NC (Boţ, Csetnek, and László 2016)

APG Exact Yes C+NC C+NC (Li and Lin 2015)
IPG+AIPG Inexact Yes C C (Schmidt, Le Roux, and Bach 2011)

AIFB (AIPG) Inexact Yes C C (Villa et al. 2013)
IPG+AIPG Inexact Yes C+NC C+NC Ours

they called AIPG as the inexact forward-backward splitting
method (AIFB) which is well-known in the field of signal
processing. We summarize these works in Table 1.

From Table 1, we find that the existing inexact proximal
gradient methods only consider convex problems. However,
a lot of optimization problems in machine learning are non-
convex. The non-convexity originates either from the empir-
ical risk function g(x) or the regularization function h(x).
First, we investigate the empirical risk function g(x) (i.e.,
loss function). The correntropy induced loss (Feng et al.
2015) is widely used for robust regression and classification,
which is non-convex. The symmetric sigmoid loss on the un-
labeled samples is used in semi-supervised SVM (Chapelle,
Chi, and Zien 2006) which is non-convex. Second, we inves-
tigate the regularization function h(x). Capped-l1 penalty
(Zhang 2010) is used for unbiased variable selection, and
the low rank constraint (Jain, Meka, and Dhillon 2010) is
widely used for the matrix completion. Both of these reg-
ularization functions are non-convex. However, our knowl-
edge of inexact proximal gradient methods is very limited in
the non-convex setting.

To address this challenge, in this paper, we first propose
three inexact proximal gradient algorithms, including the ba-
sic and Nesterov’s accelerated versions, which can handle
the non-convex problems. Then we give the theoretical anal-
ysis to the basic and Nesterov’s accelerated versions. The
theoretical results show that our inexact proximal gradient
algorithms can have the same convergence rates as the ones
of exact proximal gradient algorithms. Finally, we provide
the applications of our inexact proximal gradient algorithms
on three representative non-convex learning problems. The
applications on robust OSCAR and link prediction show
that, our inexact proximal gradient algorithms could be sig-
nificantly faster than the exact proximal gradient algorithms.
The application on robust Trace Lasso fills the vacancy that
there is no proximal gradient algorithm for Trace Lasso.
Contributions. The main contributions of this paper are
summarized as follows:

1. We first propose the basic and accelerated inexact proxi-
mal gradient algorithms with rigorous convergence guar-
antees. Specifically, our inexact proximal gradient algo-
rithms can have the same convergence rates as the ones
of exact proximal gradient algorithms in the non-convex
setting.

2. We provide the applications of our inexact proximal

gradient algorithms on three representative non-convex
learning problems, i.e., robust OSCAR, link prediction
and robust Trace Lasso. The results confirm the superi-
ority of our inexact proximal gradient algorithms.

Related Works

Proximal gradient methods are one of the most important
methods for solving various optimization problems with
non-smooth regularization. There have been a variety of ex-
act proximal gradient methods.

Specifically, for convex problems, (Beck and Teboulle
2009) proposed basic proximal gradient (PG) method and
Nesterov’s accelerated proximal gradient (APG) method.
They proved that PG has the convergence rate O(1

T), and
APG has the convergence rate O(1

T 2), where T is the num-
ber of iterations. For non-convex problems, (Ghadimi and
Lan 2016) considered that only g(x) could be non-convex,
and proved that the convergence rate of APG method is
O(1

T). (Boţ, Csetnek, and László 2016) considered that both
of g(x) and h(x) could be non-convex, and proved the con-
vergence of PG method. (Li and Lin 2015) considered that
both of g(x) and h(x) could be non-convex, and proved that
the APG algorithm can converge in a finite number of itera-
tions, in a linear rate or a sublinear rate (i.e., O(1

T)) at differ-
ent conditions. We summarize these exact proximal gradient
methods in Table 1.

In addition to the above batch exact proximal gradient
methods, there are the stochastic and online proximal gra-
dient methods (Duchi and Singer 2009; Xiao and Zhang
2014). Because they are beyond the scope of this paper, we
do not review them in this paper.

Preliminaries

In this section, we introduce the Lipschitz smooth, ε-
approximate subdifferential and ε-approximate Kurdyka-
Łojasiewicz (KL) property, which are critical to the conver-
gence analysis of our inexact proximal gradient methods in
the non-convex setting.
Lipschitz smooth: For the smooth functions g(x), we have
the Lipschitz constant L for ∇g(x) (Wood and Zhang 1996)
as following.

Assumption 1. L is the Lipschitz constant for ∇g(x). Thus,
for all x and y, L-Lipschitz smooth can be presented as

‖∇g(x)−∇g(y)‖ ≤ L‖x− y‖ (3)

3094

Equivalently, L-Lipschitz smooth can also be written as the
formulation (4).

g(x) ≤ g(y) + 〈∇g(y), x− y〉+ L

2
‖x− y‖2 (4)

ε-approximate subdifferential: Because inexact proximal
gradient is used in this paper, an ε-approximate proximal op-
erator may produce an ε-approximate subdifferential. In the
following, we give the definition of ε-approximate subdif-
ferential (Bertsekas et al. 2003) which will be used in the
ε-approximate KL property (i.e., Definition 2).

Definition 1 (ε-approximate subdifferential). Given a con-
vex function h(x) : RN �→ R and a positive scalar ε, the
ε-approximate subdifferential of h(x) at a point x ∈ R

N

(denoted as ∂εh(x)) is

∂εh(x) =
{
d ∈ R

N : h(y) ≥ h(x) + 〈d, y − x〉 − ε
}

(5)

Based on Definition 1, if d ∈ ∂εh(x), we say that d is an
ε-approximate subgradient of h(x) at the point x.
ε-approximate KL property: Originally, KL property is
introduced to analyze the convergence rate of exact proxi-
mal gradient methods in the non-convex setting (Li and Lin
2015; Boţ, Csetnek, and László 2016). Because this paper
focuses on the inexact proximal gradient methods, corre-
spondingly we propose the ε-approximate KL property in
Definition 2, where the function dist(x, S) is defined by
dist(x, S) = miny∈S ‖x− y‖, and S is a subset of RN .

Definition 2 (ε-KL property). A function f(x) = g(x) +
h(x) : RN → (−∞,+∞] is said to have the ε-KL property
at u ∈ {u ∈ R

N : ∇g(u) + ∂εh(u)) �= ∅}, if there exists
η ∈ (0,+∞], a neighborhood U of u and a function ϕ ∈
Φη , such that for all u ∈ U ∩ {u ∈ R

N : f(u) < f(u) <
f(u) + η}, the following inequality holds

ϕ′(f(u)− f(u))dist(0,∇g(u) + ∂εh(u))) ≥ 1 (6)

where Φη stands for a class of functions ϕ : [0, η) → R
+

satisfying:

1. ϕ is concave and continuously differentiable function on
(0, η);

2. ϕ is continuous at 0, ϕ(0) = 0;
3. and ϕ′(x) > 0, ∀x ∈ (0, η).

Inexact Proximal Gradient Algorithms

In this section, we first propose the basic inexact proxi-
mal gradient algorithm for the non-convex optimization, and
then propose two accelerated inexact proximal gradient al-
gorithms.

Basic Version

As shown in Table 1, for the convex problems (i.e., both the
functions g(x) and h(x) are convex), (Schmidt, Le Roux,
and Bach 2011) proposed a basic inexact proximal gradient
(IPG) method. We follow the framework of IPG in (Schmidt,
Le Roux, and Bach 2011), and give our IPG algorithm for
the non-convex optimization problems (i.e., either the func-
tion g(x) or the function h(x) is non-convex).

Specifically, our IPG algorithm is presented in Algorithm
1. Similar with the exact proximal gradient algorithm, the
pivotal step of our IPG (i.e., Algorithm 1) is to compute an
inexact proximal operator x ∈ Proxε

γh(y) as following.

x ∈ Proxε
γh(y) =

{
z ∈ R

N :
1

2γ
‖z − y‖2 + h(z)

≤ ε+min
x

1

2γ
‖x− y‖2 + h(x)

}
where ε denotes an error in the calculation of the proxi-
mal operator. As discussed in (Tappenden, Richtárik, and
Gondzio 2016), there are several methods to compute the
inexact proximal operator. The most popular method is us-
ing a primal dual algorithm to control the dual gap (Bach et
al. 2012). Based on the dual gap, we can strictly control the
error in the calculation of the proximal operator.

Algorithm 1 Basic inexact proximal gradient method (IPG)

Input: m, error εk (k = 1, · · · ,m), stepsize γ < 1
L .

Output: xm.
1: Initialize x0 ∈ R

d.
2: for k = 1, · · · ,m do
3: Compute xk ∈ Proxεk

γh (xk−1 − γ∇g(xk−1)).
4: end for

Accelerated Versions

We first propose a Nesterov’s accelerated inexact proximal
gradient algorithm for non-convex optimization, then give
a nonmonotone accelerated inexact proximal gradient algo-
rithm.

As shown in Table 1, for the convex optimization prob-
lems, (Beck and Teboulle 2009) proposed a Nesterov’s ac-
celerated inexact proximal gradient (i.e., APG) method,
and (Schmidt, Le Roux, and Bach 2011) proposed a Nes-
terov’s accelerated inexact proximal gradient (i.e., AIPG)
method. Both of APG and AIPG are accelerated by a
momentum term. However, as mentioned in (Li and Lin
2015), traditional Nesterov’s accelerated method may en-
counter a bad momentum term for the non-convex opti-
mization. To address the bad momentum term, (Li and
Lin 2015) added another proximal operator as a moni-
tor to make the objective function sufficient descent. To
make the objective functions generated from our AIPG
strictly descent, we follow the framework of APG in (Li
and Lin 2015). Thus, we compute two inexact proximal
operators zk+1 ∈ Proxεkγh (yk − γ∇g(yk)) and vk+1 ∈
Proxεk

γh (xk − γ∇g(xk)), where vk+1 is a monitor to make
the objective function strictly descent. Specifically, our
AIPG is presented in Algorithm 2.

To address the bad momentum term in the non-convex
setting, our AIPG (i.e., Algorithm 2) uses a pair of in-
exact proximal operators to make the objective functions
strictly descent. Thus, AIPG is a monotone algorithm. Actu-
ally, using two proximal operators is a conservative strat-
egy. As mentioned in (Li and Lin 2015), we can accept

3095

Algorithm 2 Accelerated inexact proximal gradient method
(AIPG)

Input: m, error εk (k = 1, · · · ,m), t0 = 0, t1 = 1, stepsize
γ < 1

L .
Output: xm+1.

1: Initialize x0 ∈ R
d, and x1 = z1 = x0.

2: for k = 1, 2, · · · ,m do

3: yk = xk + tk−1

tk
(zk − xk) +

tk−1−1
tk

(xk − xk−1).
4: Compute zk+1 such that zk+1 ∈

Proxεk
γh (yk − γ∇g(yk)).

5: Compute vk+1 such that vk+1 ∈
Proxεk

γh (xk − γ∇g(xk)).

6: tk+1 =

√
4t2k+1+1

2 .

7: xk+1 =

{
zk+1 if f(zk+1) ≤ f(vk+1)
vk+1 otherwise

8: end for

zk+1 as xk+1 directly if it satisfies the criterion f(zk+1) ≤
f(xk) − δ

2‖zk+1 − yk‖2 which shows that yk is a good ex-
trapolation. vk+1 is computed only when this criterion is not
met. Thus, the average number of proximal operators can be
reduced. Following this idea, we propose our nonmonotone
accelerated inexact proximal gradient algorithm (nmAIPG)
in Algorithm 3. Empirically, we find that the nmAIPG with
the value of δ ∈ [0.5, 1] works good. In our experiments, we
set δ = 0.6.

Algorithm 3 Nonmonotone accelerated inexact proximal
gradient method (nmAIPG)

Input: m, εk (k = 1, · · · ,m), t0 = 0, t1 = 1, stepsize
γ < 1

L , δ > 0.
Output: xm+1.

1: Initialize x0 ∈ R
d, and x1 = z1 = x0.

2: for k = 1, 2, · · · ,m do

3: yk = xk + tk−1

tk
(zk − xk) +

tk−1−1
tk

(xk − xk−1).
4: Compute zk+1 such that zk+1 ∈

Proxεk
γh (yk − γ∇g(yk)).

5: if f(zk+1) ≤ f(xk)− δ
2‖zk+1 − yk‖2 then

6: xk+1 = zk+1

7: else
8: Compute vk+1 such that vk+1 ∈

Proxεk
γh (xk − γ∇g(xk)).

9: xk+1 =

{
zk+1 if f(zk+1) ≤ f(vk+1)
vk+1 otherwise

10: end if

11: tk+1 =

√
4t2k+1+1

2 .
12: end for

Convergence Analysis

As mentioned before, the convergence analysis of inexact
proximal gradient methods for the non-convex problems is
still an open problem. This section will address this chal-
lenge.

Specifically, we first prove that IPG and AIPG converge
to a critical point in the convex or non-convex setting (Theo-
rem 1) if {εk} is a decreasing sequence and

∑m
k=1 εk < ∞.

Next, we prove that IPG has the convergence rate O(1
T) for

the non-convex problems (Theorem 2) when the errors de-
crease at an appropriate rate. Then, we prove the conver-
gence rates for AIPG in the non-convex setting (Theorem
3). The detailed proofs of Theorems 1, 2 and 3 can be found
in Appendix.

Convergence of IPG and AIPG

We first prove that IPGA and AIPG converge to a critical
point (Theorem 1) if {εk} is a decreasing sequence and∑m

k=1 εk < ∞.

Theorem 1. With Assumption 1, if {εk} is a decreasing se-
quence and

∑m
k=1 εk < ∞, we have 0 ∈ limk→∞ ∇g(xk)+

∂εkh(xk) for IPG and AIPG in the convex and non-convex
optimization.

Remark 1. Theorem 1 guarantees that IPG and AIPG con-
verge to a critical point (or called as stationary point) after
an infinite number of iterations in the convex or non-convex
setting.

Convergence Rates of IPG

Because both the functions g(x) and h(x) are possibly
non-convex, we cannot directly use f(xk) − f(x∗) or
‖xk −x∗‖ for analyzing the convergence rate of IPG, where
x∗ is an optimal solution of (1). In this paper, we use
1
m

∑m
k=1 ‖xk − xk−1‖2 for analyzing the convergence rate

of IPG in the non-convex setting. The detailed reason is pro-
vided in Appendix. Theorem 2 shows that IPG has the con-
vergence rate O(1

T) for the non-convex optimization when
the errors decrease at an appropriate rate, which is exactly
the same as the error-free case (see discussion in Remark 2).

Theorem 2. For g(x) is non-convex, and h(x) is convex or
non-convex, we have the following results for IPG:

1. If h(x) is convex, we have that

1

m

m∑
k=1

‖xk − xk−1‖2 ≤ (7)

1

m

(
2Am +

√
1

1
γ − L

2

(f(x0)− f(x∗)) +
√
Bm

)2

where Am = 1
2

∑m
k=1

1
1
γ −L

2

√
2εk
γ and Bm =

1
1
γ −L

2

∑m
k=1 εk.

2. If h(x) is non-convex, we have that

1

m

m∑
k=1

‖xk − xk−1‖2 (8)

≤ 1

m
(

1
2γ − L

2

) (
f(x0)− f(x∗) +

m∑
k=1

εk

)

3096

Remark 2. Theorem 2 implies that IPG has the convergence
rate O(1

T) for the non-convex optimization without errors.
If {√εk} is summable and h(x) is convex, we can also have
that IPG has the convergence rate O(1

T) for the non-convex
optimization. If {εk} is summable and h(x) is non-convex,
we can also have that IPG has the convergence rate O(1

T)
for the non-convex optimization.

Convergence Rates of AIPG

In this section, based on the ε-KL property, we prove that
AIPG converges in a finite number of iterations, in a linear
rate or a sublinear rate at different conditions in the non-
convex setting (Theorem 3), which is exactly the same as
the error-free case (Li and Lin 2015).
Theorem 3. Assume that g is a non-convex function with
Lipschitz continuous gradients, h is a proper and lower
semicontinuous function. If the function f satisfies the ε-KL
property, εk = α ‖vk+1 − xk‖2, α ≥ 0, 1

2γ − L
2 − α ≥ 0

and the desingularising function has the form ϕ(t) = C
θ t

θ

for some C > 0, θ ∈ (0, 1], then
1. If θ = 1, there exists k1 such that f(xk) = f∗ for all

k > k1 and AIPG terminates in a finite number of steps,
where limk→∞ f(xk) = f∗.

2. If θ ∈ [12 , 1), there exists k2 such that for all k > k2

f(xk)− lim
k→∞

f(xk) ≤
(

d1C
2

1 + d1C2

)k−k2

(f(vk)− f∗)

where d1 =

(
1
γ +L+

√
2α
γ

)2

1
2γ −L

2 −α
.

3. If θ ∈ (0, 1
2), there exists k3 such that for all k > k3

f(xk)− lim
k→∞

f(xk) ≤
(

C

(k − k3)d2(1− 2θ)

) 1
1−2θ

where

d2 = min

{
1

2d1C
,

C

1− 2θ

(
2

2θ−1
2θ−2 − 1

)
(f(v0)− f∗)2θ−1

}
Remark 3. Theorem 3 implies that AIPG converges in a
finite number of iterations when θ = 1, in a linear rate when
θ ∈ [12 , 1) and at least a sublinear rate when θ ∈ (0, 1

2).

Experiments

We first give the experimental setup, then present the imple-
mentations of three non-convex applications with the corre-
sponding experimental results.

Experimental Setup

Design of Experiments To validate the effectiveness of
our inexact proximal gradients methods (i.e., IPG, AIPG and
nmAIPG), we apply them to solve three representative non-
convex learning problems as follows.
1. Robust OSCAR: Robust OSCAR is a robust version of

OSCAR method (Zhong and Kwok 2012), which is a
feature selection model with the capability to automat-
ically detect feature group structure. The function g(x)

is non-convex, and the function h(x) is convex. Zhong
and Kwok (Zhong and Kwok 2012) proposed a fast it-
erative group merging algorithm for exactly solving the
proximal operator.

2. Social Link Prediction: Given an incomplete matrix M
(user-by-user) with each entry Mij ∈ {+1,−1}, social
link prediction is to recover the matrix M (i.e. predict the
potential social links or friendships between users) with
low-rank constraint. The function g(x) is convex, and
the function h(x) is non-convex. The low-rank proximal
operator can be solved exactly by the Lanczos method
(Larsen 1998).

3. Robust Trace Lasso: Robust trace Lasso is a robust ver-
sion of trace Lasso (Grave, Obozinski, and Bach 2011).
The function g(x) is non-convex, and the function h(x)
is convex. To the best of our knowledge, there is still no
proximal gradient algorithm for solving trace Lasso.

We also summarize these three non-convex learning prob-
lems in Table 2. To show the advantages of our inexact
proximal gradients methods, we compare the convergence
rates and the running time for our inexact proximal gradients
methods and the exact proximal gradients methods (i.e., PG,
APG and nmAPG).

Table 2: Three typical learning applications. (C, NC and PO
are the abbreviations of convex, non-convex and proximal
operator, respectively.)

Application g(x) h(x) Exact PO

Robust OSCAR NC C Yes
Link Prediction C NC Yes

Robust Trace Lasso NC C No

Datasets Table 3 summarizes the six datasets used in our
experiments. Specifically, the Cardiac and Coil202 datasets
are for the robust OSCAR application. The Cardiac dataset
was collected from hospital, which is to predict the area of
the left ventricle, and is encouraged to find the homoge-
nous groups of features. The Soc-sign-epinions and Soc-
Epinions1 datasets3 are the social network data for the social
link prediction application, where each row corresponds to a
node, and each collum corresponds to an edge. The GasSen-
sorArrayDrift and YearPredictionMSD datasets from UCI4

are for the robust trace Lasso application.

Implementations and Results

Robust OSCAR For the robust regression, we replace the
square loss originally used in OSCAR with the correntropy
induced loss (He, Zheng, and Hu 2011). Thus, we consider
the robust OSCAR with the functions g(x) and h(x) as fol-
lows.

g(x) =
σ2

2

l∑
i=1

(
1− e−

(yi−XT
i x)2

σ2

)
, (9)

2http://www1.cs.columbia.edu/CAVE/software/softlib/coil-
20.php

3http://snap.stanford.edu/data
4https://archive.ics.uci.edu/ml/datasets.html

3097

0 50 100 150 200 250 300

of iterations
532

534

536

538

540

542

544

ob
jec

tiv
e

va
lue

PG
APG
nmAPG
IPG
AIPG
nmAIPG

(a) Cardiac: obj. vs. iteration

0 5 10 15 20 25 30

time(seconds)
535

536

537

538

539

540

541

542

543

544

ob
jec

tiv
e

va
lue

PG
APG
nmAPG
IPG
AIPG
nmAIPG

(b) Cardiac: obj. vs. time

0 50 100 150 200 250 300

of iterations
235

240

245

250

255

260

265

ob
jec

tiv
e

va
lue

PG
APG
nmAPG
IPG
AIPG
nmAIPG

(c) Coil20: obj. vs. iteration

0 5 10 15 20 25 30 35 40

time(seconds)
240

245

250

255

260

265

ob
jec

tiv
e

va
lue

PG
APG
nmAPG
IPG
AIPG
nmAIPG

(d) Coil20: obj. vs time

0 200 400 600 800 1000

of iterations
0

1

2

3

4

5

6

ob
jec

tiv
e

va
lue

×10 4

PG
APG
nmAPG
IPG
AIPG
nmAIPG

(e) SSE: obj. vs. iteration

0 500 1000 1500 2000 2500

time(seconds)
0

1

2

3

4

5

6

ob
jec

tiv
e

va
lue

×10 4

PG
APG
nmAPG
IPG
AIPG
nmAIPG

(f) SSE: obj. vs. time

0 200 400 600 800 1000

of iterations
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

ob
jec

tiv
e

va
lue

PG
APG
nmAPG
IPG
AIPG
nmAIPG

(g) SE: obj. vs. iteration

0 500 1000 1500 2000 2500

time(seconds)
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

ob
jec

tiv
e

va
lue

PG
APG
nmAPG
IPG
AIPG
nmAIPG

(h) SE: obj. vs. time

0 10 20 30 40 50

of iterations
32

32.2

32.4

32.6

32.8

33

33.2

33.4

33.6

33.8

ob
jec

tiv
e

va
lue

IPG
AIPG
nmAIPG

(i) GS: obj. vs. iteration

0 10 20 30 40 50 60

time(seconds)
32

32.2

32.4

32.6

32.8

33

33.2

33.4

33.6

33.8

ob
jec

tiv
e

va
lue

IPG
AIPG
nmAIPG

(j) GS: obj. vs. time

0 10 20 30 40 50

of iterations
75

80

85

90

95

100

105

110

115

120

125

ob
jec

tiv
e

va
lue

IPG
AIPG
nmAIPG

(k) YP: obj. vs. iteration

0 0.5 1 1.5 2 2.5 3

time(seconds)
75

80

85

90

95

100

105

110

115

120

125

ob
jec

tiv
e

va
lue

IPG
AIPG
nmAIPG

(l) YP: obj. vs. time

Figure 1: Comparison of convergence speed for different methods. (a-d): Robust OSCAR. (e-h): Link prediction. (i-l) Robust
trace LASSO.

Table 3: The datasets used in the experiments.

Application Dataset Sample size Attributes

Robust
OSCAR

Cardiac 3,360 800
Coil20 1,440 1,024

Social Link
Prediction

Soc-sign-epinions(SSE) 131,828 841,372
Soc-Epinions1(SE) 75,879 508,837

Robust
Trace
Lasso

GasSensorArrayDrift(GS) 13,910 128
YearPredictionMSD(YP) 51,5345 90

h(x) = λ1‖x‖1 + λ2

∑
i<j

max{|xi|, |xj |} , (10)

where λ1 ≥ 0 and λ2 ≥ 0 are two regularization pa-
rameters. For exact proximal gradients algorithms, Zhong
and Kwok (Zhong and Kwok 2012) proposed a fast it-
erative group merging algorithm for exactly solving the
proximal subproblem. We propose a subgradient algo-
rithm to approximately solve the proximal subproblem. Let
o(j) ∈ {1, 2, · · · , N} denote the order of |xj | 5 among
{|x1|, |x2|, · · · , |xN |} such that if o(j1) < o(j2), we have

5Here, xj denotes the j-th coordinate of the vector x.

|xj1 | ≤ |xj2 |. Thus, the subgradient of h(x) can be com-
puted as ∂h(x) =

∑N
j=1 (λ1 + λ2(o(j)− 1)) ∂|xj |. The

subgradient algorithm is omitted here due to the space limit.
We implement our IPG, AIPG and nmAIPG methods for ro-
bust OSCAR in Matlab. We also implement PG, APG and
nmAPG in Matlab.

Figures 1a and 1c show the convergence rates of the ob-
jective value vs. iteration for the exact and inexact proxi-
mal gradients methods. The results confirm that exact and
inexact proximal gradients methods have the same conver-
gence rates. The convergence rates of exact and inexact ac-
celerated methods are faster than the ones of the basic meth-
ods (PG and IPG). Figures 1b and 1d show the convergence
rates of the objective value vs. the running time for the
exact and inexact proximal gradients methods. The results
show that our inexact methods are significantly faster than
the exact methods. When the dimension increases, we can
even achieve more than 100 folds speedup. This is because
our subgradient based algorithm for approximately solving
the proximal subproblem is much efficient than the projec-
tion algorithm for exactly solving the proximal subproblem
(Zhong and Kwok 2012).

3098

Social Link Prediction In social link prediction problem,
we hope to predict the new potential social links or friend-
ships between online users. Given an incomplete matrix M
(user-by-user) with each entry Mij ∈ {+1,−1}, social
link prediction is to recover the matrix M with low-rank
constraint. Specifically, social link prediction considers the
function f(X) as following:

min
X

1

2

∑
(i,j)∈Ω

log(1 + exp(−XijMij))

︸ ︷︷ ︸
g(X)

(11)

s.t. rank(X) ≤ r ,

where Ω is a set of (i, j) corresponding to the
entries of M which are observed, λ is a reg-
ularization parameter. The proximal operator
minrank(X)≤r ‖X − (Xt−1 − γ∇g(Xt−1))‖2 can be
solved by the rank-r singular value decomposition
(SVD) (Jain, Meka, and Dhillon 2010). The rank-r SVD
can be solved exactly by the Lanczos method (Larsen
1998), and also can be solved approximately by the
power method (Halko, Martinsson, and Tropp 2011;
Journée et al. 2010). We implement our IPG, AIPG and
nmAIPG methods for social link prediction in Matlab. We
also implement PG, APG and nmAPG in Matlab.

Figures 1e and 1g show the convergence rates of the ob-
jective value vs. iteration for the exact and inexact proximal
gradients methods. The results confirm that exact and inex-
act proximal gradients methods have the same convergence
rates. Figures 1f and 1h illustrate the convergence rates of
the objective value vs. running time for the exact and inex-
act proximal gradients methods. The results verify that our
inexact methods are faster than the exact methods.

Robust Trace Lasso Robust trace Lasso is a robust ver-
sion of trace Lasso (Grave, Obozinski, and Bach 2011;
Bach 2008). Same with robust OSCAR, we replace the
square loss originally used in trace Lasso with the corren-
tropy induced loss (He, Zheng, and Hu 2011) for robust re-
gression. Thus, we consider the robust trace Lasso with the
functions g(x) and h(x) as following:

g(x) =
σ2

2

l∑
i=1

(
1− e−

(yi−XT
i x)2

σ2

)
(12)

h(x) = λ ‖XDiag(x)‖∗ , (13)

where ‖·‖∗ is the trace norm, λ is a regularization param-
eter. To the best of our knowledge, there is still no algo-
rithm to exactly solve the proximal subproblem. To im-
plement our IPG and AIPG, we propose a subgradient al-
gorithm to approximately solve the proximal subproblem.
Specifically, the subgradient of the trace Lasso regulariza-
tion ‖XDiag(x)‖∗ can be computed by Theorem 4 which is
originally provided in (Bach 2008). We implement our IPG,
AIPG and nmAIPG methods for robust trace Lasso in Mat-
lab.
Theorem 4. Let UDiag(s)V T be the singular value decom-
position of XDiag(x). Then, the subgradient of the trace

Lasso regularization ‖XDiag(x)‖∗ is given by

∂ ‖XDiag(x)‖∗ = {Diag
(
XT (UV T +M)

)
: (14)

‖M‖2 ≤ 1, UTM = 0 and MV = 0}
Figures 1i-1l show the convergence rates of the objective

value vs. iteration and running time respectively, for our in-
exact proximal gradient methods. The results demonstrate
that we provide efficient proximal gradient algorithms for
the robust trace Lasso. More importantly, our IPG, AIPG and
nmAIPG algorithms fill the vacancy that there is no proxi-
mal gradient algorithm for trace Lasso. This is because that,
directly solving the proximal subproblem for robust trace
Lasso is quite difficult (Grave, Obozinski, and Bach 2011;
Bach 2008). Our subgradient based algorithm provides an
alternative approach for solving the proximal subproblem.

Summary of the Experimental results Based on the re-
sults of three non-convex machine learning applications, our
conclusion is that our inexact proximal gradient algorithms
can provide flexible algorithms to the optimization problems
with complex non-smooth regularization. More importantly,
our inexact algorithms could be significantly faster than the
exact proximal gradient algorithms.

Conclusion
Existing inexact proximal gradient methods only consider
convex problems. The knowledge of inexact proximal gra-
dient methods in the non-convex setting is very limited. To
address this problem, we proposed three inexact proximal
gradient algorithms with the theoretical analysis. The theo-
retical results show that our inexact proximal gradient algo-
rithms can have the same convergence rates as the ones of
exact proximal gradient algorithms in the non-convex set-
ting. We also provided the applications of our inexact proxi-
mal gradient algorithms on three representative non-convex
learning problems. The results confirm the superiority of our
inexact proximal gradient algorithms.

Acknowledgement
This work was partially supported by the following grants:
NSF-IIS 1302675, NSF-IIS 1344152, NSF-DBI 1356628,
NSF-IIS 1619308, NSF-IIS 1633753, NIH R01 AG049371.

References
Bach, F.; Jenatton, R.; Mairal, J.; Obozinski, G.; et al. 2012.
Optimization with sparsity-inducing penalties. Foundations
and Trends® in Machine Learning 4(1):1–106.
Bach, F. R. 2008. Consistency of trace norm minimization.
Journal of Machine Learning Research 9(Jun):1019–1048.
Beck, A., and Teboulle, M. 2009. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
journal on imaging sciences 2(1):183–202.
Bertsekas, D. P.; Nedi, A.; Ozdaglar, A. E.; et al. 2003. Con-
vex analysis and optimization.
Boţ, R. I.; Csetnek, E. R.; and László, S. C. 2016. An iner-
tial forward–backward algorithm for the minimization of the
sum of two nonconvex functions. EURO Journal on Com-
putational Optimization 4(1):3–25.

3099

Chapelle, O.; Chi, M.; and Zien, A. 2006. A continuation
method for semi-supervised svms. In Proceedings of the
23rd international conference on Machine learning, 185–
192. ACM.
Duchi, J., and Singer, Y. 2009. Efficient online and batch
learning using forward backward splitting. Journal of Ma-
chine Learning Research 10(Dec):2899–2934.
Feng, Y.; Huang, X.; Shi, L.; Yang, Y.; and Suykens, J. A.
2015. Learning with the maximum correntropy criterion in-
duced losses for regression. Journal of Machine Learning
Research 16:993–1034.
Ghadimi, S., and Lan, G. 2016. Accelerated gradient meth-
ods for nonconvex nonlinear and stochastic programming.
Mathematical Programming 156(1-2):59–99.
Grave, E.; Obozinski, G. R.; and Bach, F. R. 2011. Trace
lasso: a trace norm regularization for correlated designs. In
Advances in Neural Information Processing Systems, 2187–
2195.
Halko, N.; Martinsson, P.-G.; and Tropp, J. A. 2011. Finding
structure with randomness: Probabilistic algorithms for con-
structing approximate matrix decompositions. SIAM review
53(2):217–288.
He, R.; Zheng, W.-S.; and Hu, B.-G. 2011. Maximum
correntropy criterion for robust face recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence
33(8):1561–1576.
Hsieh, C.-J., and Olsen, P. A. 2014. Nuclear norm mini-
mization via active subspace selection. In ICML, 575–583.
Jain, P.; Meka, R.; and Dhillon, I. S. 2010. Guaranteed rank
minimization via singular value projection. In Advances in
Neural Information Processing Systems, 937–945.
Journée, M.; Nesterov, Y.; Richtárik, P.; and Sepulchre, R.
2010. Generalized power method for sparse principal com-
ponent analysis. Journal of Machine Learning Research
11(Feb):517–553.
Larsen, R. M. 1998. Lanczos bidiagonalization with partial
reorthogonalization. DAIMI Report Series 27(537).
Li, H., and Lin, Z. 2015. Accelerated proximal gradient
methods for nonconvex programming. In Advances in Neu-
ral Information Processing Systems, 379–387.
Lin, Q.; Lu, Z.; and Xiao, L. 2014. An accelerated proximal
coordinate gradient method. In Advances in Neural Infor-
mation Processing Systems, 3059–3067.
Schmidt, M.; Le Roux, N.; and Bach, F. 2011. Convergence
rates of inexact proximal-gradient methods for convex opti-
mization. arXiv preprint arXiv:1109.2415.
Tappenden, R.; Richtárik, P.; and Gondzio, J. 2016. Inexact
coordinate descent: complexity and preconditioning. Jour-
nal of Optimization Theory and Applications 144–176.
Villa, S.; Salzo, S.; Baldassarre, L.; and Verri, A. 2013. Ac-
celerated and inexact forward-backward algorithms. SIAM
Journal on Optimization 23(3):1607–1633.
Wood, G., and Zhang, B. 1996. Estimation of the lips-
chitz constant of a function. Journal of Global Optimization
8(1):91–103.

Xiao, L., and Zhang, T. 2014. A proximal stochastic gradient
method with progressive variance reduction. SIAM Journal
on Optimization 24(4):2057–2075.
Zhang, T. 2010. Analysis of multi-stage convex relaxation
for sparse regularization. Journal of Machine Learning Re-
search 11(Mar):1081–1107.
Zhong, L. W., and Kwok, J. T. 2012. Efficient sparse model-
ing with automatic feature grouping. IEEE transactions on
neural networks and learning systems 23(9):1436–1447.

3100

