
Automatic Segmentation
of Data Sequences

Liangzhe Chen, Sorour E. Amiri, B. Aditya Prakash
Department of Computer Science, Virginia Tech.
Email: {liangzhe, esorour, badityap}@cs.vt.edu

Abstract

Segmenting temporal data sequences is an important prob-
lem which helps in understanding data dynamics in multi-
ple applications such as epidemic surveillance, motion cap-
ture sequences, etc. In this paper, we give DASSA, the first
self-guided and efficient algorithm to automatically find a
segmentation that best detects the change of pattern in data
sequences. To avoid introducing tuning parameters, we de-
sign DASSA to be a multi-level method which examines seg-
ments at each level of granularity via a compact data struc-
ture called the segment-graph. We build this data structure
by carefully leveraging the information bottleneck method
with the MDL principle to effectively represent each segment.
Next, DASSA efficiently finds the optimal segmentation via
a novel average-longest-path optimization on the segment-
graph. Finally we show how the outputs from DASSA can
be naturally interpreted to reveal meaningful patterns.
We ran DASSA on multiple real datasets of varying sizes and
it is very effective in finding the time-cut points of the seg-
mentations (in some cases recovering the cut points perfectly)
as well as in finding the corresponding changing patterns.

1 Introduction

Given a data-sequence of Ebola infections, can we quickly
tell when the characteristics of infected people change,
possibly due to a mutation? In this paper, we study the
problem of automatically segmenting sequences of multi-
dimensional data point (with categorical and/or real-valued
features like age, gender, speed etc.) so as to capture relevant
trends and changes. The data observations can be unevenly
distributed temporally and repeated multiple times in the se-
quence, naturally generalizing multi-variate time-series.

Such segmentations can be helpful in many real applica-
tions, as they may shed light on the underlying dynamics and
patterns, thereby helping in modeling, anomaly detection,
and also visualization. Consider epidemiological surveil-
lance, where tracking disease propagation (Thompson, Co-
manor, and Shay 2006) can enhance the chance of a success-
ful intervention and increase the situation awareness. For
example, automatically finding changes in patient charac-
teristics in a sequence of infected cases can help us point to

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

changes in the disease itself. In Fig. 1(a), in a series of flu-
infections, DASSA finds that the disease infects elder, richer
people first, and then spreads to younger people with lower
income. Similarly, figuring out the changes in how words are
used together in user tweets (due to changes in users’ health
status) can help in estimating disease incidence (Chen et al.
2014). See Fig. 1(b): in a series of flu-related tweets, we ob-
serve a transition between word usage in each segment from
infection to recovery. Our motivation in this paper is to de-
sign a general-purpose scalable segmentation algorithm for
data sequences.
Informal Problem: Given a multi-dimensional data se-
quence, automatically find a time segmentation s.t. consecu-
tive segments are not similarly informative.

Surprisingly, despite its importance, this general problem
has not been studied widely (see related work in Sec. 5).
Such a problem cannot be trivially converted to one in time
series, and has many challenges. The main properties we
want a good solution to satisfy are:

P1 (Generality): No prior assumption on either data types
or data distributions. The algorithm should work well re-
gardless even if the data is skewed, or not forming clusters
or not drawn from a known distribution.

P2 (Self-Guided): Automatically find the appropriate num-
ber and identity of cut-points without user input.

P3 (Efficiency): Finish within reasonable time for real
datasets.

In this paper, we present an algorithm DASSA (DAta Se-
quence Segmentation Automatically), which satisfies all the
three properties. To this end, we introduce three main ideas
which may be useful for other segmentation problems as
well: (a) looking at all possible segmentations efficiently us-
ing the so-called segment-graph; (b) compressing data in
each segment based on temporal data distributions using
Information Bottleneck and Minimum Description Length;
and (c) using a novel path optimization to find the best seg-
mentation, which automatically regularizes the number of
segments and total segment difference. Via extensive exper-
iments ranging from epidemiological, social to motion cap-
ture datasets we show how DASSA can recover high-quality
segmentations, and meaningful patterns in practice. To the
best of our knowledge, we are the first to present an efficient,
self-guided method for the purpose of segmenting general
data sequences.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2844

age Y X Income Size #Workers #Vehicles
4.0 4.0 4.0 10.0 0.0 3.0 5.0

Segment:1 4.0 3.0 4.0 10.0 0.0 3.0 2.0
4.0 4.0 2.0 10.0 2.0 5.0 5.0
4.0 3.0 4.0 10.0 2.0 3.0 2.0

age Y X Income Size #Workers #Vehicles
1.0 5.0 7.0 6.0 5.0 1.0 2.0

Segment:2 4.0 5.0 7.0 3.0 0.0 1.0 1.0
4.0 6.0 6.0 7.0 1.0 5.0 4.0
2.0 5.0 5.0 7.0 0.0 3.0 2.0

(a) Segmenting a sequence of flu-cases (b) Segmenting a sequence of words appearing in tweets

Figure 1: Our method DASSA gives meaningful cut-points: (a) Most frequent data values (discretized) in segments detected
in flu-infection data Portland. (b) Word clouds for each detected segment for the Twitter dataset Peru. Size of a word is
proportional to its frequency in the corresponding segment. More discussion in Sec. 6.

2 Preliminaries

Information Bottleneck (IB): The IB method (Tishby,
Pereira, and Bialek 1999) compresses one signal X to the
‘bottleneck’ X̃ (much smaller than X in size) without much
loss of its information related to another signal Y . The opti-
mization problem it solves is:

min I(X̃;X)− βI(X̃;Y) (1)

where I(·; ·) represents the mutual information between
two variables, β is the Lagrange multiplier. Given |X̃| and
p(X,Y), this optimization problem can be solved itera-
tively (Tishby, Pereira, and Bialek 1999) to provide these
distributions: p(x̃|x), p(x̃) and p(y|x̃); where x, x̃ and y are
possible values of X , X̃ , and Y .

Slonim et. al. (Slonim and Tishby 2000) develop a vari-
ation of IB for word-document clustering, where they use
words as the X signal, documents as the Y signal, and X̃
as the labels for words. In this formulation, they use hard-
clustering (each x is mapped to exact one x̃) to cluster words
so that the information in the documents are maximally kept.
They initialize the problem with no compression (X̃ = X),
and greedily choose the label pairs with smallest marginal
loss δI(X̃, Y) (mutual information between X̃ and Y) to
merge. The loss by merging x̃i and x̃j is defined as follows:

δI(x̃i, x̃j) = (p(x̃i) + p(x̃j)) ∗DJS [p(y|x̃i), p(y|x̃j)]
(2)

where DJS is the Jensen-Shannon divergence.
Minimum Description Length (MDL): The MDL princi-
ple (Grünwald 2007) suggests that the best hypothesis for
a given set of data, which captures the most regularity in
the data, is the one that leads to the best compression of the
data (Waggoner et al. 2013; Chen et al. 2014). MDL finds
the best model which minimizes

CostT = Cost(M) + Cost(X|M) (3)

where Cost(M) is the cost to describe the model,
Cost(X|M) is for describing the data using the model.

3 Overview

We present the main principles of DASSA (Alg. 1 shows the
basic steps) next.

Algorithm 1 Pseudo-code for DASSA
Input: D

Output: The best segmentation S∗

1: [X̃ , p(x̃|x)]=Cluster (D).//Finding data clusters using IB and
MDL (Sec. 4.2)

2: Build a node for every possible time segment y.//Constructing
G (Sec. 4.1)

3: Add node s and t to represent the start and end time of D.
4: Create edges for adjacent y’s.
5: Calculate the edge weights as the Euclidean distance between

the corresponding conditional cluster distribution p(x̃|y).
6: S∗ = DAG-ALP (G, h, s, t).//Finding the ALP as S∗ (Sec. 4.3)

Definition 1 (Data sequence) A data sequence D is a list of
tuples (x1, t1), . . . , (xN , tN), where (xi, ti) is an observa-
tion of d-dimensional vector xi at time ti.

Let X =
⋃

i{xi}. W.L.O.G we assume time stamps are
sorted, i.e. t1 ≤ t2 ≤ . . . ≤ tN . Note that both xi’s and ti’s
are not necessarily unique. We can have observations with
the same data value, and there can be multiple data observa-
tions having the same time stamp. This general definition of
data sequences covers special cases like time series, where
the number of data observations at each time is the same; and
event sequences, where x′

is are one-dimensional categorical
values. We want to design an algorithm that automatically
finds segmentations for such data sequences, and that satis-
fies all the desired properties (P1-P3).
Main Ideas: To avoid introducing parameters like the de-
sired number of segments and to find the segmentation in an
automatic manner (P2), our search space would inevitably
be the set of all possible segmentations which is exponen-
tial in size. Our first main idea is to use a graph data struc-
ture (called the segment-graph G) to efficiently represent
and search among all possible segmentations of the data se-
quence. See Fig 2(c) for an example G. The node set of G
mainly represents all possible time segments Y = {yi,j}
(yi,j is the segment from time i to j), s and t represent the
start and end time, and the edge weights are distances (i.e.
the ‘difference’) between adjacent time segments. With this
data structure, segmentations of the data sequence are now
mapped to paths from start time s to end time t in G. Hence,
finding the best segmentation is now converted to the prob-
lem of finding the ‘best’ start-to-end path in the segment-

2845

graph G. To solve the segmentation problem using G, two
important questions remain unsolved: Q1: how do we define
the difference metric w(·) between two time segments, and
Q2: what is the best start-to-end path in the segment-graph,
and how do we find it efficiently?
Q1: Segment difference. Due to P1, we cannot use model-
based methods (which typically assume certain data distri-
butions like Gaussians in each segment or overall in D) for
our problem. Our second main idea is to cluster data values
based on their ‘temporal closeness’, and then represent each
segment using their conditional cluster distributions (p(x̃|y),
the probability of cluster x̃ given a segment y). We can then
measure the segment difference simply as the difference be-
tween their p(x̃|y)’s. Intuitively, clusters based on how data
values are temporally distributed over all possible segments
Y naturally captures the ‘similarity’ between data values,
which is well-suited for segmentation problems: if two data
values always occur close in time at multiple granularities,
they contain similar information as to defining the best seg-
mentation. A major advantage is that clustering ‘temporally
close’ data values is not data-type specific and it does not
need any prior assumptions on the data distributions. It is
also more general than the traditional clustering of data with
similar values, as data values with similar temporal occur-
rence may not have similar values.

Due to P2, we want to find these temporally similar
data clusters in a principled, unsupervised fashion. The
Information Bottleneck (IB) formulation is very well-suited
for this task—thinking of segments Y as ‘documents’ and
data values X as ‘words’ allows us to leverage IB to cluster
data values with similar segment distributions p(y|x) with-
out specifying an explicit distance metric. As IB is non-
parametric, to automatically find the appropriate number of
clusters, we further design and optimize a novel Minimum
Description Length code. Both IB and MDL are based on
sound information theory principles. Note that in contrast
to other methods (topic modeling, biclustering, etc), IB has
exact formal solutions and other advantages (see Sec. 5).
Q2: Best path. The main challenges are (a) how to define
this best path; and (b) how to find it efficiently in the po-
tential exponential search space. In the optimal segmenta-
tion, we require the adjacent time segments to be different
which may naı̈vely suggest choosing a path with the max-
imum sum of weight. At the same time, we want to avoid
over-segmenting (having more segments than needed). Due
to these considerations, instead, we propose to define the
best path in G as the one that has the maximum average
edge weight. This definition intrinsically balances the dif-
ference of segments and the number of segments, and finds
the segmentation automatically without setting the number
of segments as an input parameter (P2). We further propose
a novel efficient DAG-ALP algorithm for finding the aver-
age longest path for DAG.

4 Details of DASSA
We now give details about DASSA. First, we introduce smin

as the unit time length, and divide the time period into these
small time units. Hence, a time cut point ci can be defined as
ci = tmin + i · smin, i ∈ N, and tmin ≤ ci ≤ tmax, where

Time Value
1 1
1 100
2 2
3 50
4 100
4 1
5 2
6 5

(a) (b)

(c)

Figure 2: (a) shows an example data sequence, (b) results
from our Cluster algorithm, X and Y are connected if the
data value x appears in the corresponding y. Value 1, 100,
2 are merged to cluster a because they occur together in the
sequence, (c) the segment-graph G, the path/segmentation
found by DASSA is marked as red.

tmin = min(ti), and tmax = max(ti). Now we define a
time segment.
Time segments and MTS: A time segment yi,j is a time in-
terval between any two cut points [ci, cj). A Minimum Time
Segment (MTS) is a time segment yi,j between two adjacent
cut points, i.e. j = i+ 1.

Naturally following, all MTS’s have length smin, and they
are the smallest time segments of our interest. We further
define the set of all possible segments Y = {yi,j |cj − ci ≤
smax}, where we assume smax is the maximum segment
size we allow in a segmentation (like a year in a twitter data).
In experiments, when a natural upper bound is available,
we set the smax accordingly, otherwise we set it trivially as
tmax− tmin. Note that, we introduce smin and smax mainly
to incorporate domain knowledge if there’s any. Our algo-
rithm still looks at segments at all granularities of all sizes
(in multiples of smin) as we explain later. In principle, we
can set these parameters via cross validation, but our results
are robust when there are slight changes of them.
Segmentation: A segmentation S is a set of consecutive
segments S = {ya1,a2 , . . . , yam,am+1} where each yai,aj ⊂
Y and ca1

= tmin, cam+1
= tmax.

We show a running example data sequence in Fig. 2(a),
the optimal segmentation is shown with the red dash line,
which captures the fact that 1, 100, 2 occur together in the
sequence.

4.1 Segment-graph

We construct a Directed Acyclic Graph (DAG) segment-
graph G (V,E,W) to efficiently represent and search among
all possible segmentations. We show G’s structure below.

Nodes (V): For each segment yi,j in Y , we construct a
corresponding node in a graph G. We also add two extra
nodes to the graph: a source node s and a target node t (i.e.
V = {y1,2, y1,3, . . . , y2,3, . . .} ∪ {s, t}).

2846

Edges (E): We create a directed edge from node yi,j to
node yk,l iff j = k, i.e. they are adjacent segments. Source
node s links to all nodes with start time tmin; target node t,
absorbs links from all nodes with end time tmax.
G is clearly a DAG (as we cannot go back in time), and every
path from s to t is one-to-one mapped to a segmentation
of the sequence. Hence the segmentation problem is now
converted to the problem of finding the best path in G.

4.2 Q1: Defining edge weights

The edge weight w(e(yi,j , yj,k)) measures the difference be-
tween adjacent segments yi,j and yj,k. We now propose our
algorithm Cluster, which combines IB and MDL to auto-
matically cluster data values based on their segment distribu-
tions p(y|x) to capture their ‘temporal similarity’, and define
the edge weight as the distance between p(x̃|y). To facilitate
calculating the occurrence of the same value, for features
with real values, we discretize them to a constant number of
bins of equal size/width as in past literature (Shokoohi-Yekta
et al.). In the following, we assume all xi

′s are discretized.
Finding clusters using IB We define the set of clusters
we want to find as X̃ = {x̃1, x̃2, · · · , x̃l}, where each x̃i

contains a set of x′s in the data space X , and l is the number
of clusters (we discuss how to automatically find l in the next
section). We assume each x belongs to only one x̃.

We want to cluster X to X̃ so that x′s with similar oc-
currence in Y are merged in the same x̃. For this task, we
re-purpose the word/document formulation of IB (Slonim
and Tishby 2000), designed to cluster words based on the
word-document structure. We interpret the set of data val-
ues X in our setting as the ‘words’ and the set of all pos-
sible time segments Y as the ‘documents’. Since such IB
formulation would cluster data values with similar segment
distributions p(y|x) (in an information theoretic way with-
out specifying a distance metric), we essentially cluster data
values with similar temporal occurrence over all time seg-
ments. We initialize X̃ = X (each xi in its own cluster x̃i),
then iteratively merge x̃i, x̃j pairs which minimizes the loss
of temporal information specified as δI(x̃i, x̃j) = (p(x̃i) +
p(x̃j)) ∗ DJS [p(y|x̃i), p(y|x̃j)], where DJS is the Jensen-
Shannon divergence. Such an iteration process continues un-
til we reach the desired number of clusters l∗. In implemen-
tation, we use a priority queue to efficiently find the best data
values to merge in each iteration, and reduce the time com-
plexity from O((|X|− l)|X|2) to O((|X|− l)|X| log |X|).
Number of clusters using MDL To automatically find the
appropriate number of clusters l∗ in D, we propose to use the
MDL principle: the best model for the data is the one that ex-
presses the data losslessly with the smallest code length. To
apply MDL, we construct a model class for any cluster num-
ber l which combines the corresponding cluster information
and some other information (which is needed to express the
data losslessly), and then select the best model (and the cor-
responding l∗) based on the data and the model cost.
Model description. As IB is a lossy compression method,
we cannot express the data losslessly using just the clus-
ter information. Hence, we augment the IB results with the
following additional information: (a) p(xj |x̃i), data value

distribution in each cluster; (b) p(y|x̃i), the probability of
a cluster being in a time segment; and (c) p(x̃i), the prior
for x̃i. Formally our model is θ = {l, N, |Y |, p(x̃i|xj),

p(y|x̃i), p(x̃i), p(xj |x̃i)}, where l = |X̃|, and N = |D|.
To describe the model, we need to encode the set θ ∈ M.
So our model description cost is:

C(M) = log∗ l + log∗ N + log∗ |Y |+N log l

− (l|Y |+ |X̃|+ l|X|) log ε (4)

where ε is the precision for the probability values (ε = 10−5

indicates a precision of 0.00001), and log∗(n) = log n +
log log n+ . . . (it is roughly the number of bits to encode an
integer n ≥ 1).
Data description. To describe the data, naı̈vely one can de-
scribe (xj , {y|tj ∈ y}) for all y covering tj . We observe
that all time segments {y|tj ∈ y} containing xj must also
contain the MTS that covers xj (followed from our segment
definition). Hence, the likelihood of observing xj is equiv-
alent to the likelihood of observing it in the MTS that con-
tains it. Using this observation, we can reduce the number
of (x, y) pairs we need to describe from |X||Y | to |X|. We
then derive the final data description cost as:

Cost(X|M) = − log2 L(X,Y |θ) = −
∑

(xj ,y)

log2 p(xj , y|θ)

= −
∑

(xj ,y)

log2 p(xj |x̃∗, θ)p(y|x̃∗, θ)p(x̃∗|θ) (5)

where x̃∗ is the corresponding cluster for x.
The total cost. Combining the above, the total cost of this
description based on the model we described is CT =
C(M) + C(X|M) = Eq. 4 + Eq. 5. The best model min-
imizes CT , i.e. θ∗ = argmin

θ
CT , and θ∗’s corresponding l

value is the optimal number of clusters. This cost function is
hard to optimize: hence we leverage a greedy approach that
naturally fits the iteration process we introduced before. We
keep greedily merging x̃i, x̃j , and for each smdl merges, we
calculate the corresponding CT . This iteration process stops
(reaching optimal l∗) when CT begins to increase.
Final edge weights Once we find X̃ and p(x̃|x), we can
calculate the cluster distribution p(x̃|y) in each segment y
by counting the number of times members of each clus-
ter occur in the segment. And the edge weight between
segments ya and yb in G can be defined as w(ya, yb) =
Dist(p(x̃|ya), p(x̃|yb)). We want that any distance metric
Dist(·, ·) we use should satisfy the following property:
Property 1 For any three consecutive segments u, v, t, and
if v can be further divided into segments v1 and v2 (i.e. if
v = [ci, cj), v1 = [ci, ck), v2 = [ck, cj)), then w(e(u, v))+
w(e(v, t)) ≤ w(e(u, v1)) + w(e(v1, v2)) + w(e(v2, t)).
Intuitively, this property makes the segmentation problem
well defined in the sense that adding more cut-points al-
ways gives us more difference/pattern changes (measured
by the sum of edge weights)—hence ‘zooming-out’ i.e. ag-
gregation by looking at larger time-segments should only
decrease the difference. Note that capturing more pattern

2847

Algorithm 2 Pseudo-code of DAG-ALP
Input: a weighted DAG G (V, E, W), h, s, t
Output: Average longest path

1: Layer0 = {s} // initialize the first layer
2: lp0(s) = 0 // the longest path form s to s with length 0 is initialized as 0
3: for i = 1 to h do
4: Layeri ={nodes directly connected to any nodes in

Layeri−1}
5: Calculate lpi(·) for nodes in Layeri using lpi−1(·)
6: ALP = argmax(lpi(t)

i
)

changes does not always lead to a better segmentation: hav-
ing a segmentation with many small changes may be less
desirable than one which captures only a few globally sig-
nificant changes at the right segment sizes. Hence how to
find the best segmentation is a separate problem.

We use the popular Euclidean distance between distri-
butions (like used in (Liu et al. 2012)) i.e. w(e(ya, yb))
= DEU (p(x̃|ya), p(x̃|yb)), which satisfies property 1. The
proof follows from the subadditivity (triangle inequality) of
DEU . In contrast, the well-known KL divergence does not
satisfy this property in general.

4.3 Q2: Finding the best path

In the weighted G, the problem of finding the optimal seg-
mentation is now reduced to finding the ‘best’ path from the
set of all valid paths P in G.

We argue that a good segmentation should regularize the
total segment difference with the number of segments: hav-
ing many small changes is less desirable than capturing just
the significant ones. Hence, we propose to solve the Average
Longest Path problem (ALP) to find the best path.
Given: Segment-graph (DAG) G (V,E,W) with a start
node s and end node t.
Find: Path S∗ from s to t with maximum average weight:
S∗ = argmaxS∈P

∑
e in S w(e)

|S| .
We present a novel ALP algorithm DAG-ALP with O(h ·

|E|) on general DAGs (h is the maximum path length in the
DAG). Our idea is that the ALP from s to t must also be
the longest (most heavily weighted) path among all paths
with the same number of nodes. Hence, we calculate all
the longest paths with different lengths (number of nodes)
from s to t, and find the one giving the maximum average
edge weight. More concretely, DAG-ALP uses a multi-layer
structure, where the first layer L0 contains only the begin-
ning node s, and layer Li contains the nodes which can be
reached from s by i steps. When we iterate through layers,
we maintain the weight (lpi(v)) of the longest path from s
to v ∈ Li, and the parent node of v in Li (π(v, i)) in the
longest path. After all iterations, we get longest paths from
s to t with different lengths, and we output the one with the
largest average weight. Alg. 2 shows the brief pseudo-code.
Due to the structure of our segment-graph, DAG-ALP finds
the ALP in G in O(E) time (proofs omitted due to space).
Time and space complexity The pseudo-code of DASSA
is shown in Alg. 1. With priority queue, reduction of un-
necessary data description, and DAG-ALP, our final time

complexity is O((|X| − l∗)|X| log |X| + |E|). To find the
ALP we only need to store the previous layer in DAG-ALP,
hence the overall space complexity of DASSA is O(|D|). In
practice, for all datasets used in our experiments, DAG-ALP
finishes within 40s, and the complete algorithm takes 30m
to run on average (including one with 2 million data obser-
vations), satisfying P3.

5 Related Work

We review the most closely related work here.
Event sequence mining. Related work include finding sum-
maries of event sequences (Kiernan and Terzi 2009), de-
veloping streaming algorithms (Patnaik et al. ICDM 2012),
pattern sets mining (Tatti and Vreeken 2012), episode min-
ing (Wu et al. 2013), progression stage analysis (Yang et al.
2014). Their datasets can be understood as one-dimensional
categorical data sequences. In contrast, we study a more gen-
eral case, where the data can be multi-dimensional, and both
real and categorical.
Time series analysis. There has been a lot of work on
time series, such as modeling co-evolving time series us-
ing multi-level HMMs (Matsubara, Sakurai, and Faloutsos
2014), discovering patterns in data streams (Toyoda, Saku-
rai, and Ishikawa 2013; Rosman et al. 2014), developing on-
line algorithms for frequent sequence mining (Mueen and
Keogh 2010), time series segmentation (Samé and Govaert ;
Li et al. 2009; Loglisci and Berardi 2006), change detec-
tion algorithms (Nguyen and Vreeken 2016; Chen et al.
2013), temporal clustering (Nguyen and Torre 2012). All
these methods, while very valuable, work on single or multi-
ple time series, but we focus on more general data sequences
with multi-dimensional data points, and the data points can
have arbitrary time stamps (certain time periods may have
many more data points than others).
Others. Topic modeling (Smola and Narayanamurthy 2010;
Blei, Carin, and Dunson 2010), biclustering (Madeira and
Oliveira 2004), and co-clustering (Dhillon 2001) can be
adapted to find relations between data values, as the IB-
based clustering does in DASSA. However, the words/data
found in the same topic/bicluster/co-cluster do not neces-
sarily have similar temporal occurrence. Also, data values
which occur together, may not form statistically significant
topics/clusters. Hence these methods cannot be used to find
temporally similar clusters. Further IB has an exact formal
solution (Tishby, Pereira, and Bialek 1999). There are also
some specialized algorithms e.g. (Amiri, Chen, and Prakash
2017) which deal with graph sequences. The MDL princi-
ple we used in this paper has also been used for extracting
features for time series (Hu et al. 2011), and for speaker di-
arization (Vijayasenan, Valente, and Bourlard 2009). How-
ever, our MDL code is completely different from theirs, and
to the best of our knowledge, we are the first to combine
IB with MDL principle to temporally cluster data values for
data sequence segmentation.

6 Experiments

Setup. Our experiments are conducted on a 4 Xeon E7-4850
CPU with 512GB of 1066Mhz main memory and DASSA

2848

� �� ��� ��� ���
���

����

�

����

���

����

���

����

���	 ��

����� �� �������� ���

�
��
� �

�� �� ��
��	�

��	��

��
�

l*=48

(a) MDL curve for
ChickenDance 1

0

0.5

1

Arge
ntina Peru para

guay
Portl

and

Chic
kenD

ance
1

Chic
kenD

ance
2

Ebol
a
PUC

−Rio

Q c

(b) Qc scores

Figure 3: (a) MDL curves of ChickenDance 1: CT vs num-
ber of clusters l. (b) Qc scores. Note Qc > 0.5 for all
datasets—indicates high quality clusters.

takes 30m to run on average for our datasets. For all the
datasets, we set a discretization level k = 10 as it leads
to a reasonable running time, and the performance is stable
around 10 (k = 5, 15 gives similar results). When construct-
ing the segment-graph in practice, we ignore segments with
less than 5% of |D| data values (which is a small fraction of
all segments), as they have too few observations, and are not
interesting for the final segmentation.
Datasets. DASSA works for general data sequences, hence
we collected real world datasets from different domains to
test. Tab. 1 shows the content of each data sequence. These
sequences contain different data types like age, town id
(categorical), sensor observations (real), etc., different time-
units and some of them (like Portland, Ebola) have arbitrary
time stamps (a data point can have any time stamp value,
and as a result there may be different number of data points
at each time stamp).
Baselines. To the best of our knowledge, there is no algo-
rithm that finds segmentations for general data sequences as
we do. Hence, we first adapt a time series algorithm Dy-
nammo (Li et al. 2009) (also used in (Matsubara, Sakurai,
and Faloutsos 2014)) as our baseline. Additionally, we com-
pare with three variations of DASSA (EMP, TopicM, LP in
Tab. 2). Note that unlike DASSA which detects the no. of
cut points automatically, Dynammo needs this as an input.
We set this value from the ground truth when one is avail-
able, otherwise we set it as the number detected by DASSA.

6.1 Results

Testing each component of DASSA: We check the num-
ber of clusters found by MDL, Fig. 3(a) shows that the
MDL-curve is indeed near-convex, and it suggests an op-
timal number of clusters; We examine the quality of the de-
tected clusters by designing a Silhouette score Qc to mea-
sure the ‘temporal similarity’ of data values in the clus-
ters, the Silhouette score (Fig. 3(b)) shows that the data
values in the clusters we found truly appear close in time
(all Qc > 0.5); We also compare our ALP path optimiza-
tion with the longest path (LP) optimization, which finds the
path with the maximum sum of edge weights. Our ALP path
optimization outperforms the LP optimization in all of the
datasets with ground truth segmentations (see Tab. 3).
Quality of segmentations: We measure our final segmenta-

Figure 4: DASSA segmentation results for ChickenDance.
The cut points of Dynammo (purple in the 1st row), TopicM
(blue in 2nd row), and EMP (green in 3rd row) are shown
below the DASSA.

tion output here. We show the F1 score for datasets with
ground truth segmentation (Portland, ChickenDance, PUC-
Rio), and our case study results for Twitter and Ebola.
Quantitative evaluation In short, DASSA gives much bet-
ter F1 scores.
Portland: DASSA finds the exact ground truth (F1 = 1 in
Tab. 3), and EMP has a much lower score (∼0.6). TopicM
and Dynammo also gets F1 = 1 in this dataset, but in all
other datasets, DASSA outperforms both of them. We show
the most frequent values in the two segments of the segmen-
tation found by DASSA in Fig. 1(a), It shows that elderly
people, with higher incomes, larger number of workers in
family, and more vehicles are infected first. Then younger
people with lower incomes, fewer vehicles get infected. It
illustrates that DASSA is capable of detecting the pattern of
disease propagation. And the results are easily interpretable.
ChickenDance: We find the exact ground truth (F1 = 1). As
shown in Fig. 4, DASSA discovers all the distinct chicken
dance motions precisely. In contrast, the cut points detected
by EMP, TopicM and Dynammo do not correctly find the
time when a different motion takes place: they either miss
the correct cut points, or have unnecessary additional ones.

PUC-Rio: This dataset was originally collected for classifi-
cation tasks. Finding the difference between actions is itself
a non-trivial task. Interestingly, DASSA is powerful enough
to capture some meaningful segments. We see that in Tab. 3,
DASSA reaches a F1 score of around 0.66, which again out-
performs both EMP and TopicM.
Case studies DASSA gives meaningful segments, com-
pared to baselines.
Twitter (Peru, Paraguay, Argentina): To explore the seg-
mentation found by DASSA, we look at users’ tweets in
each segment and count the number of each word to draw
word clouds. The size of a word in the word cloud is pro-
portional to the frequency of its usage in the segment. As
shown in Fig. 1(b), DASSA finds three segments. We ob-
serve that the sizes/frequencies of infection-related words
like ‘headache’, ‘tired’, ‘fever’ are decreasing from segment
to segment. On the other hand, the frequency of word ‘rem-
edy’ gradually increases. This matches what we expect from
a typical infection cycle: from getting exposed, to getting
sick, and finally to be cured. Recent work (Chen et al. 2014)
also matches what we found in the word cloud (unlike us
they use complex temporal graphical models to figure out

2849

Dataset Domain smin smax Data sequence D
Ground

truth

Portland Epidemiology 0.2 1.0 {[age, y, x, income, size,#workers,#cars]i, ti}Ni=1 �
ChickenDance Motion Seq. 10s 300s {[Sensor1, Sensor2, Sensor3, Sensor4]i, ti}Ni=1 �
Twitter Social Media 10d 100d {[#(Word1),#(Word2), . . . ,#(Word12)]i, ti}Ni=1 -
Ebola Epidemiology 4d 48d {[Infection Status, Town ID]i, ti}Ni=1 -
PUC-Rio Motion Seq. 150s 600s {[6 demographical, 12 sensor features]i, ti}Ni=1 �

Table 1: Summary of Datasets

Baseline Description
EMP Defines the distance between segments

based on the empirical data distribution
p(xj |y) instead of p(x̃i|y).

TopicM Finds clusters of values using topic model-
ing instead of our IB-based data clustering.

LP Finds the longest path instead of the ALP
as the optimal segmentation.

Dynammo Averaging data points in a sliding window
to construct multi-dimensional time series,
then feed the time series and the no. of cut
points to Dynammo.

Table 2: Baselines description.

Dataset DASSA TopicM EMP LP Dynammo
ChickenDance 1 1 0.85 0.76 0.63 0.57
ChickenDance 2 1 0.6 0.90 0.54 0.71
Portland 1 1 0.66 0 1

PUC-Rio 0.66 0.46 0.25 0.44 0.25

Table 3: F1 score of DASSA, TopicM, EMP, LP and Dy-
nammo on different datasets with ground-truth segmenta-
tion: DASSA gets perfect cuts in most of the datasets.

similar word clouds). In contrast, we find that Dynammo and
TopicM fail to capture meaningful word transitions.
Ebola: We explore the feature values in the two segments
detected by DASSA. In Fig. 5(a) we see that the death and
newly confirmed cases reduce significantly from segment 1
to segment 2, which shows a sign of increased caution for
the disease. We also notice from the change of distribution
of towns (Fig. 5(b)) that at first the infection mostly occurs
in town 2 and 3 which are ”Kono” and ”Kambia” in Sierra-
Leone. Then it spreads to other towns (e.g. town 9 which
is ”Bo” in sierra-leone). DASSA automatically finds a seg-
mentation that captures this disease propagation pattern; giv-
ing a better understanding of the situation.

7 Discussion

A segmentation algorithm implicitly contains its own dis-
tance measurements between time-segments. In this paper,
we define the distance as a carefully designed metric be-
tween the associated ‘co-occurrence’ cluster distributions in
the segments (p(x̃|y)). One might naturally think to define
the segment distance as the distance between the clusters in
segments themselves; but doing so has multiple issues. As an
example, we ran one classic subspace clustering algorithm
(Fires (Kriegel et al. 2005)) on our datasets. We observe that
Fires simply does not output any clusters for many segments

��
��
��
��
�	
�

��
��
	

	�
��
��

��
��
��
��
��
��

��
��
��
��
���

�

�
��
��
	

	�
��
��

�
��
��
��
��
��
��

�
��
��
��
��
���

�

��������������
	

����

����

����

����

����

����

����

����

����

����

��
�

�
�
�!

��
��
��
��
�	
�

��
��
	

	�
��
��

��
��
��
��
��
��

��
��
��
��
���

�

�
��
��
	

	�
��
��

�
��
��
��
��
��
��

�
��
��
��
��
���

�

��������������
	

���

���

���

���

���

���

��"

��
�

�
�
�!

(a) Change of infection status

� � � � � � � 	
 � �� �� �� ��
������

����

����

����

����

����

����

����

����

����

��
�
�
�
�
�
��

� � � � � � � 	
 � �� �� �� ��
������

����

����

����

����

����

����

����

��
�
�
�
�
�
��

(b) Change of infection towns

Figure 5: DASSA results for Ebola. (a) Distribution of in-
fection status for the two segments detected. (b) Distribution
of infection towns for the two segments detected.

(for example the last two segments in the optimal segmenta-
tion of Argentina, Paraguay, Peru), and it cannot detect the
same good segmentations as DASSA does. We believe simi-
lar problems would happen to other traditional clustering al-
gorithms as well. The cluster-based distance measurements
intrinsically do not handle well datasets where there is no
clustering. In addition, using the clusters themselves to rep-
resent the dataset will lose information as many data points
are not in any of the clusters.

8 Conclusions

We introduce DASSA, a novel, general, self-guided and ef-
ficient algorithm, to automatically segment data sequences.
We construct a segment-graph to efficiently represent and
search among all possible segmentations. Then we propose
an IB-MDL-based clustering algorithm to capture tempo-
ral similarities between data values. Finally, a novel DAG-
ALP algorithm is present to automatically find the segmen-
tation. DASSA has good performance on all datasets we col-
lect: discovering ground truth, finding high quality segmen-
tations, and providing interpretable real patterns.

Our framework is general for segmentation problems and
extending it for more complex sequences (such as image se-
quences) can be interesting future work. Future work can
also look into a parallelized or online version of DASSA.

2850

9 Acknowledgements

This paper is based on work partially supported by the NSF
(IIS-1353346), the NEH (HG-229283- 15), ORNL (Order
4000143330) and from the Maryland Procurement Office
(H98230-14-C-0127), and a Facebook faculty gift.

References

Amiri, S. E.; Chen, L.; and Prakash, B. A. 2017. Snapnets:
Automatic segmentation of network sequences with node la-
bels. In AAAI, 3–9.
Blei, D.; Carin, L.; and Dunson, D. 2010. Probabilistic Topic
Models. Signal Processing Magazine, IEEE 27(6):55–65.
Chen, X. C.; Steinhaeuser, K.; Boriah, S.; Chatterjee, S.; and
Kumar, V. 2013. Contextual time series change detection.
In SDM.
Chen, L.; Hossain, K. S. M. T.; Butler, P.; Ramakrishnan,
N.; and Prakash, B. A. 2014. Flu gone viral: Syndromic
surveillance of flu on twitter using temporal topic models.
ICDM.
Dhillon, I. S. 2001. Co-clustering documents and words us-
ing bipartite spectral graph partitioning. In ACM SIGKDD.
Grünwald, P. D. 2007. The Minimum Description Length
Principle (Adaptive Computation and Machine Learning).
The MIT Press.
Hu, B.; Rakthanmanon, T.; Hao, Y.; Evans, S.; Lonardi, S.;
and Keogh, E. 2011. Discovering the intrinsic cardinal-
ity and dimensionality of time series using mdl. In ICDM,
1086–1091. IEEE.
Kiernan, J., and Terzi, E. 2009. Constructing comprehensive
summaries of large event sequences. ACM Trans. Knowl.
Discov. Data 3(4).
Kriegel, H.-P.; Kroger, P.; Renz, M.; and Wurst, S. 2005. A
generic framework for efficient subspace clustering of high-
dimensional data. ICDM.
Li, L.; McCann, J.; Pollard, N. S.; and Faloutsos, C. 2009.
Dynammo: Mining and summarization of coevolving se-
quences with missing values. In KDD.
Liu, L.; Tang, J.; Han, J.; and Yang, S. 2012. Learning
influence from heterogeneous social networks. Data Mining
and Knowledge Discovery 25(3):511–544.
Loglisci, C., and Berardi, M. 2006. Segmentation of evolv-
ing complex data and generation of models. In ICDM Work-
shop, 269–273. IEEE.
Madeira, S. C., and Oliveira, A. L. 2004. Biclustering al-
gorithms for biological data analysis: a survey. Computa-
tional Biology and Bioinformatics, IEEE/ACM Transactions
on 1(1):24–45.
Matsubara, Y.; Sakurai, Y.; and Faloutsos, C. 2014. Au-
toplait: Automatic mining of co-evolving time sequences.
SIGMOD ’14, 193–204.
Mueen, A., and Keogh, E. 2010. Online discovery and main-
tenance of time series motifs. KDD ’10, 1089–1098.
Nguyen, M. H., and Torre, F. 2012. Maximum margin tem-
poral clustering. In International Conference on Artificial
Intelligence and Statistics, 520–528.

Nguyen, H.-V., and Vreeken, J. 2016. Linear-time detection
of non-linear changes in massively high dimensional time
series. In SDM. SIAM.
Patnaik, D.; Laxman, S.; Chandramouli, B.; and Ramakrish-
nan, N. ICDM ’2012. Efficient episode mining of dynamic
event streams.
Rosman, G.; Volkov, M.; Feldman, D.; Fisher III, J. W.; and
Rus, D. 2014. Coresets for k-segmentation of streaming
data. In Advances in Neural Information Processing Sys-
tems, 559–567.
Samé, A., and Govaert, G. Online Time Series Segmenta-
tion Using Temporal Mixture Models and Bayesian Model
Selection. ICMLA ’12 1:602–605.
Shokoohi-Yekta, M.; Chen, Y.; Campana, B.; Hu, B.; Za-
karia, J.; and Keogh, E. Discovery of meaningful rules in
time series. In KDD’15, 1085–1094.
Slonim, N., and Tishby, N. 2000. Document clustering using
word clusters via the information bottleneck method. SIGIR.
Smola, A., and Narayanamurthy, S. 2010. An architecture
for parallel topic models. Proceedings of the VLDB Endow-
ment 3(1-2):703–710.
Tatti, N., and Vreeken, J. 2012. The long and the short of it:
Summarising event sequences with serial episodes. KDD.
Thompson, W. W.; Comanor, L.; and Shay, D. K. 2006. Epi-
demiology of seasonal influenza: use of surveillance data
and statistical models to estimate the burden of disease.
Journal of Infectious Diseases 194(Supplement 2):S82–S91.
Tishby, N.; Pereira, F. C.; and Bialek, W. 1999. The infor-
mation bottleneck method. In Proceedings of the 37th An-
nual Allerton Conference on Communication, Control and
Computing, 368–377.
Toyoda, M.; Sakurai, Y.; and Ishikawa, Y. 2013. Pattern
discovery in data streams under the time warping distance.
The VLDB Journal 22(3):295–318.
Vijayasenan, D.; Valente, F.; and Bourlard, H. 2009. An in-
formation theoretic approach to speaker diarization of meet-
ing data. IEEE Transactions on Audio, Speech, and Lan-
guage Processing 17(7):1382–1393.
Waggoner, J.; Wang, S.; Salvi, D.; and Zhou, J. 2013. Hand-
written text segmentation using average longest path algo-
rithm. WACV.
Wu, C.-W.; Lin, Y.-F.; Yu, P. S.; and Tseng, V. S. 2013.
Mining high utility episodes in complex event sequences.
KDD ’13, 536–544.
Yang, J.; McAuley, J. J.; Leskovec, J.; LePendu, P.; and
Shah, N. 2014. Finding progression stages in time-evolving
event sequences. In WWW ’14.

2851

