
A Continuous Relaxation of Beam Search for
End-to-End Training of Neural Sequence Models

Kartik Goyal
Carnegie Mellon University

kartikgo@cs.cmu.edu

Graham Neubig
Carnegie Mellon University

gneubig@cs.cmu.edu

Chris Dyer
Deepmind

cdyer@google.com

Taylor Berg-Kirkpatrick
Carnegie Mellon University

tberg@cs.cmu.edu

Abstract

Beam search is a desirable choice of test-time decoding algo-
rithm for neural sequence models because it potentially avoids
search errors made by simpler greedy methods. However, typ-
ical cross entropy training procedures for these models do not
directly consider the behaviour of the final decoding method.
As a result, for cross-entropy trained models, beam decoding
can sometimes yield reduced test performance when com-
pared with greedy decoding. In order to train models that can
more effectively make use of beam search, we propose a new
training procedure that focuses on the final loss metric (e.g.
Hamming loss) evaluated on the output of beam search. While
well-defined, this “direct loss” objective is itself discontinuous
and thus difficult to optimize. Hence, in our approach, we
form a sub-differentiable surrogate objective by introducing
a novel continuous approximation of the beam search decod-
ing procedure. In experiments, we show that optimizing this
new training objective yields substantially better results on
two sequence tasks (Named Entity Recognition and CCG Su-
pertagging) when compared with both cross entropy trained
greedy decoding and cross entropy trained beam decoding
baselines.

1 Introduction

Sequence-to-sequence (seq2seq) models have been suc-
cessfully used for many sequential decision tasks such
as machine translation (Sutskever, Vinyals, and Le 2014;
Bahdanau, Cho, and Bengio 2015), parsing (Dyer et al. 2016;
2015), summarization (Rush, Chopra, and Weston 2015),
dialog generation (Serban et al. 2015), and image caption-
ing (Xu et al. 2015). Beam search is a desirable choice of
test-time decoding algorithm for such models because it po-
tentially avoids search errors made by simpler greedy meth-
ods. However, the typical approach to training neural se-
quence models is to use a locally normalized maximum like-
lihood objective (cross-entropy training) (Sutskever, Vinyals,
and Le 2014). This objective does not directly reason about
the behaviour of the final decoding method. As a result,
for cross-entropy trained models, beam decoding can some-
times yield reduced test performance when compared with
greedy decoding (Koehn and Knowles 2017; Neubig 2017;
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Cho et al. 2014). These negative results are not unexpected.
The training procedure was not search-aware: it was not able
to consider the effect that changing the model’s scores might
have on the ease of search while using a beam decoding,
greedy decoding, or otherwise.

We hypothesize that the under-performance of beam search
in certain scenarios can be resolved by using a better designed
training objective. Because beam search potentially offers
more accurate search when compared to greedy decoding,
we hope that appropriately trained models should be able
to leverage beam search to improve performance. In order
to train models that can more effectively make use of beam
search, we propose a new training procedure that focuses
on the final loss metric (e.g. Hamming loss) evaluated on
the output of beam search. While well-defined and a valid
training criterion, this “direct loss” objective is discontinuous
and thus difficult to optimize. Hence, in our approach, we
form a sub-differentiable surrogate objective by introducing
a novel continuous approximation of the beam search decod-
ing procedure. In experiments, we show that optimizing this
new training objective yields substantially better results on
two sequence tasks (Named Entity Recognition and CCG Su-
pertagging) when compared with both cross-entropy trained
greedy decoding and cross-entropy trained beam decoding
baselines.

Several related methods, including reinforcement learn-
ing (Ranzato et al. 2016; Bahdanau et al. 2017), imitation
learning (Daumé, Langford, and Marcu 2009; Ross, Gordon,
and Bagnell 2011; Bengio et al. 2015), and discrete search
based methods (Wiseman and Rush 2016; Andor et al. 2016;
Daumé III and Marcu 2005; Gormley, Dredze, and Eisner
2015), have also been proposed to make training search-
aware. These methods include approaches that forgo direct
optimization of a global training objective, instead incorpo-
rating credit assignment for search errors by using methods
like early updates (Collins and Roark 2004) that explicitly
track the reachability of the gold target sequence during the
search procedure. While addressing a related problem – credit
assignment for search errors during training – in this paper,
we propose an approach with a novel property: we directly
optimize a continuous and global training objective using
backpropagation. As a result, in our approach, credit assign-
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Algorithm 1 Standard Beam Search
1: Initialize:

h0,i ← �0, e0,i ← embedding(<s>), s0,i ← 0, i = 1, . . . , k
2: for t = 0 to T do
3: for i = 1 to k do
4: for all v ∈ V do
5: s̃t[i, v]← st,i + f(ht,i, v) � f is the local output scoring function
6: st+1 ← top-k-max(s̃t) � Top k values of the input matrix
7: bt+1,∗, yt,∗ ← top-k-argmax(s̃t) � Top k argmax index pairs of the input matrix
8: for i = 1 to k do
9: et+1,i ← embedding(yt,i)

10: ht+1,i ← r(ht,i, et+1,i) � r is a nonlinear recurrent function that returns state at next step
11: ŷ← follow-backpointer((b1,∗, y1,∗), . . . , (bT,∗, yT,∗))
12: s(ŷ)← max(sT )

ment is handled directly via gradient optimization in an end-
to-end computation graph. The most closely related work to
our own approach was proposed by Goyal, Dyer, and Berg-
Kirkpatrick (2017). They do not consider beam search, but
develop a continuous approximation of greedy decoding for
scheduled sampling objectives. Other related work involves
training a generator with a Gumbel reparamterized sampling
module to more reliably find the MAP sequences at decode-
time (Gu, Im, and Li 2017), and constructing surrogate loss
functions (Bahdanau et al. 2016) that are close to task losses.

2 Model

We denote the seq2seq model parameterized by θ asM(θ).
We denote the input sequence as x, the gold output se-
quence as y∗ and the result of beam search over M(θ) as
ŷ = Beam(x,M(θ)). Ideally, we would like to directly min-
imize a final evaluation loss, L(ŷ, y∗), evaluated on the re-
sult of running beam search with input x and modelM(θ).
Throughout this paper we assume that the evaluation loss de-
composes over time steps t as: L(ŷ, y∗) =

∑T
t=1 d(ŷt, y

∗)1.
We refer to this idealized training objective that directly eval-
uates prediction loss as the “direct loss” objective and define
it as:

min
θ

GDL(x, θ, y
∗) = min

θ
L(Beam(x,M(θ)), y∗) (1)

Unfortunately, optimizing this objective using gradient meth-
ods is difficult because the objective is discontinuous. The
two sources of discontinuity are:

1. As we describe later in more detail, beam search decoding
(referred to as the function Beam) involves discrete argmax
decisions and thus represents a discontinuous function.

2. The output, ŷ, of the Beam function, which is the input
to the loss function, L(ŷ, y∗), is discrete and hence the
evaluation of the final loss is also discontinuous.

We introduce a surrogate training objective that avoids these
problems and as a result is fully continuous. In order to

1This assumption does not hold for some popular evaluation
metrics (e.g. BLEU). In these cases, surrogate evaluation losses
such as Hamming distance can be used .

accomplish this, we propose a continuous relaxation to the
composition of our final loss metric, L, and our decoder
function, Beam:

softLB(x,M(θ), y∗) ≈ (L ◦Beam)(x,M(θ), y∗)

Specifically, we form a continuous function softLB that seeks
to approximate the result of running our decoder on input x
and then evaluating the result against y∗ using L. By intro-
ducing this new module, we are now able to construct our
surrogate training objective:

min
θ

G̃DL(x, θ, y
∗) = min

θ
softLB(x,M(θ), y∗) (2)

Specified in more detail in Section 2.3, our surrogate ob-
jective in Equation 2 will additionally take a hyperparameter
α that trades approximation quality for smoothness of the
objective. Under certain conditions, Equation 2 converges to
the objective in Equation 1 as α is increased. We first describe
the standard discontinuous beam search procedure and then
our training approach (Equation 2) involving a continuous
relaxation of beam search.

2.1 Discontinuity in Beam Search

Formally, beam search is a procedure with hyperparameter
k that maintains a beam of k elements at each time step and
expands each of the k elements to find the k-best candidates
for the next time step. The procedure finds an approximate
argmax of a scoring function defined on output sequences.

We describe beam search in the context of seq2seq mod-
els in Algorithm 1 – more specifically, for an encoder-
decoder (Sutskever, Vinyals, and Le 2014) model with a
nonlinear auto-regressive decoder (e.g. an LSTM (Hochre-
iter and Schmidhuber 1997)). We define the global model
score of a sequence y with length T to be the sum of lo-
cal output scores at each time step of the seq2seq model:
s(y) =

∑T
t=1 f(ht, yt). In neural models, the function f

is implemented as a differentiable mapping, R|h| → R
|V |,

which yields scores for vocabulary elements using the recur-
rent hidden states at corresponding time steps. In our notation,
ht,i is the hidden state of the decoder at time step t for beam
element i, et,i is the embedding of the output symbol at time-
step t for beam element i, and st,i is the cumulative model
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Algorithm 2 continuous-top-k-argmax
1: Inputs:

s ∈ R
k×|V |

2: Outputs:
pi ∈ R

k×|V |, s.t.
∑

j pij = 1, i = 1, . . . , k

3: m ∈ R
k = top-k-max(s)

4: for i = 1 to k do � peaked-softmax will be dominated by scores closer to mi

5: pi = peaked-softmaxα(−(s−mi · 1)2) � The square operation is element-wise

score at step t for beam element i. In Algorithm 1, we denote
by s̃t ∈ R

k×|V | the cumulative candidate score matrix which
represents the model score of each successor candidate in the
vocabulary for each beam element. This score is obtained by
adding the local output score (computed as f(ht,i, w)) to the
running total of the score for the candidate. The function r in
Algorithms 1 and 3 yields successive hidden states in recur-
rent neural models like RNNs, LSTMs etc. The embedding
operation maps a word in the vocabulary V , to a continu-
ous embedding vector. Finally, backpointers at each time
step to the beam elements at the previous time step are also
stored for identifying the best sequence ŷ, at the conclusion
of the search procedure. A backpointer at time step t for a
beam element i is denoted by bt,i ∈ {1, . . . , k} which points
to one of the k elements at the previous beam. We denote
a vector of backpointers for all the beam elements by bt,∗.
The follow-backpointer operation takes as input backpointers
(bt,∗) and candidates (yt,∗ ∈ {1, . . . , |V |}k) for all the beam
elements at each time step and traverses the sequence in re-
verse (from time-step T through 1) following backpointers
at each time step and identifying candidate words associated
with each backpointer that results in a sequence ŷ, of length
T .

The procedure described in Algorithm 1 is discontinuous
because of the top-k-argmax procedure that returns a pair of
vectors corresponding to the k highest-scoring indices for
backpointers and vocabulary items from the score matrix s̃t.
This index selection results in hard backpointers at each time
step which restrict the gradient flow during backpropagation.
In the next section, we describe a continuous relaxation to
the top-k-argmax procedure which forms the crux of our
approach.

2.2 Continuous Approximation to top-k-argmax
The key property that we use in our approximation is that for
a real valued vector z, the argmax with respect to a vector of
scores, s, can be approximated by a temperature controlled
softmax operation. The argmax operation can be represented
as:

ẑ =
∑

i

zi�[∀i′ �= i, si > si′ ],

which can be relaxed by replacing the indicator function with
a peaked-softmax operation with hyperparameter α:

z̃ =
∑

i

zi
exp (α si)∑
i′ exp (α si′)

=zT · elem-exp(α s)∑
i′ exp (α si′)

= zT · peaked-softmaxα(s)

As α → ∞, z̃ → ẑ so long as there is only one maximum
value in the vector z. This peaked-softmax operation has
been shown to be effective in recent work (Maddison, Mnih,
and Teh 2017; Jang, Gu, and Poole 2016; Goyal, Dyer, and
Berg-Kirkpatrick 2017) involving continuous relaxation to
the argmax operation, although to our knowledge, this is
the first work to apply it to approximate the beam search
procedure.

Using this peaked-softmax operation, we propose an itera-
tive algorithm for computing a continuous relaxation to the
top-k-argmax procedure in Algorithm 2 which takes as input
a score matrix of size k × |V | and returns k peaked matrices
p of size k × |V |. Each matrix pi represents the index of i-th
max. For example, p1 will have most of its mass concentrated
on the index in the matrix that corresponds to the argmax,
while p2 will have most of its mass concentrated on the index
of the 2nd-highest scoring element. Specifically, we obtain
matrix pi by computing the squared difference between the
i-highest score and all the scores in the matrix and then using
the peaked-softmax operation over the negative squared dif-
ferences. This results in scores closer to the i-highest score
to have a higher mass than scores far away from the i-highest
score.

Hence, the continuous relaxation to top-k-argmax oper-
ation can be simply implemented by iteratively using the
max operation which is continuous and allows for gradient
flow during backpropagation. As α→∞, each p vector con-
verges to hard index pairs representing hard backpointers and
successor candidates described in Algorithm 1. For finite α,
we introduce a notion of a soft backpointer, represented as a
vector b̃ ∈ R

k in the k-probability simplex, which represents
the contribution of each beam element from the previous time
step to a beam element at current time step. This is obtained
by a row-wise sum over p to get k values representing soft
backpointers.

2.3 Training with Continuous Relaxation of
Beam Search

We describe our approach in detail in Algorithm 3 and
illustrate the soft beam recurrence step in Figure 1. For
composing the loss function and the beam search function
for our optimization as proposed in Equation 2, we make
use of decomposability of the loss function across time-
steps. Thus for a sequence y, the total loss is: L(y, y∗) =∑T

t=1 d(yt). In our experiments, d(yt) is the Hamming
loss which can be easily computed at each time-step by
simply comparing gold y∗t with yt. While exact compu-
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Algorithm 3 Continuous relaxation to beam search
1: Initialize:

h0,i ← �0, e0,i ← embedding(<s>), s0,i ← 0, Dt ∈ R
k ← �0, i = 1, . . . , k

2: for t = 0 to T do
3: for all w ∈ V do
4: for i=1 to k do
5: s̃t[i, w]← st,i + f(ht,i, w) � f is a local output scoring function
6: D̃t,w = d(w) � D̃t is used to compute Dt+1

7: p1, . . . , pk ← continuous-top-k-argmax(s̃t) � Call Algorithm 2
8: for i = 1 to k do
9: b̃t,i ← row_sum(pi) � Soft back pointer computation

10: ai ∈ R|V | ← column_sum(pi) � Contribution from vocabulary items
11: et+1,i ← aTi × E � Peaked distribution over the candidates to compute e,D, S

12: Dt+1,i ← aTi · D̃t

13: st+1,i = sum(s̃t 
 pi)

14: h̃t,i ← �0
15: for j = 1 to k do � Get contributions from soft backpointers for each beam element
16: h̃t,i+ = ht,j ∗ b̃t,i[j]
17: Dt+1,i+ = Dt,j ∗ b̃t,i[j]
18: ht+1,i ← r(h̃t,i, et+1,i) � r is a nonlinear recurrent function that returns state at next step
19: L = peaked-softmaxα(sT ) ·DT � Pick the loss for the sequence with highest model score on the beam in a soft manner.

tation of d(y) will vary according to the loss, our pro-
posed procedure will be applicable as long as the total loss
is decomposable across time-steps. While decomposabil-
ity of loss is a strong assumption, existing literature on
structured prediction (Taskar, Guestrin, and Koller 2004;
Tsochantaridis et al. 2005) has made due with this assump-
tion, often using decomposable losses as surrogates for non-
decomposable ones. We detail the continuous relaxation to
beam search in Algorithm 3 with Dt,i being the cumulative
loss of beam element i at time step t and E being the embed-
ding matrix of the target vocabulary which is of size |V | × l
where l is the size of the embedding vector.

In Algorithm 3, all the discrete selection functions have
been replaced by their soft, continuous counterparts which
can be backpropagated through. This results in all the op-
erations being matrix and vector operations which is ideal
for a GPU implementation. An important aspect of this al-
gorithm is that we no longer rely on exactly identifying a
discrete search prediction ŷ since we are only interested in
a continuous approximation to the direct loss L (line 18 of
Algorithm 3), and all the computation is expressed via the
soft beam search formulation which eliminates all the sources
of discontinuities associated with the training objective in
Equation 1. The computational complexity of our approach
for training scales linearly with the beam size and hence is
roughly k times slower than standard CE training for beam
size k. Since we have established the pointwise convergence
of peaked-softmax to argmax as α→∞ for all vectors that
have a unique maximum value, we can establish pointwise
convergence of objective in Equation 2 to objective in Equa-
tion 1 as α → ∞, as long as there are no ties among the
top-k scores of the beam expansion candidates at any time
step. We posit that absolute ties are unlikely due to random

initialization of weights and the domain of the scores being
R. Empirically, we did not observe any noticeable impact
of potential ties on the training procedure and our approach
performed well on the tasks as discussed in Section 4.

G̃DL,α(x, θ, y
∗) α→∞−−−−→

p
GDL(x, θ, y

∗) (3)

We experimented with different annealing schedules for α
starting with non-peaked softmax moving toward peaked-
softmax across epochs so that learning is stable with informa-
tive gradients. This is important because cost functions like
Hamming distance with very high α tend to be non-smooth
and are generally flat in regions far away from changepoints
and have a very large gradient near the changepoints which
makes optimization difficult.

2.4 Decoding

The motivation behind our approach is to make the optimiza-
tion aware of beam search decoding while maintaining the
continuity of the objective. However, since our approach
doesn’t introduce any new model parameters and optimiza-
tion is agnostic to the architecture of the seq2seq model, we
were able to experiment with various decoding schemes like
locally normalized greedy decoding, and hard beam search,
once the model has been trained.

However, to reduce the gap between the training procedure
and test procedure, we also experimented with soft beam
search decoding. This decoding approach closely follows
Algorithm 3, but along with soft back pointers, we also com-
pute hard back pointers at each time step. After computing all
the relevant quantities like model score, loss etc., we follow
the hard backpointers to obtain the best sequence ŷ. This is
very different from hard beam decoding because at each time
step, the selection decisions are made via our soft continuous
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Figure 1: Illustration of our approximate continuous beam search (Algorithm 3) module to obtain hidden states for beam elements
at the next time step (ht+1,∗), starting from the hidden states corresponding to beam elements are current time step (ht,∗) with
beam size of 2. ‘Beam recurrence’ module has been expanded for ht+1,2 and similar procedure is carried out for ht+1,1.

relaxation which influences the scores, LSTM hidden states
and input embeddings at subsequent time-steps. The hard
backpointers are essentially the MAP estimate of the soft
backpointers at each step. With small, finite α, we observe
differences between soft beam search and hard beam search
decoding in our experiments.

2.5 Comparison with Max-Margin Objectives

Max-margin based objectives are typically motivated as an-
other kind of surrogate training objective which avoid the dis-
continuities associated with direct loss optimization. Hinge
loss for structured prediction typically takes the form:

Ghinge = max(0,max
y∈Y

(Δ(y, y∗) + s(y))− s(y∗))

where x is the input sequence, y∗ is the gold target sequence,
Y is the output search space and Δ(y, y∗) is the discontinu-
ous cost function which we assume is decomposable across
the time-steps of a sequence. Finding the cost augmented
maximum score is generally difficult in large structured mod-
els and often involves searching over the output space and
computing the approximate cost augmented maximal output
sequence and the score associated with it via beam search.
This procedure introduces discontinuities in the training pro-
cedure of structured max-margin objectives and renders it
non amenable to training via backpropagation. Related work
(Wiseman and Rush 2016) on incorporating beam search into
the training of neural sequence models does involve cost-
augmented max-margin loss but it relies on discontinuous
beam search forward passes and an explicit mechanism to
ensure that the gold sequence stays in the beam during train-

ing, and hence does not involve back propagation through
the beam search procedure itself.

Our continuous approximation to beam search can very
easily be modified to compute an approximation to the struc-
tured hinge loss so that it can be trained via backpropagation
if the cost function is decomposable across time-steps. In
Algorithm 3, we only need to modify line 5 as:

s̃t[i, w]← st,i + d(w) + f(ht,i, w)

and instead of computing L in Algorithm 3, we first compute
the cost augmented maximum score as:

smax = peaked-softmaxα(sT ) · sT
and also compute the target score s(y∗) by simply running
the forward pass of the LSTM decoder over the gold target
sequence. The continuous approximation to the hinge loss
to be optimized is then: G̃hinge,α = max(0, smax − s(y∗)).
We empirically compare this approach with the proposed
approach to optimize direct loss in experiments.

3 Experimental Setup

Since our goal is to investigate the efficacy of our approach
for training generic seq2seq models, we perform experiments
on two NLP tagging tasks with very different characteristics
and output search spaces: Named Entity Recognition (NER)
and CCG supertagging. While seq2seq models are appro-
priate for CCG supertagging task because of the long-range
correlations between the sequential output elements and a
large search space, they are not ideal for NER which has a
considerably smaller search space and weaker correlations
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between predictions at subsequent time steps. In our experi-
ments, we observe improvements from our approach on both
of the tasks. We use a seq2seq model with a bi-directional
LSTM encoder (1 layer with tanh activation function) for the
input sequence x, and an LSTM decoder (1 layer with tanh
activation function) with a fixed attention mechanism that de-
terministically attends to the i-th input token when decoding
the i-th output, and hence does not involve learning of any
attention parameters. Since, computational complexity of our
approach for optimization scales linearly with beam size for
each instance, it is impractical to use very large beam sizes
for training. Hence, beam size for all the beam search based
experiments was set to 3 which resulted in improvements on
both the tasks as discussed in the results. For both tasks, the
direct loss function was the Hamming distance cost which
aims to maximize word level accuracy.

3.1 Named Entity Recognition

For named entity recognition, we use the CONLL 2003
shared task data (Tjong Kim Sang and De Meulder 2003)
for German language and use the provided data splits. We
perform no preprocessing on the data. The output vocabu-
lary size (label space) is 10. A peculiar characteristic of this
problem is that the training data is naturally skewed toward
one default label (‘O’) because sentences typically do not
contain many named entities and the evaluation focuses on
the performance recognizing entities. Therefore, we modify
the Hamming cost such that incorrect prediction of ‘O’ is
doubly penalized compared to other incorrect predictions.
We use the hidden layers of size 64 and label embeddings of
size 8. As mentioned earlier, seq2seq models are not an ideal
choice for NER (tag-level correlations are short-ranged in
NER – the unnecessary expressivity of full seq2seq models
over simple encoder-classifier neural models makes training
harder). However, we wanted to evaluate the effectiveness of
our approach on different instantiations of seq2seq models.

3.2 CCG Supertagging

We used the standard splits of CCG bank (Hockenmaier
and Steedman 2002) for training, development, and testing.
The label space of supertags is 1,284 which is much larger
than NER. The distribution of supertags in the training data
exhibits a long tail because these supertags encode specific
syntactic information about the words’ usage. The supertag
labels are correlated with each other and many tags encode
similar information about the syntax. Moreover, this task is
sensitive to the long range sequential decisions and search
effects because of how it holistically encodes the syntax of the
entire sentence. We perform minor preprocessing on the data
similar to the preprocessing in Vaswani et al. (2016). For this
task, we used hidden layers of size 512 and the supertag label
embeddings were also of size 512. The standard evaluation
metric for this task is the word level label accuracy which
directly corresponds to Hamming loss.

3.3 Hyperparameter tuning

For tuning all the hyperparameters related to optimization
we trained our models for 50 epochs and picked the models

with the best performance on the development set. We also
ran multiple random restarts for all the systems evaluated to
account for performance variance across randomly started
runs. We pretrained all our models with standard cross en-
tropy training which was important for stable optimization
of the non convex neural objective with a large parameter
search space. This warm starting is a common practice in
prior work on complex neural models (Ranzato et al. 2016;
Rush, Chopra, and Weston 2015; Bengio et al. 2015).

3.4 Comparison

We report performance on validation and test sets for both the
tasks in Tables 1 and 2. The baseline model is a cross entropy
trained seq2seq model (Baseline CE) which is also used to
warm start the the proposed optimization procedures in this
paper. This baseline has been compared against the approx-
imate direct loss training objective (Section 2.3), referred
to as G̃DL,α in the tables, and the approximate max-margin
training objective (Section 2.5), referred to as G̃hinge,α in the
tables. Results are reported for models when trained with
annealing α, and also with a constant setting of α = 1.0
which is a very smooth but inaccurate approximation of the
original direct loss that we aim to optimize2. Comparisons
have been made on the basis of performance of the models
under different decoding paradigms (represented as differ-
ent column in the tables): locally normalized decoding (CE
greedy), hard beam search decoding and soft beam search
decoding described in Section 2.4.

4 Results

As shown in Tables 1 and 2, our approach G̃DL,α shows signif-
icant improvements over the locally normalized CE baseline
with greedy decoding for both the tasks (+5.5 accuracy points
gain for supertagging and +1.5 F1 points for NER). The im-
provement is more pronounced on the supertagging task,
which is not surprising because: (i) the evaluation metric is
tag-level accuracy which is congruent with the Hamming loss
that G̃DL,α directly optimizes and (ii) the supertagging task
itself is very sensitive to the search procedure because tags
across time-steps tend to exhibit long range dependencies
as they encode specialized syntactic information about word
usage in the sentence.

Another common trend to observe is that annealing α
always results in better performance than training with a
constant α = 1.0 for both G̃DL,α (Section 2.3) and G̃hinge,α
(Section 2.5). This shows that a stable training scheme that
smoothly approaches minimizing the actual direct loss is
important for our proposed approach. Additionally, we did
not observe a large difference when our soft approximation
is used for decoding (Section 2.4) compared to hard beam
search decoding, which suggests that our approximation to
the hard beam search is as effective as its discrete counterpart.

For supertagging, we observe that the baseline cross en-
tropy trained model improves its predictions with beam
search decoding compared to greedy decoding by 2 accuracy

2Our pilot experiments that involved training with a very large
constant α resulted in unstable optimization.
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Training procedure Greedy Hard Beam Search Soft Beam Search
Dev Test Dev Test Dev Test

Baseline CE 80.15 80.35 82.17 82.42 81.62 82.00

G̃hinge,α annealed α - - 83.03 83.54 82.82 83.05
G̃hinge,αα=1.0 - - 83.02 83.36 82.49 82.85
G̃DL,αα=1.0 - - 83.23 82.65 82.58 82.82
G̃DL,α annealed α - - 85.69 85.82 85.58 85.78

Table 1: Results on CCG Supertagging. Tag-level accuracy is reported in this table which is a standard evaluation metric for
supertagging.

Training procedure CE Greedy Hard Beam Search Soft Beam Search
Dev Test Dev Test Dev Test

Baseline CE 50.21 54.92 46.22 51.34 47.50 52.78

G̃hinge,α annealed α - - 41.10 45.98 41.24 46.34
G̃hinge,αα=1.0 - - 40.09 44.67 39.67 43.82
G̃DL,αα=1.0 - - 49.88 54.08 50.73 54.77
G̃DL,α annealed α - - 51.86 56.15 51.96 56.38

Table 2: Results on Named Entity Recognition. Macro F1 over the prediction of different named entities is reported that is a
standard evaluation metric for this task.

points, which suggests that beam search is already helpful
for this task, even without search-aware training. Both the
optimization schemes proposed in this paper improve upon
the baseline with soft direct loss optimization (G̃DL,α), per-
forming better than the approximate max-margin approach.
3

For NER, we observe that optimizing G̃DL,α outperforms
all the other approaches but we also observe interesting be-
haviour of beam search decoding and the approximate max-
margin objective for this task. The pretrained CE baseline
model yields worse performance when beam search is done
instead of greedy locally normalized decoding. This is be-
cause the training data is heavily skewed toward the ‘O’ label
and hence the absolute score resolution between different
tags at each time-step during decoding isn’t enough to avoid
leading beam search toward a wrong hypothesis path. We
observed in our experiments that hard beam search resulted
in predicting more ‘O’s which also hurt the prediction of tags
at future time steps and hurt precision as well as recall. En-
couragingly, G̃DL,α optimization, even though warm started
with a CE trained model that performs worse with beam
search, led to the NER model becoming more search aware,
which resulted in superior performance. However, we also ob-
serve that the approximate max-margin approach (G̃hinge,α)
performs poorly here. We attribute this to a deficiency in
the max-margin objective when coupled with approximate

3Separately, we also ran experiments with a max-margin objec-
tive that used hard beam search to compute loss-augmented decodes.
This objective is discontinuous, but we evaluated the performance
of gradient optimization nonetheless. While not included in the
result tables, we found that this approach was unstable and consider-
ably underperformed both approximate max-margin and direct loss
objectives.

search methods like beam search that do not provide guaran-
tees on finding the supremum: one way to drive this objective
down is to learn model scores such that the search for the
best hypothesis is difficult, so that the value of the loss aug-
mented decode is low, while the gold sequence maintains
higher model score. Because we also warm started with a
pre-trained model that results in a worse performance with
beam search decode than with greedy decode, we observe the
adverse effect of this deficiency. The result is a model that
scores the gold hypothesis highly, but yields poor decoding
outputs. This observation indicates that using max-margin
based objectives with beam search during training actually
may achieve the opposite of our original intent: the objective
can be driven down by introducing search errors.

The observation that our optimization method led to im-
provements on both the tasks–even on NER for which hard
beam search during decoding on a CE trained model hurt
the performance–by making the optimization more search
aware, indicates the effectiveness of our approach for training
seq2seq models.

5 Conclusion

While beam search is a method of choice for performing
search in neural sequence models, as our experiments con-
firm, it is not necessarily guaranteed to improve accuracy
when applied to cross-entropy-trained models. In this paper,
we propose a novel method for optimizing model parameters
that directly takes into account the process of beam search
itself through a continuous, end-to-end sub-differentiable
relaxation of beam search composed with the final evalua-
tion loss. Experiments demonstrate that our method is able
to improve overall test-time results for models using beam
search as a test-time inference method, leading to substantial
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improvements in accuracy.
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