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Abstract

Kernel methods have achieved tremendous success in the past
two decades. In the current big data era, data collection has
grown tremendously. However, existing kernel methods are not
scalable enough both at the training and predicting steps. To
address this challenge, in this paper, we first introduce a gen-
eral sparse kernel learning formulation based on the random
feature approximation, where the loss functions are possibly
non-convex. Then we propose a new asynchronous parallel
doubly stochastic algorithm for large scale sparse kernel learn-
ing (AsyDSSKL). To the best our knowledge, AsyDSSKL is
the first algorithm with the techniques of asynchronous parallel
computation and doubly stochastic optimization. We also pro-
vide a comprehensive convergence guarantee to AsyDSSKL.
Importantly, the experimental results on various large-scale
real-world datasets show that, our AsyDSSKL method has the
significant superiority on the computational efficiency at the
training and predicting steps over the existing kernel methods.

Introduction

Kernel methods have achieved tremendous success in the
past two decades for non-linear learning problems. There
are a large number of successful and popular kernel meth-
ods (Vapnik 1998; Zhu and Hastie 2005; Zhu et al. 2004;
Baudat and Anouar 2000; Vovk 2013; Li, Yang, and Xing
2005) for various learning problems. We take binary classi-
fication and regression for example. Support vector classifi-
cation (SVC) (Vapnik 1998), kernel logistic regression (Zhu
and Hastie 2005) and 1-norm SVC (Zhu et al. 2004) are the
popular kernel methods for binary classification. Support vec-
tor regression (Vapnik 1998), kernel ridge regression (Vovk
2013) and kernel Lasso (Li, Yang, and Xing 2005) are the
popular kernel methods for regression. These kernel methods
have been successfully applied to solve various real-world ap-
plications (such as computational biology (Schölkopf, Tsuda,
and Vert 2004) and remote sensing data analysis (Camps-
Valls and Bruzzone 2009)).

However, traditional kernel methods need to store and
compute the kernel matrix with the size of O(l2) where l is
the training sample size. When l is large, the kernel matrix
can be neither stored in local memory nor computed. Even
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worse, the kernel methods normally have the computational
complexity O(l3) for the training. To address the scalability
issue of kernel methods in the training step, several decom-
position algorithms (Takahashi and Nishi 2006) have been
proposed for training the kernel methods. However, even for
the state-of-the-art implementations (e.g. LIBSVM software
package), the observed computational complexity is O(lκ)
where 1 < κ < 2.3 (Chang and Lin 2011a). More related
works of training kernel methods are discussed in the next
section. To sum up, in the current big data era, the existing
kernel methods are not scalable enough at the training step.

Besides the scalability issue at the training step, traditional
kernel methods are also not scalable at the predicting step.
Specifically, the computational complexity for predicting
a testing sample is O(l), because normally the number of
support vectors grows linearly with the sample size. Thus,
the computational complexity of predicting a testing set with
similar size of training set is O(l2). To address the scalability
issue of kernel methods in the predicting step, a compact (or
sparse) model is preferred. The direct method for obtaining
a compact model is adding sparse constraint (normally 1-
norm) on the coefficients of the model. For example, (Zhu
et al. 2004) imposed the 1-norm on the SVC formulation.
(Yen et al. 2014) imposed 1-norm on the random features.
Li, Yang, and Xing (2005) reformulated Lasso into a form
isomorphic to SVC, which generates a sparse solution in
the nonlinear feature space. However, these methods are not
scalable at the training step.

To address the scalability issues of kernel methods at the
training and predicting steps, in this paper, we first intro-
duce a general sparse kernel learning formulation with the
random feature approximation, where the loss functions are
possibly non-convex. Then, we propose a new asynchronous
parallel doubly stochastic algorithm for sparse kernel learn-
ing (AsyDSSKL). We believe this is very important for ker-
nel methods for four reasons. 1) Generality: AsyDSSKL
works for a general class of sparse kernel methods based
on the random feature approximation, where the loss func-
tion is possibly non-convex. 2) Efficient computation: The
pivotal step of AsyDSSKL is to compute the doubly stochas-
tic gradient on a mini-batch of samples and a selected co-
ordinate, which is quite efficient. 3) Comprehensive con-
vergence guarantees: AsyDSSKL achieves a sublinear rate
when the smooth loss functions are convex or non-convex.
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AsyDSSKL achieves a linear (geometric) convergence rate
when the objective function is with the optimal strong con-
vexity. 4) Strong empirical performance: The experimental
results on various large-scale real-world datasets show that,
AsyDSSKL has the significant superiority on the scalability
and efficiency at the training and predicting steps over the
existing kernel methods.
Novelties. The main novelties of this paper are summarized
as follows.

1. To the best of our knowledge, our AsyDSSKL is the first
algorithm with the techniques of asynchronous parallel
computation and doubly stochastic optimization. Although
our objective function (4) can be solved by (Liu and Wright
2015), their method is stochastic only on coordinates
which is not scalable to large sample size. However, our
AsyDSSKL is stochastic both on samples and coordinates.

2. We provide the convergence rates of AsyDSSKL in the
different settings, which is nontrivial although our proofs
follow (Liu and Wright 2015). Specially, we provide the
convergence rate of AsyDSSKL in the non-convex setting,
which is new and not included in (Liu and Wright 2015).

Notations. To make the paper easier to follow, we give the
following notations.

1. ej is the zero vector in R
n except that the j-th coordinate

equal to 1.

2. Pj,gj is the componentwise proximal operator as
Pj,gj (w

′) = argminw
1
2‖w − w′‖2 + h ((w)j).

3. ‖ · ‖ denotes the Euclidean norm, and ‖ · ‖∞ denotes the
infinity norm.

Related Works

In this section, we briefly review the techniques of parallel
computation and stochastic optimization for training kernel
methods.

Parallel computation. The parallel computation as the
basic big data technique can be roughly divided into syn-
chronous and asynchronous models according to whether
the reading or writing lock is used. The most of paral-
lel algorithms for kernel methods are based on the syn-
chronous model due to its simplicity. For example, Chang
and Lin (2011b) proposed a modified LIBSVM implementa-
tion by using the synchronous parallel technique to compute
a column of kernel matrix. Zhao and Magoules (2011) and
You et al. (2015) proposed synchronous parallel SVM algo-
rithms for the parallel environment with shared memory. The
asynchronous computation is much more efficient than the
synchronous computation, because it keeps all computational
resources busy all the time. However, the convergence analy-
sis for the asynchronous computation is much more difficult
due to the inconsistent reading and writing. To the best of
our knowledge, the only work for the asynchronous parallel
kernel methods is the asynchronous parallel greedy coordi-
nate descent algorithm for SVC (You et al. 2016). However,
their work does not exploit another important big data tech-
nology, i.e., stochastic optimization, and is not scalable at the
predicting step.

Stochastic optimization. Stochastic optimization is an-
other big data technique which could be stochastic on samples
and coordinates. Specifically, Shalev-Shwartz, Singer, and
Srebro (2007) and Kivinen, Smola, and Williamson (2004)
proposed stochastic algorithms for kernel SVMs which are
stochastic on samples. Shalev-Shwartz and Zhang (2013)
proposed a stochastic dual coordinate ascend algorithm for
kernel methods which is stochastic on coordinates. How-
ever, they are not scalable enough because the computational
complexities are O(T 2) where T is the iteration number.
To address this issue, (Dai et al. 2014) proposed a doubly
stochastic kernel method, which is stochastic both on samples
and random features. Random feature mapping (Rahimi and
Recht 2007) (a method of approximating kernel function) is
an effective method to scale up kernel methods. However,
as analyzed in (Rahimi and Recht 2009), to achieve a good
generalization ability, the number of random features needs
to be O(l). Thus, the predicting of (Rahimi and Recht 2009)
is not scalable due to a huge number of random features in the
model. In addition, (Rahimi and Recht 2009) does not exploit
the parallel computation techniques as mentioned above.

Asynchronous Doubly Stochastic Sparse

Kernel Learning

In this section, we first give a brief review of random features,
and then introduce a general sparse kernel learning formula-
tion based on the random feature approximation, where the
loss functions are possibly non-convex. Finally, we propose
our AsyDSSKL algorithm.

Random Features

Given a training set S = {(Xi, yi)}li=1 with Xi ∈ R
n, and

yi ∈ {+1,−1} for binary classification or yi ∈ R for re-
gression. For kernel methods, the optimal model can be rep-
resented as f(Xi) =

∑l
k=1 αiK(Xk, Xi) according to the

representer theorem (Schölkopf, Herbrich, and Smola 2001).
Thus, one benefit of kernel methods is that, we can learn a
nonlinear model directly using kernel functions, instead of
computing the inner production in the explicit kernel space
H . However, the number of non-zero αi often increases lin-
early with data size (Steinwart and Christmann 2008). Even
worse, as mentioned previously, kernel methods need to store
and compute the kernel matrix with the size O(l2). To ad-
dress the scalability issue, random feature mapping (Rahimi
and Recht 2007) was proposed to explicitly approximate the
kernel function K(·, ·). Specifically, by Mercer’s theorem
(Mercer 1909), for any positive semi-definite kernel K(·, ·),
there exists a kernel space H , a probability distribution p(h)
and a random feature mapping φh(x), such that

K(Xi, Xj) =

∫
h∈H

p(h)φh(Xi)φh(Xj)dh (1)

Based on the random features, the kernel function (1) is ap-
proximated by K(Xi, Xj) ≈

∑
h∈A φh(Xi)φh(Xj), where

A is a set of random features drawn from the kernel space H
according to the distribution p(h). Thus, the model function
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Table 1: Commonly used smooth loss functions for binary classification (BC) and regression (R).

Type of function Name of loss Type of task The loss function

Convex

Square loss BC+R L(f(Xi), yi) = (f(Xi)− yi)
2

Logistic loss BC L(f(Xi), yi) = log(1 + exp(−yif(Xi)))

Smooth hinge loss BC L(f(Xi), yi) =

⎧⎨⎩
1
2 − zi if zi ≤ 0
1
2 (1− zi)

2 if 0 < zi < 1
0 if zi ≥ 1

, where

zi = yif(Xi).

Non-convex
Correntropy induced loss R L(f(Xi), yi) =

σ2

2

(
1− e−

(yi−XT
i x)2

σ2

)
Sigmoid loss BC L(f(Xi), yi) =

1
1+exp(−yif(Xi))

can be approximated by

f(Xi) ≈
∑
h∈A

w(h)φh(Xi) (2)

However, as analyzed in (Rahimi and Recht 2009; Yen et al.
2014), to achieve a good generalization ability, the number
of random features needs to be O(l). Because the model size
of (2) grows linearly with l, it is highly desirable to have a
sparse learning algorithm which would be beneficial to the
efficiency at the predicting step.

Sparse Kernel Learning with Random Features

In the infinite-dimensional kernel space, the kernel methods
are normally written as (3) based on (1).

min
w(h),h∈H

Q(w) = (3)

1

l

l∑
i=1

L

(∫
h∈H

p(h)w(h)φh(Xi)dh, yi

)
+ λ‖w‖2

To produce a compact model, Yen et al. (2014) proposed a
sparse kernel learning formulation (4) based on the random
feature approximation. They proved that minw(h),h∈A P (w)

is an O( 1
|A| )-approximation of Q(w∗) in Corollary 1 of (Yen

et al. 2014).

min
w(h),h∈A

P (w) =

F (w)︷ ︸︸ ︷
1

l

l∑
i=1

L

(∑
h∈A

w(h)φh(Xi), yi

)
︸ ︷︷ ︸

fi(w)

+λ
∑
h∈A

|w(h)|︸ ︷︷ ︸
g(w)

(4)

where g(w) is a sparse constraint on w by 1-norm, and L(·, ·)
is a smooth and convex loss function. In this paper, we relax
L(·, ·) as a smooth, possibly non-convex loss function. Thus,
the formulation (4) is a more general formulation which
includes a large number of learning problems (e.g. regression,
binary classification, multiple classification and so on). Table
1 presents several common used smooth loss functions for

binary classification and regression. Note that the correntropy
induced loss (Feng et al. 2015) and the sigmoid loss (Lin
2004) are non-convex.

Yen et al. (2014) provided an iterative framework to solve
the sparse kernel learning formulation (4). In order to incor-
porate the parallel computation, we modify the framework as
Algorithm 1, where the iteration number is limited. Empiri-
cally M = 5 can achieve a good result. The key of Algorithm
1 is to design a scalable algorithm for the sparse kernel learn-
ing problem (4) such that scaling well in sample size and
dimensionality simultaneously.

Algorithm 1 Asynchronous sparse random feature learning
framework

1: Initialize w0 = 0, working set A0 = ∅, and t = 0.
2: for t = 0, 1, 2, · · · ,M − 1 do
3: All threads parallelly sample h1, h2, · · · , hR i.i.d.

from a distribution p(h), and add h1, h2, · · · , hR into
the set A.

4: Asynchronously solve (4) by AsyDSSKL.
5: Parallelly update At+1 = At − {h : wt(h) = 0}.
6: end for

AsyDSSKL Algorithm

In this section, we propose our AsyDSSKL algorithm to
solve the sparse kernel learning problem (4). Our AsyDSSKL
exploits the asynchronous parallel computation and doubly
stochastic optimization, which is significantly different from
(Liu and Wright 2015) as discussed before. Specifically,

1) For asynchronous parallel computation, our AsyDSSKL
works in the parallel environment with shared memory, such
as multi-core processors and GPU-accelerators. All cores in
CPU or GPU can read and write the vector x in the shared
memory simultaneously without any lock.

2) For doubly stochastic optimization, we use the tech-
niques of stochastic variance reduced gradient (SVRG)
(Zhang 2004) and stochastic coordinate descent (SCD)
(Tseng and Yun 2009; You et al. 2016). SVRG is an acceler-
ated version of stochastic gradient descent (SGD) algorithm
(Shamir and Zhang 2013) which is stochastic on samples,
and scales well in sample size. SCD is stochastic on features
which scales well in dimensionality. Thus, our AsyDSSKL
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can scale well in sample size and dimensionality simultane-
ously.

Specifically, following the SVRG (Zhang 2004) and SCD
(Tseng and Yun 2009; You et al. 2016), our AsyDSSKL has
two-layer loops. The outer layer is to parallelly compute
the full gradient ∇F (ws) = 1

l

∑l
i=1 ∇fi(w

s), where the
superscript s denotes the s-th outer loop. The inner layer is
parallelly repeating the following three steps:

1. Read: Read the vector w from the shared memory to the
local memory without reading lock. We use ŵs+1

t to de-
note the value in the local memory, where the subscript t
denotes the t-th inner loop.

2. Compute: Randomly choose a mini-batch B from
{1, ..., l} and a coordinate j from {1, ..., n}, and
locally compute v̂s+1

j = 1
|B|

∑
i∈B ∇jfi(ŵ

s+1
t ) −

1
|B|

∑
i∈B ∇jfi(w̃

s) +∇jF (w̃s).

3. Update: Update the coordinate j of the vec-
tor x in the shared memory as ws+1

t+1 ←
Pj, γ

Lmax
gj

(
(ws+1

t )j − γ
Lmax

v̂s+1
j

)
without writing

lock, where γ is the steplength, Lmax is defined in the
next section.

The detailed description of AsyDSSKL is presented in Al-
gorithm 2. Note that in line 9 of Algorithm 2, v̂s+1

j(t) computed
locally is an unbiased estimation of ∇j(t)F (ŵs+1

t ), because
the expectation of v̂s+1

t on B is equal to ∇F (ŵs+1
t ), i.e.,

Ev̂s+1
t = ∇F (ŵs+1

t ).

Algorithm 2 Asynchronous doubly stochastic sparse kernel
learning algorithm (AsyDSSKL)

Input: The steplength γ, the number of outer loop iterations
S, and the number of inner loop iterations m.

Output: xS .
1: Initialize w0 ∈ R

d.
2: for s = 0, 1, 2, · · · , S − 1 do
3: w̃s ← ws

4: All threads parallelly compute the full gradient
∇F (w̃s) = 1

l

∑l
i ∇fi(w̃

s)
5: For each thread, do:
6: for t = 0, 1, 2, · · · ,m− 1 do
7: Randomly sample a mini-batch B from {1, ..., l}

with equal probability.
8: Randomly choose a coordinate j(t) from {1, ..., n}

with equal probability.
9: Compute v̂s+1

j(t) = 1
|B|

∑
i∈B ∇j(t)fi(ŵ

s+1
t ) −

1
|B|

∑
i∈B ∇j(t)fi(w̃

s) +∇j(t)F (w̃s)

10: ws+1
t+1 ← Pj(t), γ

Lmax
gj(t)

(
ws+1

t − γ
Lmax

ej(t)v̂
s+1
j(t)

)
.

11: end for
12: ws+1 ← ws+1

m
13: end for

Convergence Rate Analysis of AsyDSSKL

Because AsyDSSKL runs in asynchronously without any
lock, the inconsistent reading and writing could arise to the
vector w in the shared memory, which makes the convergence
analysis of AsyDSSKL more challenging. In this section, we
assume that the delay for the vector w in the shared memory is
bounded (i.e., Assumption 4), and provide the comprehensive
convergence guarantees: AsyDSSKL achieves a sublinear
convergence rate when the smooth loss functions are convex
or non-convex (Theorems 1 and 2), and a linear convergence
rate when the objective function has optimal strong convexity
(Theorem 1).

In the following, we first give the several widely used as-
sumptions (i.e., optimal strong convexity, Lipschitz smooth-
ness, and bound of delay), then provide the main conclusions
to the convergence rates of our AsyDSSKL.

Preliminaries

Optimal Strong Convexity: Let P ∗ denote the optimal
value of (4), and let S denote the solution set of P such that
P (w) = P ∗, ∀w ∈ S. Firstly, we assume that S is nonempty
(i.e., Assumption 1).
Assumption 1. The solution set S of (4) is nonempty.

Based on S, we define PS(w) = argminy∈S ‖y−w‖2 as
the Euclidean-norm projection of a vector w onto S. Then,
we assume that the convex function P (w) is with the optimal
strong convexity (i.e., Assumption 2).
Assumption 2 (Optimal strong convexity).

P (w)− P (PS(w)) ≥ �

2
‖w − PS(w)‖2 (5)

As mentioned in (Liu and Wright 2015), the condition
of optimal strong convexity is significantly weaker than the
normal strong convexity condition. And several examples
of optimally strongly convex functions that are not strongly
convex are provided in (Liu and Wright 2015).
Lipschitz Smoothness: We define the normal Lipschitz
constant (Lnor), restricted Lipschitz constant (Lres) and co-
ordinate Lipschitz constant (Lmax) as follows.
Definition 1 (Lipschitz constants). Lnor, Lres and Lmax are
the normal Lipschitz constant, restricted Lipschitz constant
and coordinate Lipschitz constant, respectively, for ∇fi (∀i ∈
{1, · · · , l}) in (4). We have

‖∇fi(w1)−∇fi(w2)‖ ≤ Lnor‖w1 − w2‖, (6)
∀w1, ∀w2

‖∇fi(w)−∇fi(w + ejt)‖ ≤ Lres|t|, ∀w, ∀t (7)
‖∇fi(w)−∇fi(w + ejt)‖∞ ≤ Lmax|t|, ∀w, ∀t (8)

Based on Lnor Lres and Lmax as defined above, we as-
sume that the function fi (∀i ∈ {1, · · · , l} is Lipschitz
smooth with Lnor Lres and Lmax (i.e., Assumption 3). In
addition, we define Λres =

Lres

Lmax
, Λnor = Lnor

Lmax
.

Assumption 3 (Lipschitz smoothness). The function fi
(∀i ∈ {1, · · · , l} is Lipschitz smooth with the normal Lip-
schitz constant Lnor, restricted Lipschitz constant Lres and
coordinate Lipschitz constant Lmax.
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Bound of Delay: Because AsyDSSKL does not use the
reading lock, the vector ŵs+1

t read to the local memory may
be inconsistent to the vector ws+1

t in the shared memory,
which means that some components of ŵs+1

t are same with
the ones in xs+1

t , but others are different to the ones in xs+1
t .

However, we can define a set K(t) of inner iterations, such
that,

ws+1
t = ŵs+1

t +
∑

t′∈K(t)

(ws+1
t′+1 − ws+1

t′ ) (9)

where t′ ≤ t− 1. It is reasonable to assume that there exists
an upper bound τ such that τ ≥ t−min{t′|t′ ∈ K(t)} (i.e.,
Assumption 4).

Assumption 4 (Bound of delay). There exists an upper
bound τ such that τ ≥ t − min{t′|t′ ∈ K(t)} for all in-
ner iterations t in AsyDSSKL.

Convergence Rate Analysis

We provide the convergence rates of AsyDSSKL in the con-
vex and non-convex settings (Theorems 1 and 2). The detailed
proofs of Theorem 1 and 2 are presented in Appendix.

Convex Setting We first give the convergence rates of
AsyDSSKL at the convex setting in Theorem 1.

Theorem 1. Let ρ be a constant that satisfies ρ > 1, and

define the quantity θ1 = ρ
1
2 −ρ

τ+1
2

1−ρ
1
2

, θ2 = ρ
1
2 −ρ

m
2

1−ρ
1
2

and θ′ =

ρτ+1−ρ
ρ−1 . Suppose the nonnegative steplength parameter γ >

0 satisfies

1− Λnorγ − γτθ′

n
− 2(Λresθ1 + Λnorθ2)γ

n1/2
≥ 0 (10)

If the optimal strong convexity holds for P (w) with � > 0
(i.e., Assumption 2), we have

EP (ws)− P ∗ ≤ Lmax

2γ

(
1

1 + mγ�
n(�γ+Lmax)

)s

·(
‖w0 − PS(w

0)‖2 + 2γ

Lmax

(
EP (w0)− P ∗))

If fi(w) is a general smooth convex function with Assumption
3, we have

EP (ws)− P ∗ (11)

≤ nLmax‖w0 − PS(w
0)‖2 + 2γn

(
P (w0)− P ∗)

2γn+ 2mγs

Remark 1. Theorem 1 shows that, if the objective func-
tion P (w) is with the optimal strong convexity, AsyDSSKL
achieves a linear convergence rate (see (11)). If the loss func-
tion fi(w) is general smooth convex, AsyDSSKL achieves a
sublinear convergence rate (see (11)).

Remark 2. The thread number is not explicitly considered
in Theorems 1. As discussed in (Liu and Wright 2015), the
parameter τ is closely related to the number of threads that
can be involved in the computation, without degrading the

convergence performance of the algorithm. In other words, if
the number of threads is small enough such that (10) holds,
the convergence expressions (11), (11) do not depend on
the number of threads, implying that linear speedup can be
expected.

Non-Convex Setting If the function P (w) is non-convex,
the global optimum point cannot be guaranteed. Thus, the
closeness to the optimal solution (i.e., P (w) − P ∗ and
‖x − PS(w)‖) cannot be used for the convergence analy-
sis. To analyze the convergence rate of AsyDSSKL in the
non-convex setting, we define the expectation of a subgradi-
ent ξ ∈ ∂P (ws

t ) as E∇̃P (ws
t ). Specifically, E∇̃P (ws

t ) can
be written as following.

E∇̃P (ws
t )

def
=

Lmax

γ

(
ws

t − ws
t+1

)
(12)

where ws
t+1

def
= P γ

Lmax
g

(
ws

t − γ
Lmax

v̂st

)
. Based on (12), it

is easy to verify that (ws
t+1)j(t) = (ws+1

t+1 )j(t). Thus, we
have Ej(t)(w

s
t+1 − ws

t ) = 1
n

(
ws

t+1 − ws
t

)
, which means

that ws
t+1 − ws

t captures the expectation of ws
t+1 − ws

t . It is
easy to verify that E∇̃P (ws

t ) is equal to 0 when AsyDSSKL
approaches to a stationary point.

Based on E∇̃P (ws
t ), we give the convergence rate at the

non-convex setting in Theorem 2.
Theorem 2. Let ρ be a constant that satisfies

ρ > 1, and define the quantities θ1 = ρ
1
2 −ρ

τ+1
2

1−ρ
1
2

and θ2 = ρ
1
2 −ρ

m
2

1−ρ
1
2

. Suppose the nonnegative

steplength parameter γ > 0 satisfies γ ≤
min

{
n1/2(1−ρ−1)−4

4(Λres(1+θ1)+Λnor(1+θ2))
, n1/2

1
2n

1/2+2Λnorθ2+Λresθ1

}
.

Let T denote the number of total iterations of AsyDSSKL. If
fi(w) is a smooth non-convex function with Assumption 3,
we have

1

T

S−1∑
s=0

m−1∑
t=0

E

∥∥∥∇̃P (ws
t )
∥∥∥2 (13)

≤ P (w0)− P ∗

T
(

γ
n

(
1
γ − 1

2 − 2Lnorθ2+Lresθ1
n1/2Lmax

))
Remark 3. Theorem 2 shows that, if the loss function fi(w)
is non-convex, AsyDSSKL converges to a stationary point
with a sublinear convergence rate.

Experimental Results

Experimental Setup

Design of Experiments: To demonstrate the superiority
of our AsyDSSKL on the efficiency at the training step, we
compare the accuracies (or errors) on the testing set vs. train-
ing time of the different kernel methods. To demonstrate the
superiority of our AsyDSSKL on the efficiency of predicting,
we compare the testing time vs. the size of testing samples of
the different kernel methods. The state-of-the-art kernel meth-
ods compared in the experiments are LIBSVM(P), AsyGCD
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and DoubleSGD which are summarized in Table 2. Note that,
LIBSVM(P) is an modified implementation of LIBSVM with
parallelly computing a column of kernel matrix (Chang and
Lin 2011b). To show a near-linear speedup obtained by asyn-
chronous parallel computation, we also test the speedup of
our AsyDSSKL on different datasets.

Table 2: The state-of-the-art kernel methods compared in
our experiments. (BC=binary classification, R=regression,
Asy=asynchronous, DS=double stochastic, SC=sparse con-
straint)

Algorithm Reference Problem Parallel Asy DS SC

LIBSVM(P) (Chang and Lin 2011b) BC+R Yes No No No
AsyGCD (You et al. 2016) BC Yes Yes No No

DoubleSGD (Dai et al. 2014) BC+R No No Yes No
AsyDSSKL Our BC+R Yes Yes Yes Yes

Implementation Details: Our experiments are performed
on a 32-core two-socket Intel Xeon E5-2699 machine where
each socket has 16 cores. We implement our AsyDSSKL
in C++, where the shared memory parallel computation is
handled via OpenMP (Chandra 2001). We implement LIB-
SVM(P) by modifying LIBSVM with OpenMP according
to the instruction1 provided by Chang and Lin (2011b). We
use the implementation2 provided by (You et al. 2016) for
AsyGCD. We use the implementation3 provided by (Dai et al.
2014) for DoubleSGD. Note that the implementation of Dou-
bleSGD only works for binary classification because only the
logistic loss was implemented in their code.

In the experiments, we consider the binary classification
and regression problems. Specifically, our AsyDSSKL uses
the logistic loss (see Table 1) for binary classification, and
the correntropy induced loss (see Table 1) for regression. We
use the accuracy as the measure criterion of binary clas-
sification, and use the mean squared error (MSE) as the
measure criterion of regression. In each experiment, the
accuracy and MSE values are the average over 5 trials. In
the experiments, the value of steplength γ is selected from
{102; 10; 1; 10−1; 10−2; 10−3; 10−4; 10−5}. The # of in-
ner loop iterations m is set as the size of training set, and the
# of outer loop iterations S is set as 10.
Datasets: Table 3 summarizes the six large-scale real-
world datasets used in our experiments. They are the
Covtype B, RCV1, SUSY, Covtype M, MNIST and Aloi
datasets which are from https://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets/. Covtype B and Covtype M are from
a same source. Covtype M, MNIST and Aloi are originally
for multi-class classification. In the experiments, we treat the
multi-class classification as regression problem.

1The instruction to implement LIBSVM(P) is available at http:
//www.csie.ntu.edu.tw/∼cjlin/libsvm/faq.html\#f432.

2The AsyGCD code is available at https://github.com/cjhsieh/
asyn kernel svm.

3The DoubleSGD code is available at https://github.com/
zixu1986/Doubly Stochastic Gradients.

Table 3: The large-scale dasetsets used in the experiments,
where the multi-class classification datasets are treated as
regression problem.

Task Dataset Features Samples

Binary
classification

Covtype B 54 581,012
RCV1 47,236 677,399
SUSY 18 5,000,000

Regression
Covtype M 54 581,012

MNIST 784 1,000,000
Aloi 128 108,000

Results and Discussions

In the experiments of comparing the training time of different
algorithms, AsyGCD, LIBSVM(P) and our AsyDSSKL is
running on 16 cores. Figures 1a-1c provide the results of ac-
curacy vs. training time on the Covtype B, RCV1, and SUSY
datasets, respectively. The results show that AsyDSSKL
achieves the best accuracy value in the most time for a fixed
training time. Especially, AsyDSSKL can converge to a good
accuracy with a tremendous little time, mostly less than 60
seconds for large datasets. Figures 1d-1f provide the results
of MSE vs. training time on the Covtype M, MNIST, and
Aloi datasets, respectively. The results show that AsyDSSKL
always achieves the smallest MSE value for a fixed training
time, and AsyDSSKL can converge to a good value with a
tremendous little time, mostly less than 60 seconds for large
datasets. Figures 1a-1f confirm that our AsyDSSKL has the
significant superiority on the scalability and efficiency at the
training step over the state-of-the-art kernel methods.

Figures 1g-1h present the testing time vs. the number of
testing samples on the datasets of Covtype B and Covtype M.
The results show that the testing time of our AsyDSSKL is
smallest, compared with the other methods without sparse
constraint. Figures 1g-1h confirm that our AsyDSSKL has
the significant superiority on the scalability and efficiency at
the predicting step over the existing kernel methods.

We perform AsyDSSKL on 1, 2, 4, 8 and 16 cores to
observe the speedup. Figure 2 presents the speedup results of
AsyDSSKL on the Covtype B and Covtype M datasets. The
results show that AsyDSSKL can have a near-linear speedup
on a parallel system with shared memory. This is because we
do not use any lock in the implementation of AsyDSSKL.

Conclusion

In this paper, we introduced a general sparse kernel learning
formulation with a new asynchronous parallel doubly stochas-
tic algorithm for sparse kernel learning (AsyDSSKL). We pro-
vided a comprehensive convergence guarantee to AsyDSSKL:
1) AsyDSSKL achieves a sublinear rate when the smooth loss
functions are convex or non-convex. 2) AsyDSSKL achieves
a linear (geometric) convergence rate when the objective
function is with the optimal strong convexity. Experimental
results show that our AsyDSSKL method has the significant
superiority on the computational efficiency at the training
and predicting steps over the existing kernel methods.
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Figure 1: Comparisons between AsyDSSKL and other state-of-the-art kernel methods. (a-c) Accuracy vs. training time. (d-f)
MSE vs. training time. (g-h) Testing time vs. testing samples.
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Figure 2: Speedup results of AsyDSSKL. (a-b) Covtype B dataset. (c-d) Covtype M dataset.
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