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Abstract

Fisher’s linear discriminant analysis is a widely accepted di-
mensionality reduction method, which aims to find a trans-
formation matrix to convert feature space to a smaller space
by maximising the between-class scatter matrix while min-
imising the within-class scatter matrix. Although the fast and
easy process of finding the transformation matrix has made
this method attractive, overemphasizing the large class dis-
tances makes the criterion of this method suboptimal. In this
case, the close class pairs tend to overlap in the subspace. De-
spite different weighting methods having been developed to
overcome this problem, there is still a room to improve this
issue. In this work, we study a weighted trace ratio by max-
imising the harmonic mean of the multiple objective recip-
rocals. To further improve the performance, we enforce the
�2,1-norm to the developed objective function. Additionally,
we propose an iterative algorithm to optimise this objective
function. The proposed method avoids the domination prob-
lem of the largest objective, and guarantees that no objectives
will be too small. This method can be more beneficial if the
number of classes is large. The extensive experiments on dif-
ferent datasets show the effectiveness of our proposed method
when compared with four state-of-the-art methods.

1 Introduction

High dimensional samples make the learning tasks more
complex and computationally demanding. To confront these
problems, data dimensionality reduction methods are used to
reduce the representation of a dataset since the reduced data
delivers greater accuracy and faster learning. Dimensional-
ity reduction algorithms can be classified as feature selection
and feature extraction. Feature selection techniques reduce
the representation of a dataset through a reduction in the
number of attributes which can learn faster with higher ac-
curacy compared to the initial dataset (Kantardzic 2011). In
contrast, feature extraction algorithms transform or project
the original data onto a smaller dataset which is more com-
pact and of stronger discriminating power (Nie et al. 2010;
2008; Chang et al. 2014; Chang and Yang 2016; Canedo and
Marono 2014; Han, Pei, and Kamber 2011).
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Fisher’s linear discriminant analysis (FLDA) is a well-
known supervised feature extraction method which was pro-
posed by Fisher (1936) for binary classification, and then
extended to the multiclass scenario by Rao (1948). The ob-
jective of FLDA is to find a transformation matrix from an
n-dimensional feature space to a d-dimensional space by
maximising the between-class scatter matrix while minimis-
ing the within-class scatter matrix. The fast and easy pro-
cedure for identifying the transformation matrix has made
this method attractive. However, FLDA may encounter the
small sample size problem. This problem happens when the
number of features is far larger than the number of training
samples. In this instance, the within-class scatter matrix may
be singular, and the use of LDA may be impossible. Further-
more, FLDA can identify a subspace with the dimensions
of at most c − 1, wherein c is the class number. Overem-
phasizing the large class distances is another drawback of
this method, and this drawback makes the criterion of FLDA
suboptimal. In this case, the close class pairs tend to overlap
in the subspace, and this is known as the class separation
problem.

To deal with the class separation problem, many weight-
ing methods such as the approximate pairwise accuracy cri-
terion (aPAC) (Loog 1999), have been proposed. Loog et al.
(2001) employed an approximation of the Bayes error for
pairs of classes in order to reduce the merging of close class
pairs. Harmonic mean for subspace selection (HMSS) (Bian
and Tao 2008) and geometric mean-based subspace selec-
tion (GMSS) (Tao et al. 2009), are other weighting meth-
ods to reduce the class separation problem. However, these
weighting methods still cannot be guaranteed a solution to
the class separation problem (Hu et al. 2014).

In order to guarantee the separation of all class pairs,
Max-Min distance analysis (MMDA) was introduced by
Bian and Tao (2011). MMDA directly maximises the
minimum pairwise between-class distance in the low-
dimensional subspace. Inspired by the idea of the max-
min, several dimensionality reduction methods have been
proposed (Hu et al. 2014; Shao and Sang 2012; 2017;
Su et al. 2015). However, applying these methods is not
feasible when datasets are high dimensional, and when the
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number of classes is very large.
Taking all the discussed challenges into consideration,

we propose a �2,1-norm regularised framework based on
the trace ratio optimisation for discriminant analysis in this
work. Compared with the existing trace ratio methods which
aim to maximise the arithmetic mean of multiple objectives,
our proposed method aims to maximise the weighted har-
monic mean of the objectives. The proposed method avoids
the domination problem of the largest objective and guar-
antees that all objectives will not be too small. More im-
portantly, we employ a �2,1-norm regularisation term in the
framework to exploit correlation between features. Adjust-
ing the regularisation parameter can effectively improve the
performance of the proposed method. To seek the optimal
solution for the proposed objective function, an efficient it-
erative algorithm is proposed. Compared with several exist-
ing methods in the literature such as MMDA, the process
of finding projection matrix is fast and this method con-
verges after a few iterations. In line with the literature for
experimental evaluation, we employ 12 image and biolog-
ical datasets to examine the effectiveness of the proposed
method.

The remainder of the paper is organised as follows.
In Section 2, several well-known dimensionality reduction
methods are briefly explained and the concept of trace ratio
is discussed. Based on this concept, the foundation of the
proposed regularised trace ratio method is described in Sec-
tion 3. The converging process of the proposed method, the
effect of adjusting the regularisation parameter, and the ef-
fectiveness of this method compared with four state-of-the-
art methods are examined in Section 4. Section 5 concludes
the paper and the experiments.

2 Related Work

In this section, four state-of-the-art methods, namely FLDA
(Rao 1948), aPAC (Loog, Duin, and Haeb-Umbach 2001),
HMSS (Bian and Tao 2008) and GMSS (Tao et al. 2009) are
explained.

2.1 Linear Discriminant Analysis and Extensions

Suppose X = [x1, x2, . . . , xn] ∈ R
d×n is the n training

data points, and each data point xi belongs to one of the
classes {l1, l2, . . . , lc}. FLDA aims to find a projection ma-
trix W ∈ R

d×m(m < d) to transform the d-dimensional
data point xi to a m-dimensional data point throughout
WTxi. The criterion to find this matrix is by maximising
the ratio between the between-class scatter matrix Sb and
within-class scatter matrix Sw. In FLDA, the Sw and Sb are
defined as follows:

Sw =
c∑

k=1

∑
xi∈lk

(xi − x̄k)(xi − x̄k)
T (1)

Sb =

c∑
k=1

nk(x̄k − x̄)(x̄k − x̄)T (2)

where nk is the number of data points belonging to the class
lk, x̄k = 1

nk

∑
xi∈lk

xi and x̄ = 1
n

∑n
i=1 xi. In LDA, if Sw

is a non-singular and invertible matrix, W is composed of
the at most c− 1 eigenvectors of S−1

W SB .
In some versions of LDA, the problem of finding a pro-

jection matrix is formulated based on the trace ratio (TR)
problem. After WTX transformation and in the lower di-
mensional subspace, we have the following results:

Tr(WTSwW ) =

c∑
k=1

∑
xi∈lk

∥∥WT (xi − x̄k)
∥∥2
2

(3)

Tr(WTSbW ) =
c∑

k=1

nk

∥∥WT (x̄k − x̄)
∥∥2
2

(4)

The Tr(WTSwW ) (Eq. 3) measures the Euclidean dis-
tances within the same class while Tr(WTSbW ) (Eq. 4)
measures the Euclidean distances between different classes.
A common way to maximise the discriminative power under
the projection matrix W is to use the ratio of Tr(WTSbW )
and Tr(WTSwW ) as the objective function in which the
obtained W is an orthogonal projection matrix. The orthog-
onal constrained trace ratio problem is:

max
WTW=I

Tr(WTSbW )

Tr(WTSwW )
(5)

This problem does not have a close-form global optimal
solution and is approximated by solving a ratio trace prob-
lem Tr

(
(WTSbW )/(WTSwW )

)
. However, the Eq. 5 has

been well studied recently, and the global optimal solution
can be efficiently obtained by an iterative algorithm with
quadratic convergence. Trace ratio formulation has been
used widely in both supervised and unsupervised learning.
For instance, Wang et al. (2014) proposed an unsupervised
feature selection method using unsupervised trace ratio with
�2,1-norm regularisation term. Extensively empirical results
show the trace ratio objective outperforms the traditional ra-
tio trace objective.

2.2 Approximate Pairwise Accuracy Criterion

The approximate pairwise accuracy criterion (aPAC) (Loog,
Duin, and Haeb-Umbach 2001) is a weighting scheme in
which the approximation of Bayes errors is assigned to in-
dividual class pairs. This method attempts to improve upon
LDA by reducing the merging of class pairs. In this method,
Loog et al. used Sb decomposition (Eq. 6) to rewrite the
Fisher criterion as Eq. 7:

Sb =

c−1∑
k=1

c∑
j=k+1

nknj

n2
(x̄j − x̄k)(x̄j − x̄k)

T (6)

max
W

c−1∑
k=1

c∑
j=k+1

nknj

n2
Tr

(WTSjkW

WTSwW

)
(7)

where Sjk = (x̄j − x̄k)(x̄j − x̄k)
T . This equation then

was modified by introducing a weighting function f : R+
0 →

R
+
0 :

max
W

c−1∑
k=1

c∑
j=k+1

nknj

n2
f(Δjk)Tr

(WTSjkW

WTSwW

)
(8)
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where Δjk :=
√

(x̄j − x̄k)TS
−1
W (x̄j − x̄k); and

f(Δjk) = 1/Δ2
jkerf

(
Δjk/2

√
2
)

in which erf is the er-
ror function. The optimal solution of Eq. 8 can be calculated
by eigenvalue decomposition as LDA.

2.3 HMSS and GMSS

HMSS (Bian and Tao 2008) and GMSS (Tao et al. 2009) are
weighting methods to reduce the class separation problem.
These methods represent better performance than FLDA by
assigning large weights on close class pairs. HMSS and
GMSS are defined as Eq. 9 and Eq. 10 respectively:

max
WTW=I

−
∑

1≤i<j≤c

qiqj
(
tr
(
(WTSwW )−1(WTDijW )

))−1 (9)

max
WTW=I∏
1≤i<j≤c

[
tr
(
(WTSwW )−1(WTDijW )

)] qiqj∑
1≤m<n≤c qmqn

(10)

where Dij = (xi−xj)(xi−xj)
T . These weighting meth-

ods still cannot be guaranteed a solution to the class separa-
tion problem.

3 Trace Ratio with �2,1-norm

For the binary class problem, according to the definition of
Eq. 1, the within-class scatter matrix Sjk

w for the j-th and
k-th class is defined as follows:

Sjk
w =

∑
h∈{j,k}

∑
xi∈lh

(xi − x̄h)(xi − x̄h)
T (11)

According to the definition of Eq. 2, the between-class scat-
ter matrix Sjk

b for the j-th and k-th class is as follows:

Sjk
b =

∑
h∈{j,k}

nh(x̄h − x̄jk)(x̄h − x̄jk)
T (12)

where x̄jk = 1
nj+nk

(
∑

xi∈lj
xi+

∑
xi∈lk

xi) is the mean of
all the data from class j and k. So the orthogonal constrained
trace ratio problem in the binary class case is:

max
WTW=I

Tr(WTSjk
b W )

Tr(WTSjk
w W )

(13)

According to the definitions of Sw, Sjk
w , Sb, and Sjk

b , Eq. 14
and 15 can be easily verified:

Sw =
1

c− 1

c−1∑
k=1

c∑
j=k+1

Sjk
w (14)

and

Sb =
1

n

c−1∑
k=1

c∑
j=k+1

(nj + nk)S
jk
b . (15)

To obtain the Eq. 15, the (nj + nk)S
jk
b term in the right

side of this equation should be expanded based on Eq. 12.
By substituting of (nj x̄j + nkx̄k)(nj x̄j + nkx̄k)

T instead
of

∑
h∈{j,k} xh, the expansion of the right side of Eq. 15 is

equal to the expansion of Eq. 2.
In the traditional trace ratio problem, the sum of between-

class distances of all binary classes is maximised and the
sum of within-class distances of all binary classes is min-
imised simultaneously. As a result, the ratios of between-
class distances and within-class distances are not explic-
itly maximised for all the binary classes. Therefore, there
might be binary classes that totally overlap, particularly, for
datasets with the large number of classes. To overcome this
problem, maximising the weighted sum of ratios of between-
class and within-class distances for all the binary classes is
proposed as:

max
WTW=I

c−1∑
k=1

c∑
j=k+1

(nj + nk)
Tr(WTSjk

b W )

Tr(WTSjk
w W )

(16)

To control the capacity of W, making it more suitable for
feature selection, a regularisation term is added to Eq. 16 as
following:

max
WTW=I

c−1∑
k=1

c∑
j=k+1

(nj + nk)
Tr(WTSjk

b W )

Tr(WTSjk
w W )

+ α‖W‖2,1
(17)

where α is a regularization parameter and ‖ · ‖2,1 is the �2,1
norm, which can select correlated features to improve the
performance. In this equation, ‖W‖2,1 = Tr(WTDW ),
where D is a diagonal matrix with diagonal entries defined
as:

Dii =
1

2‖wi‖2 , (18)

where wi denotes the i-th row of W . Therefore, D is:

D =

⎡
⎢⎣

1
2‖w1‖2

. . .
1

2‖wd‖2

⎤
⎥⎦ (19)

Eq. 17 is the objective function we are using in this paper.

3.1 Weighted Harmonic Mean of Trace Ratio

A simple way to maximise multiple objectives
J1, J2, J3 . . . , is maximising the weighted sum of all
the objectives as:

max
x

∑
i

pi · Ji(x), (20)

where pi is the weight of the objective Ji. However, in
(20), the largest objective Jk could dominate the sum of
the objectives, making some other objectives very small.
As a result, maximising the arithmetic mean is not a good
choice for maximising the multiple objectives. To confront
this problem, maximising the minimal of the objectives,
as max

x
min
i

Ji(x), can be a solution. Consequently, max-

imising the weighted harmonic mean of the objectives, as
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max
x

1∑

i

pi· 1
Ji(x)

, can be used to maximise the multiple ob-

jectives. This problem can be converted into:

min
x

∑
i

pi · 1

Ji(x)

We are minimising the weighted sum of the multiple ob-
jective reciprocals here to guarantee that no objective is too
small. Therefore, maximising the harmonic mean is a good
solution for maximising multiple objectives. Based on these
analyses, we propose to maximise the harmonic mean of the
trace ratios to overcome the problem raised in (16). Simi-
larly, we will minimise the following objective function:

min
WTW=I

c−1∑
k=1

c∑
j=k+1

(nj + nk)
Tr(WTSjk

w W )

Tr(WTSjk
b W )

+

αTr(WTDW )

(21)

The main difference of Eq. 21 with our previous work (Li et
al. 2017) is that we incorporate a �2,1-norm into the frame-
work. For notation simplicity, we rewrite the Eq. 21 as Eq.
22 and continue the further analysis using this equation:

min
WTW=I

ć∑
i=1

Tr(WTAiW )

Tr(WTBiW )
+ αTr(WTDW ) (22)

where: ć = c(c−1)
2 , Bi = Sjk

b , and Ai = (nj + nk)S
jk
w , in

which j and k are i and i + 1 respectively. The Lagrangian
function of (22) is:

f(W,Λ) =

ć∑
i=1

Tr(WTAiW )

Tr(WTBiW )
+ αTr(WTDW )−

Tr(Λ(WTW − I))

(23)

By taking the derivative of Eq. 23 with respect to W , we
have:(

ć∑
i=1

1

Tr(WTBiW )

(
Ai − Tr(WTAiW )

Tr(WTBiW )
Bi

)
+ αD

)

×W = WΛ
(24)

which can be rewritten as MW = WΛ, where the matrix
M is:

M =

ć∑
i=1

1

Tr(WTBiW )

(
Ai − Tr(WTAiW )

Tr(WTBiW )
Bi

)
+ αD

(25)
Note that M in Eq. 25 is dependent on W , which is un-
known. To seek the optimal solution for W , we propose the
iterative Algorithm 1. In the rest of this paper, we call our
proposed trace ratio with �2,1-norm regularisation as TRLN.
In each iteration of Algorithm 1, the value of Eq. 22 is de-
creased until the algorithm converges. The proof is similar
to (Li et al. 2017; Nie et al. 2010) and thus we omit it due to
limited space. It is worth noting that Eq. 24 is the KKT con-
dition of Eq. 22, and consequently is a local optimal solution
to the problem (22).

Algorithm 1: TRLN

Input: Training data X = [x1, x2, . . . , xn] ∈ R
d×n,

and m
1 Initialize W ∈ R

d×m such that WTW = I;
2 calculate Sjk

w according to Eq. 11;
3 calculate Sjk

b according to Eq. 12;
4 calculate D according to Eq. 19 ;
5 while not converge do
6 1. calculate M according to Eq. 25;
7 2. update W , which is formed by the m

eigenvectors of M corresponding to the m
smallest eigenvalues;

8 3. update D;
9 end

Output: W ∈ R
d×m

4 Experiments and Discussion

In this section, the converging process of the proposed al-
gorithm and the effect of the regularisation parameter on the
predictive performance of learning algorithms are discussed.
In line with the literature, we compare the performance of
the proposed method with four well-known methods to ex-
amine the effectiveness of the TRLN. In our experiments,
the following datasets are considered:
• Biology datasets including Obesity, CLL SUB 111

(Haslinger et al. 2004), GLIOMA (Nutt et al. 2003),
TOX 171 from the Arizona State University (ASU)
datasets repository1, lung (Bhattacharjee et al. 2001) and
Carcinom (Su et al. 2001). Obesity is a high-dimensional
data collected within our institution, which contains 114
obese and non-obese people with 47,233 biomarkers per
person. CLL SUB 111 contains gene expression for 100
genetically well-characterized B-CLL samples, and 11
healthy control samples. GLIOMA has 50 high-grade
glioma samples in which glioma is defined as cancer of
the brain. Lung has 203 samples from snap-frozen lung
tumors and normal lung. Carcinom contains 174 samples
for carcinomas of the prostate, breast, lung, ovary, col-
orectum, kidney, liver, pancreas, bladder/ureter, and gas-
troesophagus.

• Image datasets including pixraw10P from the ASU
datasets repository, Yale (Belhumeur, Hespanha, and
Kriegman 1997), COIL20 (Nene et al. 1996), YaleB
(Georghiades, Belhumeur, and Kriegman 2001) and ORL
(Samaria and Harter 1994). Yale contains 165 gray-scale
images of 15 individuals (11 images for each subject).
COIL20 has 20 objects and 72 gray-scale images for each
object under various poses (total of 1,440 images). YaleB
is the extended Yale face database B and contains 2,414
images for 38 individuals. ORL has 400 gray-scale im-
ages from 40 distinct subjects (10 images for each sub-
ject). We also use orlraws10P in our experiments which is
extracted from the ORL dataset and contains 10 subjects.

The characteristics of these data are presented in Table 1.
1http://featureselection.asu.edu/datasets.php
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Table 1: The characteristics of the datasets

Data sets Sample Feature Class
Obesity 114 47233 2
CLL SUB 111 111 11340 3
GLIOMA 50 4434 4
TOX 171 171 5748 4
lung 203 3312 5
pixraw10P 100 10000 10
orlraws10P 100 10304 10
Carcinom 174 9128 11
Yale 165 1024 15
COIL20 1440 1024 20
YaleB 2414 1024 38
ORL 400 1024 40

4.1 The Algorithm Convergence

In order to evaluate the convergence of the proposed al-
gorithm, the values of m and α were altered within {c −
1, . . . , 1} and {0, 10−3, . . . , 101} respectively. The α = 0
means that the regularisation term is removed from Eq.
21. In the converging process, we consider the convergence
threshold as 0.05 and the maximum number of iterations as
30. In all experiments reported in this paper, PCA was per-
formed as a pre-processing step while 95% of the total vari-
ance was captured by reduced datasets. In order to prevent
the singularity problem, a small term λI was added to the
covariance matrix, where λ is 10−5. All experiments were
implemented on a PC with 3.2 GHz CPU frequency and 8
GB memory.

The experiments showed that the algorithm convergence
does not depend on the value of α and the variation of m.
Furthermore, not only the converging process of this algo-
rithm happens after a few iterations, this process is also fast.
Based on the experiments, the spending time for finding the
transformation matrix for each α varies between 0.012 and
0.73 second for different datasets used in this study. Figure 1
illustrates this trend for m = c− 1 for various datasets. The
spending time for performing the TRLN is also illustrated.

4.2 The Effect of The Regularisation Parameter

To investigate the effect of adjusting the parameter α
in our proposed method, this variable is altered within
{0, 10−3, 10−2, . . . , 101} for each dimension belonging to
{c − 1, . . . , 1}. α = 0 means that the �2,1-norm regularisa-
tion which is the correlation exploitation, is removed from
Eq. 21. The Eq. 21 with α = 0 is equivalent to the work in-
troduced by Li et al. (2017). The 1-nearest neighbours clas-
sifier (1NN) was employed to examine the predictive perfor-
mance (accuracy) of the TRLN. Reducing data, and measur-
ing the predictive performance of the 1NN classifier were
performed by 5-fold cross validation. In order to ensure the
results are not biased towards the data sequence, the process
of data reduction and classification are repeated 5 times after
shuffling datasets, and the average of classification accura-
cies is reported as the predictive performance.

Table 2 summarises the effect of parameter α on average
predictive performance of four datasets for the variation of
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Figure 1: The converging trend of the TRLN for different
datasets with m = c− 1 and α = 1.

dimension. For each dimension, the maximum and the av-
erage of the predictive performance of 1NN classifier are
illustrated. Furthermore, the best value of α leading to the
maximum predictive performance, is also shown. Figure 2
illustrates the accuracy of 1NN applied to the orlraws10P
data for the variation of α and m.

These results indicate the importance of adding �2,1-norm
to the TRLN algorithm, and the effect of regulating param-
eter α for each dimension. The almost 10% deviation of the
1NN performance for some dimensions, implies that adjust-
ing α leads to better performance than simply excluding the
regularisation term in the TRLN algorithm. The only excep-

Table 2: The maximum and the average accuracy of the 1NN
classifier for the four datasets with respect to variation of α
and m. The best α leading to the best predictive performance
is also represented.

Dim Max Mean Best Dim Max Mean Best
Orlraws10P Pixraw10P

9 98.60 95.20 10 9 99.80 98.97 10
8 99.20 94.93 10 8 99.40 98.90 10
7 98.20 95.23 10 7 99.20 98.67 0.001
6 99.80 96.17 10 6 99.60 98.53 10
5 97.40 96.53 10 5 99.80 98.63 10
4 95.80 93.97 10 4 100.00 98.80 10
3 86.40 83.77 0.001 3 93.80 92.87 0.01
2 68.60 62.90 0.01 2 84.80 82.20 0.1
1 42.60 38.70 10 1 53.80 52.00 0

TOX 171 GLIOMA
3 96.96 86.82 10 3 72.00 60.20 10
2 72.98 69.43 0.001 2 69.60 62.07 1
1 44.33 41.93 1 1 48.40 44.40 0.01
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Figure 2: The effect of altering the regularisation parameter
(α) along different dimensions for the orlraws10P dataset.

tion is the pixraw10P when m = 1. In this dimension, the
performance of the algorithm for both cases of including and
excluding the regularisation term is quite poor. Similar pat-
terns and results were achieved for the other datasets used in
this paper.

In the rest of this paper, we alter the value of α within
{10−3, . . . , 101} for each dimension as the performance
gain over our earlier work (Li et al. 2017) demonstrated
the effectiveness of �2,1-norm regularisation for dimension
reduction. To obtain the best value for the regularisation
parameter that leads to highest average predictive perfor-
mance, the proposed method is executed five times for each
m. However, this process is fast as the algorithm converges
after a few iterations.

4.3 The Effectiveness of The Proposed Method
Compared with Previous Methods

In this section, the performance of the TRLN method is
compared with four state-of-the-art methods, namely FLDA
(Rao 1948), aPAC (Loog, Duin, and Haeb-Umbach 2001),
HMSS (Bian and Tao 2008) and GMSS (Tao et al. 2009).
The performance of a data reduction method should be eval-
uated with a classification algorithm. However, the predic-
tive performance depends on the learning algorithm used.
In order to obtain results as classifier-independent as pos-
sible, we employed two classifiers in this study, namely the
1NN classifier and the linear support vector machine (SVM).
In the linear SVM, the box constraint parameter (C) re-
mained constant for each dataset to perform a fair compari-
son between different methods. However, in order to select
the best C, this parameter was altered within the range of
{2−3, . . . , 25}. Afterwards, a C which led to the highest
average predictive performance was considered as the best
value for further experiments.

We followed the same procedure explained in section 4.2
for the classification, that is, the accuracy of the two clas-
sifiers was measured by 5-fold cross validation and for five
times repetitions. The results of experiments are illustrated
in Figure 3, Tables 3 and 4. Figure 3 represents the accu-
racy of the 1NN classifier for different datasets. The perfor-
mance of the ORL dataset has been illustrated in two fig-
ures to make a better comparison of the five methods. The

ORL(a) and ORL(b) show the accuracies associated with the
dimensions belonging to {c−1, . . . , 10} and {10, . . . , 1} re-
spectively. Tables 3 and 4 also show the best predictive per-
formance of 1NN and linear SVM for the 12 datasets and
the five methods. The dimension which leads to the highest
accuracy is also presented in parentheses for each method
and dataset in these tables.

Figure 3 shows that while the proposed method underper-
formed for small dimensions, it can significantly outperform
the other methods for dimensions not much smaller than
c−1. For example, at m = c−1, the predictive performance
of 1NN obtained by applying TRLN to the CLL SUB 111
and TOX 171 datasets, are higher than the other methods by
almost 11% and 14% respectively. This figure changes to 9%
and 15% by employing the linear SVM (Table 4). The two
tables also emphasize the outstanding performance of TLRN
compared with other methods with respect to achieved high-
est accuracy. For instance, for the TOX 171, CLL SUB 111,
Carcinom, Yale and GLIOMA datasets the predictive per-
formance of the proposed method is higher than the other
methods by almost 14%, 9%, 5%, 5%, and 4% respectively.
The only exception is the COIL20 data in which the HMSS
method has the higher 1NN and linear SVM performance
than TRLN by at most 0.13%. The dimensions represented
in parentheses show that the highest predictive performance
for all methods is achieved for not very small values of m.

5 Conclusion

In this study, we propose a �2,1-norm regularised weighted
trace ratio to address the domination problem of the largest
class distance leading to the overlapped close class pairs in
the subspace. The proposed method TRLN maximises the
harmonic mean of a new weighted sum of ratios of between-
class and within-class distances for all the binary classes.
Employing the harmonic mean guarantees that no objective
will be too small. We also added a regularisation term to im-
prove the performance of the trace ratio method. To evaluate
the performance of the proposed method, we employed 12
various datasets.

The experiments showed that the algorithm converges af-
ter a few iterations. Moreover, the importance of adding the
regularisation term and adjusting the regularisation param-
eter was comprehensively discussed. We showed that the
higher predictive performance can be achieved by adjusting
the regularisation parameter rather than simply excluding
this term in the proposed method. The performance of the
TRLN was also compared with the four well-known meth-
ods, namely FLDA, aPAC, HMSS and GMSS. To do so, we
employed 1NN and linear SVM and applied them to the re-
duced subsets. The results showed that while the proposed
method cannot compete with the other methods for small
values of dimension, it significantly outperforms the four
methods when the value of m is c− 1 and near this value.
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Figure 3: The accuracy of 1NN classifier for different datasets with respect to variation of m

Table 3: The best predictive performance of 1NN obtained from TRLN, FLDA, aPAC, HMSS, and GMSS methods.

Data sets TRLN FLDA aPAC HMSS GMSS

Obesity 64.74±4.04(1) 64.04±2.70(1) 64.04±2.70(1) 62.11±1.14(1) 57.19± 3.90(1)
Cll sub 111 74.05±3.62(2) 51.71±1.86(2) 51.71±1.86(2) 63.04±2.07(2) 58.02±5.35(2)
Glioma 72±5.09(3) 47.6±6.23(3) 45.6±4.33(3) 64.4±5.89(3) 68±4.69(3)
TOX 171 96.96±2.24(3) 81.17±3.68(3) 81.05±4.15(3) 82.69±3.76(3) 81.75±1.5(3)
Lung 95.17±0.41(4) 74.58±3.05(4) 74.38±2.39(4) 93.50±1.79(3) 94.88±0.66(4)
Pixraw10P 100±0(4) 98.6±0.89(8) 98.4±0.89(8) 98.6±1.14(5) 98.8±0.84(5)
Orlraws10P 99.8±0.45(6) 91.6±2.51(6) 91.4±2.07(8) 96±1.58(9) 98±0.71(9)
Carcinom 95.17±0.31(10) 69.54±1.95(9) 69.54±1.95(9) 85.63±0.81(9) 89.43±0.87(10)
Yale 85.82±2.76(13) 79.88±1.63(11) 79.88±0.66(14) 73.58±2.62(14) 77.93±1.63(10)
COIL20 99.44±0.2(8) 99.07±0.14(15) 99.15±0.11(15) 99.57±0.12(18) 94.78±0.40(19)
YaleB 93.29±0.34(29) 92.55±0.37(19) 92.87±0.26(19) 82.40±0.91(15) 88.12±0.22(22)
ORL 98.9±0.52(33) 97.7±0.60(22) 98±0.39(22) 96.05±0.622(28) 96.55±0.65(15)

Table 4: The best predictive performance of the linear SVM obtained from TRLN, FLDA, aPAC, HMSS, and GMSS methods.

Data sets TRLN FLDA aPAC HMSS GMSS

Obesity 64.74±4.04(1) 64.04±2.70(1) 64.04±2.70(1) 61.05±2.37(1) 57.19± 3.90(1)
Cll sub 111 74.23±1.97(2) 52.07±2.33(2) 52.07±2.33(2) 65.04±2.66(2) 62.88±3.95(2)
Glioma 72.4±7.4(3) 48.4±6.84(3) 46±3.74(3) 67.2±5.93(3) 68.4±5.37(3)
Tox 171 95.67±1.97(3) 81.05±3.5(3) 80.94±3.57(3) 80.94±4.29(3) 79.42±2.32(3)
Lung 95.37±0.44(4) 73.6±2.57(4) 73.99±2.19(4) 94.29±1.13(4) 94.48±0.64(4)
Pixraw10P 99.8±0.45(5) 98.6±0.89(6) 98.4±0.89(8) 98.8±0.84(8) 99±0.71(6)
Orlraws10P 99±0.71(8) 91.8±2.17(6) 91.6±1.95(6) 96.4±1.52(9) 97.8±0.45(9)
Carcinom 94.71±0.63(10) 69.54±1.95(9) 69.54±1.95(9) 87.36±0.91(10) 89.08±1.68(10)
Yale 84.24±1.96(14) 79.39±3.18(13) 80±3.69(12) 76.36±0.61(14) 80.12±2.82(13)
COIL20 99.13±0.06(19) 98.88±0.06(16) 98.94±0.27(19) 99.15±0.16(19) 94.02±0.71(19)
Yaleb 94.08±0.71(32) 93.72±0.27(36) 93.76±.34(36) 93.27±0.29(36) 93.95±0.35(35)
ORL 98.7±0.41(29) 97.90±0.78(34) 98.05±0.21(22) 97.5±0.68(38) 97.5±0.77(15)
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