
Long-Term Image Boundary Prediction

Apratim Bhattacharyya, Mateusz Malinowski, Bernt Schiele, Mario Fritz
Max Planck Institute for Informatics

Saarland Informatics Campus, Saarbrücken, Germany
{abhattac, mmalinow, schiele, mfritz}@mpi-inf.mpg.de

Abstract

Boundary estimation in images and videos has been a very ac-
tive topic of research, and organizing visual information into
boundaries and segments is believed to be a corner stone of
visual perception. While prior work has focused on estimat-
ing boundaries for observed frames, our work aims at predict-
ing boundaries of future unobserved frames. This requires our
model to learn about the fate of boundaries and corresponding
motion patterns – including a notion of “intuitive physics”.
We experiment on natural video sequences along with syn-
thetic sequences with deterministic physics-based and agent-
based motions. While not being our primary goal, we also
show that fusion of RGB and boundary prediction leads to
improved RGB predictions.

Introduction

Humans possess the skill to imagine future states of ob-
served scenes in diverse scenarios. This supports various dif-
ferent tasks ranging from planning to object manipulation,
e.g. a goalkeeper jumping to intercept the ball or reaching
out for a handshake. Humans can readily perform such com-
plex and versatile tasks because they can anticipate motions
including an intuitive understanding of physical laws from
the early age (Baillargeon 1994; 2004).

In this work, we propose the task of predicting future
scene boundaries. Scene boundaries capture the important
structure and extents of objects. Moreover, they can be ac-
curately estimated (Khoreva et al. 2016). Prediction of future
scene boundaries requires understanding of object dynamics
and motion patterns including an intuitive understanding of
physical laws or “intuitive physics”. In this work, we focus
on two particular scenarios involving motion and local inter-
actions. The first one, which we call physics-based motion,
can fully be described by the laws of physics, e.g. dynamics
of billiard balls. The second one, which we call agent-based
motion, also involves understanding of intentions, e.g. dy-
namics of an ice-skater. Therefore, our methods have to deal
with diverse situations, work on raw pixels, and should be
capable of long-term predictions. Figure 1 shows example
results of our method that accurately predicts future scene
boundaries.
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Last Observation: t Prediction

Figure 1: Predicted future boundary images, from t + 1 (Yel-
low) to t + 8 (Row 1), t + 18 (Row 2) (Red), superimposed.

Recently, full future frame predication of observed scenes
has been studied (Mathieu, Couprie, and LeCun 2016;
Liu et al. 2017). But up to now, only very short range
predictions of few frames have been shown, where blurri-
ness/distortion artifacts occur in the predicted future frames
– losing/incorrectly propagating high-frequency informa-
tion. This high frequency information is crucial for mean-
ingful predictions about the future, e.g. on a billiard table the
location of a ball and table boundaries are necessary to in-
fer the future state of the table. Boundaries capture this cru-
cial high frequency information and are also known to reveal
important structures of the visual scene (Wertheimer 1923;
Arbelaez et al. 2011; Galasso et al. 2013). Therefore, we ar-
gue that the task of future boundary prediction is a more suit-
able benchmark for understanding and predicting physics or
agent-based motion.

Our main contributions are as follows, 1. We propose the
novel task of future boundary prediction. 2. We propose
the first method that predicts future boundaries based only
on the raw pixels. 3. We evaluate our model on two sce-
narios involving physics-based (synthetic and real billiard
sequences) and agent-based motion (VSB100, (Galasso et
al. 2013)). 4. Under the physics-based scenario, the method
shows for the first time long-term predictions. 5. Under the
agent-based scenario on VSB100 and UCF101, we show
that the predicted boundaries can be used in a fusion scheme
that improves RGB video prediction in the longer-term.
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Figure 2: Convolutional Multi-scale with Context architecture (only 2 out of 4 scales illustrated).

Related work

RGB frame prediction. This problem has recently re-
ceived a lot of attention. However, the predicted frames
have blurriness problems. (Ranzato et al. 2014) sought to
remedy this problem by discretizing the input through k-
means atoms and predicting on this vocabulary instead. The
work of (Mathieu, Couprie, and LeCun 2016) proposes us-
ing adversarial loss, which leads to improved results over
(Ranzato et al. 2014). (Liang et al. 2017; Liu et al. 2017;
Patraucean, Handa, and Cipolla 2015) shows some further
improvement through the use of optical flow information.
However, these approaches produce sharper short term pre-
dictions but still suffer from blurriness problems starting
as soon as 3 frames into the future. (Kalchbrenner et al.
2017) focus on moving MNIST digits and like (Finn, Good-
fellow, and Levine 2016) on action conditioned video pre-
diction. (Villegas et al. 2017) proposes a hierarchical ap-
proach for making long-term frame predictions, by first es-
timating the high-level structure in the input frames and
predicting how that structure evolves in the future. They
show promising results on videos where pose is an easily
identifiable and appropriate high level structure to exploit.
However, such high-level structures are video domain de-
pendent. Other works (Sutskever, Hinton, and Taylor 2009;
Michalski, Memisevic, and Konda 2014) focus on determin-
istic bouncing ball sequences, but their dataset is limited in
size and resolution and generalization with respect to the
number of balls and their velocities is not considered.

Intuitive physics. Developing an intuitive understanding
of physics from raw visual input has been explored recently.
(Fragkiadaki et al. 2016) predict future states of balls mov-
ing on a billiard table and (Lerer, Gross, and Fergus 2016;
Li, Leonardis, and Fritz 2017) predict the stability of towers
made out of blocks. However, both (Fragkiadaki et al. 2016)
and (Lerer, Gross, and Fergus 2016) have an “object notion”,
meaning that the architecture knows a priori the location or
type of the objects that it is supposed to infer. Although
some recent approaches such as (Battaglia et al. 2016;
Watters et al. 2017) are capable of long-term predictions,
they are modeling either state-to-state or images-to-state
transitions. Moreover, in the latter case, the input is visually
simplified, and the focus is only on deterministic motions. In
contrast to this body of work, we focus on more diverse sce-
narios and are agnostic to the underlying objects and causes
of change.

Video segmentation. Video segmentation as the task of
finding consistent spatio-temporal boundaries in a video vol-
ume has received significant attention over the last years
(Galasso et al. 2014; Ochs, Malik, and Brox 2014; Galasso
et al. 2013; Chang, Wei, and Fisher 2013), as it provides an
initial analysis and abstraction for further processing. In con-
trast, our approach aims at predicting these boundaries into
the future without any video observed for future frames.

Model

We present a model that observes a sequence of boundary
images, where each pixel encodes the confidence of occur-
rence of an image boundary at that location and then predicts
the boundary image(s) at the next time-step(s). An overview
of our Convolutional Multi-Scale Context (CMSC) model is
shown in Figure 2.

We approach long term prediction by recursion, due to
the advantage of efficiency. However, errors are potentially
propagated and accumulated over time. To mitigate such ef-
fects, we need our model to be accurate and to consolidate
information over time. To maximize accuracy, our model has
been designed through analysis of prior work on the related
task of frame prediction. Furthermore, our model has many
novel aspects which are key to long term prediction.

In order to generalize across diverse sequences while
maintaining a tractable number of parameters, a patch based
approach is adopted. Therefore, our model observes and pre-
dict on patches rather than the complete input image. Alter-
natively, this can be seen as multiple replicas (“patch pre-
dictors”) of our model predicting on patches of the input se-
quence. We now describe our model through an analysis of
its various components.

Fully Convolutional.

Our CMSC model consists of only convolutional layers. The
input boundary image sequence is concatenated as channels
and is read by the first convolutional layer. Convolutional
layers can extract high quality location invariant features.
In particular, they can extract information about the orien-
tation and direction of motion of boundaries. Neurons at
upper convolutional layers have larger receptive fields and
can aggregate information. In fact, as shown by the work
(Jain et al. 2007), the output layer should have a wide recep-
tive field to preserve long range spatial and temporal depen-
dencies and learn about interaction among boundaries in a
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spatio-temporal context. We therefore use several convolu-
tional layers in our CMSC model. We also introduce pool-
ing in between convolutional layers. Pooling further helps
in the aggregation of information and increases receptive
fields. However, excessive pooling (or tight bottlenecks with
fully connected layers) have been shown to be successful
in classification tasks, but also have shown by (Ranzato et
al. 2014) to induce image degradations for synthesis tasks.
Therefore, it is crucial to use moderate pooling. Finally, we
use up-sampling layers after pooling to maintain resolution.

Multiple Scale Prediction.

Multi-Scale model architectures akin to a Laplacian pyra-
mid have shown to be advantageous for generating natu-
ral images (Denton et al. 2015) and predicting future RGB
frames (Mathieu, Couprie, and LeCun 2016). Such model
architectures contain multiple levels which observes the in-
put boundary image(s) at increasing (coarse to fine) scales.
Down-sampling a boundary image has the effect of smooth-
ing and discarding details of a boundary image. It is easier
to predict future boundary images at a coarser resolutions.
Therefore, our CMSC model uses multiple scales (or levels).
The input I(L2k) to a certain level (L2k) is the input bound-
ary image sequence scaled to the current level X2k and the
boundary image O predicted by the previous coarser level
(Lk). The boundary image predicted by the coarser level is
upsampled Ô to the scale at the current level. We have,

I(L2k) =
{

X2k, Ô(Lk)
}

The coarse predicted boundary images Ô(Lk) act a guide for
the next higher level of the model. We use four levels, with
scales increasing by a factor of two.

Details of each Level in our Model. Each level of the
model consists of five sets of two convolutional layers. There
are 32, 64, 128, 64 and 32 filters respectively in each set, of
a constant size 3×3. Multiple convolutional layers at each
scale leads to large receptive fields at the output layer. We
introduce moderate 2×2 pooling layer after the first two
sets of convolutional layers, leading to futher aggregation
of information and increased receptive fields. We double the
number of convolutional filters after pooling to aid feature
extraction. We upsample the convolutional maps after the
third set to maintain resolution. We use ReLU non-linearities
between every layer expect the last. We use the tanh non-
linearity at the end to ensure output in the range [0,1]. (Ad-
ditional details in the Appendix)

For accurate long term prediction, it is crucial to en-
sure global consistency through communication between the
patch predictors. Consider a video of a moving ball. The
trajectory of a ball might intersect with multiple patches.
To correctly predict the motion far into the future, replicas
of the model predicting on neighboring patches need to be
consistent especially during transition of the ball between
patches. Therefore, we describe next the final component of
our CMSC model, the context, which ensures global consis-
tency.

Figure 3: Our model without context has higher error near
the patch boundary (red) vs. with context (green).

Context.

Our CMSC model observes a central patch along with the di-
rectly neighbouring 8 patches. This neighbourhood is called
the context. However, the model only predicts on the central
patch. While predicting recursively, the model observes its
previous output along with the the output of the neighbor-
ing patch predictors. This enables the learning of spatially
consistent predictions while keeping the same number of pa-
rameters.

The addition of a context has the added advantage that
the output layer neurons now have receptive fields that are
uniform in size. Without context, the neurons at the bound-
ary of the (2D) output layer have a smaller receptive field
compared to the neurons at the center. This leads to a non-
uniform (training and test) error distribution at the output
layer neurons. In Figure 3 we plot the average error at the
output layer neurons of our CMSC model at increasing dis-
tance from the patch border, with and without context. Er-
ror increases consistently from patch center (right) to the
patch border (left) without a context. Note that, the model of
(Mathieu, Couprie, and LeCun 2016) is also multi-scale and
fully convolutional like CMSC, but it does not have pooling
or context.

Next, we evaluate our CMSC model and the effectiveness
of its various components.

Experiments

We evaluate our CMSC model on natural video sequences
involving agent-based motion and billiard sequences with
only physics-based motion. We compare with various base-
lines and perform ablation studies to confirm design choices.
We convert each video into 32×32 pixel patches. The CMSC
model observes a central patch and eight neighbouring
patches resulting in a context of size 96×96 pixels.

Training Loss. We use L2 loss (mean square error) during
training, which we optimize using the ADAM optimizer.

Evaluation Metric. As we want sharp and accurate
boundaries, we use the established boundary precision re-
call (BPR) evaluation metric from the video segmentation
literature (Galasso et al. 2013). This metric is defined for a
set P of predicted boundary images and G of corresponding
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(a) Area under the curve. (b) Best F-measure. (c) Laplacian measure. (d) Mean squared error.

Figure 4: Left (a) and (b): Evaluation of boundary prediction on VSB100. Right (c) and (d): RGB versus boundary prediction.

Last Observation: t Prediction: t + 1 Prediction: t + 2 Prediction: t + 4

Figure 5: Rows top to bottom: Prediction on airplane and hummingbird sequences from VSB100. Correct boundaries predic-
tions are encoded in green. Missed boundaries are encoded in yellow. Wrong boundaries are encoded in red.

ground truth boundary images as,

P =

∑
Bp∈P,Bg∈G | Bp ∩Bg |∑

Bp∈P | Bp |

R =

∑
Bp∈P,Bg∈G | Bp ∩Bg |∑

Bg∈G | Bg |

F =
2PR

P +R
,

where P is boundary precision, R is boundary recall and F
is the combined F-measure. As we are interested in accurate
predictions, predicted boundary pixels should be at most 1
pixel away from ground-truth boundary pixels to be correct.

Evaluation on Natural Video Sequences Involving
Agent-based Motion.

Dataset and Training. We use the VSB100 dataset which
contains 101 videos with a maximum 121 frames each. The
training set consists of 40 videos and the test set consists
of 60 videos. The videos contain a wide range of objects of
different sizes and shapes, including vehicles, humans and
animals. The videos also have a wide variety of both object
and camera motion. We use the hierarchical video segmen-
tation algorithm in (Khoreva et al. 2016) to segment these
videos. The output is a ultra-metric contour map (ucm).
Boundaries higher in the hierarchy typically correspond to
semantically coherent entities like animals, vehicles etc and
therefore their motion corresponds to object/camera motion.
We discard boundaries belonging to the lowest level of the
hierarchy (corresponding to an over-segmentation), as they

are temporally very unstable. We use the ucm hierarchy as a
confidence measure on boundary location at a pixel.

Experimental Settings and Baselines. The models are
trained to predict boundaries of segmented VSB100 videos.
Recall that, the ground-truth boundaries (ucm) in VSB100
have different confidence values. Thus, we threshold the pre-
dictions before comparison to the groundtruth. We vary the
threshold to obtain a precision-recall curve and report the
area under the curve (AUC) along with the best F-measure
across all thresholds. We include a “Last Input” baseline by
using the last input frame as constant prediction and a “Op-
tical flow” baseline. As many boundaries do not change be-
tween frames in the videos of VSB100, the last input is a
strong baseline especially when we are predicting one step
into the future. In case of the optic flow baseline, the optic
flow is calculated between the last two input frames (at t - 1
and t) using the Epic flow method of (Revaud et al. 2015).
The boundary pixels at time t are propagated using the cal-
culated flow to generate predictions at t + 1 to t + 8.

Results on VSB100. We perform an ablation study of our
CMSC model and we compare to, 1. A convolutional sin-
gle scale model (CSS) 2. A convolutional multi-scale model
(CMS), in addition to the baselines. Both models do not have
a context. We report the quantitative results in Figure 4a and
Figure 4b and the qualitative results in Figure 5.
Quantitative evaluation: In the short term the CMS model
(green lines) performs well. However, our CMSC (red lines)
performs best in the longer term (both having the same num-
ber of parameters). This demonstrates the importance of the
context for long-term prediction. The good performance of
both of the mutli-scale models (CMS and CMSC) versus the
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Step Last Input CMS CMSC-BL CMSC

t + 1 0.141 0.282 0.957 0.987
t + 5 0.038 0.101 0.841 0.900
t + 20 0.002 0.066 0.347 0.632

Table 1: Evaluation on single ball billiard table worlds.

single scale CSS model, shows that multiple scales lead to
more accurate predictions. The performance advantage of
our CMSC model over the last input baseline shows that the
model learns to predict boundaries of moving objects while
keeping static boundaries intact. The recall of the CMSC
model declines with time as the future becomes increasingly
uncertain. The poor performance of the “Optic flow” base-
line is due to inaccurate flow information at object bound-
aries.
Qualitative evaluation: The boundaries produced by our
CMSC model are sharp whenever the motion is smooth,
e.g. the predictions in Figure 5. However, the models are
not able to deal with high uncertainty in the long-term often
due to non-deterministic motion. The models in such situ-
ations react by blurring the boundaries, as a consequence
of using the L2 training loss. While predicting recursively,
this leads to loss of boundary confidence and eventual van-
ishing boundaries. The “Optic flow” baseline produces dis-
continuous (jagged) boundaries. (See Appendix for more ex-
amples). Next we evaluate and compare RGB prediction to
boundary prediction.
RGB verses Boundary Prediction. We report the sharp-
ness of RGB frames (of VSB100) predicted by the adver-
sarial model of (Mathieu, Couprie, and LeCun 2016) (fine-
tuned on VSB100) using the Laplacian measure (Krotkov
2012) in Figure 4c. The Laplacian measure pools the gra-
dient information of the image. We observe that the model
of (Mathieu, Couprie, and LeCun 2016) makes increasingly
blurry predictions into the future. We also compare the mean
squared error of RGB predictions of (Mathieu, Couprie, and
LeCun 2016) and predicted boundaries of our CMSC model
in Figure 4d. We see a sharper increase in the error of RGB
predictions compared to boundaries in the long term.

Evaluation on Physics-based Motion.

Motion in the videos in the VSB100 dataset is frequently
very complex as agent’s actions quickly become non-
deterministic and hence increasingly uncertain. Therefore,
we also look at physics-based motion, which is still chal-
lenging yet it factors out the aforementioned issues. In this
scenario, we evaluate the long-term prediction performance
of the models on real and synthetic billiard ball sequences.
We begin by describing our dataset.
Synthetic Data Generation. The synthetic billiard ball
sequences are sampled from worlds which consists of balls
moving on a frictionless surface with a border, akin to
a billiard table. We used pygame to create such worlds
and sample boundary images from them. The output im-
ages contain boundaries that can stem from ball(s) or the

table and have binary confidence measure (indicating a
boundary at that location). During evaluation, as the tar-
get is always a binary image, we report only the best F-
measure obtained by thresholding the predicting bound-
ary images and varying the threshold parameter. We sam-
pled synthetic billiard sequences using the following pa-
rameters. 1. Table size: Side length randomly sampled from
{96,128,160,192,256} pixels. 2. Ball velocity: Randomly
sampled from [{-3,..,3},{-3,..,3}] pixels. 3. Ball size: Con-
stant, with a radius of 13 pixels. 4. Initial Position: Uni-
formly over the table surface.

Real Data Collection. We captured a novel data-set of
real billiard sequences on a mini-billiard table. Frame rate
was set to 120 per second to minimize motion blur. Each
sequence consists of an actor (not visible) striking the ball
with a cue stick once. The motion in the sequences of the
dataset are that of the cue stick and the balls. We produce
boundary images using the method of (Maninis et al. 2016).

Evaluation on synthetic single ball worlds. We generate
a training set using parameters mentioned previously. How-
ever, to keep our training set as diverse as possible we pre-
fer short sequences. We restrict each sequence to a maxi-
mum length of one or two collisions with walls and set a
50% bias of the initial position of the balls being 40 pix-
els from the walls. We sample 500 such sequences and train
our models on these sequences. We then test the models on
30 independent test sequences. We again include the “last
input” baseline as a constant predictor . We also include a
“blind” Convolutional multi-scale Context model (CMSC-
BL), which cannot see the table borders. This is a strong
baseline as starting from 42% frames in the test set, there
are no ball-wall collisions 20 steps into the future. To beat
this baseline, our models need to learn the physics of ball-
wall collisions. We report the results in Table 1.

Our CMSC model performs the best with accurate pre-
dictions 20 time-steps into the future – also exceeding the
“blind” version (CMSC-BL) that cannot handle ball-wall
collisions. The model without a context CMS, produces in-
accurate results at patch borders and thus suffers heavily es-
pecially at larger time-steps.

Evaluation on synthetic two and three ball worlds.
Worlds with more than one ball also involve harder to model
physics of ball-ball collisions. To evaluate the models on
such worlds we sample 100 training sequences each with
two, three and six balls respectively with a maximum length
of 200 frames. We use a curriculum learning approach (Ben-
gio et al. 2009), where we initialize the models with the
weights learned on single, two and three ball worlds re-
spectively. We test the models on 30 independent sequences
containing two, three and six balls respectively. We report
the results in Table 2. In each case, we also include CMSC
models trained on single ball worlds (CMSC-1B), two ball
worlds (CMSC-2B) and three ball worlds (CMSC-3B) re-
spectively as baselines. To beat these strong baselines learn-
ing the physics of ball-ball collisions is necessary as in case
of our two-ball and three-ball test sets, there are no ball-ball
and 3-ball collisions 20 steps into the future for 92% and
98% of the starting frames (and no 6-ball collisions). Again,

2724



– Evaluation on two ball worlds – – Evaluation on three ball worlds – – Evaluation on six ball worlds –
Step Last Input CMSC-1B CMSC Last Input CMSC-2B CMSC Last Input CMSC-3B CMSC

t + 1 0.246 0.966 0.969 0.246 0.967 0.968 0.250 0.962 0.964
t + 5 0.114 0.848 0.896 0.118 0.890 0.892 0.130 0.875 0.866
t + 20 0.101 0.612 0.681 0.090 0.664 0.700 0.115 0.511 0.600

Table 2: Evaluation on complex billiard table worlds.

Figure 6: Trails produced by super-imposing predicted boundaries on synthetic sequences.

Trail up to t + 20 Trail up to t + 20 Trail up to t + 50 Trail up to t + 50

Figure 7: Trails produced by super-imposing predicted boundaries on real sequences.

Step Last Input CMSC Last Input(M) CMSC(M)

t + 1 0.890 0.850 0.126 0.570
t + 5 0.855 0.804 0.085 0.541
t + 20 0.844 0.746 0.087 0.497

Table 3: Evaluation on real billiard sequences (M-masked).

we see accurate prediction by the CMSC model even at 20
time-steps in the future.

Prediction over Very Long Time Scales. Although we
evaluate only 20 timesteps into the future in Table 1 and Ta-
ble 2, our models are stable over longer time-horizons. In
Figure 6, we predict 100 timesteps and visualize the bound-
ary images by trails obtained by superposition. We notice a
few failure cases where a ball reverse direction mid table and
the ball(s) get deformed or disappear.

Evaluation on Real Billiard Sequences. Prediction on
real billiard table sequences is a challenging test for our
models. The table fabric causes rapid deceleration of the
ball (compared to the constant velocity in the synthetic se-
quences). Spin is sometimes inadvertently introduced and
a segmentation algorithm applied on the observed frames
introduces artifacts. The boundaries are not always consis-
tent across frames of a sequence and they are jagged and
change shape. We collect 350 real billiard sequences, with
one ball, as our training set. To deal with deceleration, we
experiment with increasing the number of input frames. We
train our CMSC model with six input frames and pre-train
on our synthetic one ball training set. We report the results
of evaluation (F-measure as before) on 30 independent se-
quences in Table 3. As many boundaries (e.g table borders)
remain static the last input baseline performs very well. For

fair comparison we use a mask obtained with a ball tracker,
Our method is able to propagate the motion of the ball and
beats the last input baseline in the masked case. We show
qualitative results in Table 7 as trails, where our model pre-
dicts 20 and 50 time-steps into the future.

Sharpening RGB Predictions with Fusion

The sharp boundaries produced by our models raise the
prospect of sharpening RGB predictions in a fusion scheme.
We present our fusion architecture in Figure 9, which fuses
RGB predictions of (Mathieu, Couprie, and LeCun 2016)
with our boundaries. Note that, our approach can be used
on top of any RGB frame prediction method and unlike
(Villegas et al. 2017) is video domain agnostic. It is in-
spired by prior work (Eigen, Krishnan, and Fergus 2013;
Mao, Shen, and Yang 2016) on deblurring/denoising. Like
these models our fusion model is fully convolutional. Reso-
lution is maintained by skip connections, as in (Mao, Shen,
and Yang 2016). Our fusion model takes as input the pre-
dicted RGB and boundaries at each timestep and is trained
with L2 loss.
Datasets and metrics. We evaluate on both VSB100 and
UCF101 datasets. We randomly select 30 and 20 videos
from VSB100 to train our CMSC model and our fusion
model. We test on the remaining 50 videos. Similarly we
randomly select 1000, 500 (training) and 1000 (test) videos
from UCF101. The UCF101 train/test set was segmented us-
ing the method of (Maninis et al. 2016). We use PSNR, the
sharpness loss measure from (Mathieu, Couprie, and LeCun
2016) and the Laplacian measure as evaluation metrics.
Baselines. We include a baseline de-blurring model. It has
the same architecture as our fusion model, except for the
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——– PSNR ——– ——– Sharpness Loss ——– ——– Laplacian Measure ——–

Step RGB prediction De-blurring Fusion (Ours) RGB prediction De-blurring Fusion (Ours) RGB prediction De-blurring Fusion (Ours)

VSB100

t + 2 24.4 24.5 25.1 18.5 18.5 18.6 0.142 0.139 0.155
t + 3 22.2 22.9 23.1 18.2 18.2 18.3 0.121 0.109 0.127
t + 4 20.4 21.7 22.3 18.1 18.1 18.2 0.103 0.114 0.118

UCF101

t + 2 26.5 27.7 28.2 21.4 21.5 21.7 0.101 0.122 0.136
t + 3 23.4 25.1 25.2 20.5 20.8 20.9 0.095 0.093 0.102
t + 4 21.4 23.4 23.8 20.4 20.5 20.6 0.089 0.101 0.112

Table 4: Evaluation of our Fusion scheme. PSNR, Sharpness Loss and Laplacian measure: Higher is better.

t + 2

t + 4

t + 2

t + 4

Figure 8: Sharpening RGB predictions using our Fusion scheme on VSB100 (top two rows) and on UCF101 (bottom two rows).

Figure 9: Our fusion model architecture.

top block. This baseline aims to de-blur RGB predictions
without observing our predicted boundaries.
Evaluation. We observe improved and sharper RGB pre-
dictions (see Table 4) 1. Our fusion model learns to reintro-
duce lost high frequency information.

Conclusion

We propose the novel task of boundary prediction and
demonstrate accurate results with our CMSC model. We ar-
gue for the key design choices, 1. A wide receptive field

1Corresponding results in Table 5 in (Mathieu, Couprie, and
LeCun 2016). We do not use motion masking as we would like our
model to keep still boundaries intact.

allowing the model to learn complex spatio-temporal de-
pendencies. 2. Accurate prediction at each time-step with
a fully convolutional setup without any bottleneck layers.
3. The context which allows for information sharing thus
leading to global consistency. We obtain sharp predictions
using L2 loss (in contrast to RGB prediction, which leads to
very blurry results with L2 loss). Predictions by our CMSC
model on diverse scenarios shows that it developed a data-
driven model of future boundary motions over long time
horizons. This includes dynamics of moving agents and bil-
liard balls. Moreover, while not being our primary goal, our
predicted boundaries lead to sharper RGB video predictions
via a fusion-based approach.
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Appendix

We include here additional details of our model and results.

Further Details of the CMSC Model.

We include the internal details of each level Lk of our CMSC
model in Table 5. We include the details of the type of layer,
type specific details including the number and size of con-
volutional filters and pooling/upsampling layers, the non-
linearity (activation) used after every layer, input and output
of each layer.

We include details of each of the four levels of our CMSC
model in Table 6. We include details of the scale (resolution)
at which each level operates and the input to each level. We
use the same notation as in the main paper, Xk denotes the
input boundary image at scale k × k and Ô(Lk) is the up-
sampled (by factor 2×2) output of level Lk. The final output
is produced by the L96 level.

The central 32×32 patch of the output, produced by
the L96 level, is considered valid and used to generate the
boundary image at the next time-step.

Results on Moving MNIST.

We include results on the moving MNIST dataset (Srivas-
tava, Mansimov, and Salakhutdinov 2015) to help compare
our Convolutional Multi-Scale architecture against other
frame prediction architectures. This dataset is suitable for
this task because like boundary images the images in the
moving MNIST dataset are also in the same domain [0,1].
However, we do not refer to this dataset in the main arti-
cle as moving MNIST digits behave very differently com-
pared to object boundaries. As the moving MNIST digits
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←−−−−−−−− Observation −−−−−−−−→ ←−−−−−−−−−−−−−−−−−−−−−− Prediction −−−−−−−−−−−−−−−−−−−−−−→
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Figure 10: Example predictions on the moving MNIST dataset by our CMS model.

Layer Type Filters Size Activation Input Output

In1 Input C1

C1 Conv 32 3×3 ReLU In1 C2

C2 Conv 32 3×3 ReLU C1 P1

P1 MaxPool 2×2 C2 C3

C3 Conv 64 3×3 ReLU P1 C2

C4 Conv 64 3×3 ReLU C3 P2

P2 MaxPool 2×2 C4 C5

C5 Conv 128 3×3 ReLU P2 C6

C6 Conv 128 3×3 ReLU C5 U1

U1 UpSample 2×2 C6 C7

C7 Conv 64 3×3 ReLU U1 C8

C8 Conv 64 3×3 ReLU C7 U2

U2 UpSample 2×2 C8 C9

C9 Conv 32 3×3 ReLU U2 C10

C10 Conv 1 3×3 tanh C9

Table 5: Internal details of each level Lk of our CMSC
model. Conv stands for 2D convolution, MaxPool stands for
2D max pooling and UpSample stands for 2D upsampling
operations.

are of fixed size of 64x64 pixels, we do not use a context
and thus use our CMS model for evaluation (which ob-
serves the full input image). This allows fair comparison
against (Srivastava, Mansimov, and Salakhutdinov 2015;
Patraucean, Handa, and Cipolla 2015; Kalchbrenner et al.
2017) which do not have a context and observes the full
input image. We report quantitative results for prediction
one time-step into the future (as in (Srivastava, Mansimov,
and Salakhutdinov 2015; Patraucean, Handa, and Cipolla
2015)) in Table 7 using the Cross Entropy Loss (Srivastava,
Mansimov, and Salakhutdinov 2015). Our CMS model out-
performs (Srivastava, Mansimov, and Salakhutdinov 2015;
Patraucean, Handa, and Cipolla 2015). Moreover, qualita-
tive results in Figure 10 shows that our CMS model predicts
accurately eight time-steps into the future. The highly com-
plex model from (Kalchbrenner et al. 2017) performs better.
However, this comparison shows that our CMS model com-
pares favorably against other frame prediction models, while
beating models with comparable number of parameters.

Level Scale Input

L12 12×12 X12

L24 24×24
{

X24, Ô(L12)
}

L48 48×48
{

X48, Ô(L24)
}

L96 96×96
{

X96, Ô(L48)
}

Table 6: Details of the levels in our CMSC model.

Model Cross Entropy Loss

(Srivastava, Mansimov, and Salakhutdinov 2015) 341.2
(Patraucean, Handa, and Cipolla 2015) 179.8

Our CMS 165.0
(Kalchbrenner et al. 2017) 87.6

Table 7: Evaluation on moving MNIST

Additional Results on VSB100.

Here, we show predictions at one, two and four steps (t +
1, t + 2, t + 4) in the future from a fixed time point on the
airplane sequences of VSB100. We show the predictions in
Figure 11. We use the same color coding as in the main ar-
ticle. That is, correct boundaries predictions are encoded in
green, missed boundaries are encoded in yellow and wrong
boundaries are encoded in red.

As expected from the quantitative performance in Figure
5 of the main article, the “Optic flow” baseline does not per-
form well. This method incorrectly translates the boundaries
which lead to many boundaries being missed especially at t
+ 4. Compared to our CMSC model, the CSS and CMS mod-
els are unable to propagate motion in the long-term, leading
to the disappearance of boundaries at t + 4. This highlights
the importance of the context.
Running Time. Running time is GPU model and video
resolution dependent. On the Nvidia Titan X GPU, our
CMSC model takes approximately 16 hours to train on the
VSB100 and real billiards datasets and 10 hours on synthetic
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Last Observation: t Prediction: t + 1 Prediction: t + 2 Prediction: t + 4

“Optic Flow” baseline.

Convolutional Single Scale (CSS).

Convolutional Multi Scale (CMS).

Convolutional Multi Scale Context (CMSC).

Figure 11: Prediction on airplane sequence from VSB100. Correct boundaries predictions are encoded in green. Missed bound-
aries are encoded in yellow. Wrong boundaries are encoded in red.

billiards (1 ball) dataset. During the test phase, prediction of
one future frame of VSB100 (640×480 pixels) takes 1.03
seconds, synthetic billiards (256×256) 136 milliseconds and
real billiards (320×240) 168 milliseconds on average.
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